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Abstract. We focus on the long time behavior of complex networks of reaction-

diffusion systems. We prove the existence of the global attractor and the L∞-
bound for networks of n reaction-diffusion systems that belong to a class that

generalizes the FitzHugh-Nagumo reaction-diffusion equations.

1. Introduction. Networks of dynamical systems appear naturally in the model-
ing of numerous applications. In this paper, we focus on reaction-diffusion (RD)
systems networks that can be seen as neural networks. More precisely, in the net-
work, each node is a RD system which models the electrical activity of one neuron
or a group of neurons. RD systems which we consider here belong to a class that
generalizes the FitzHugh-Nagumo (FHN) equations. Recall that Fitzugh-Nagumo
equations are a two dimensional simplification of the four dimensional Hodgkin-
Huxley (HH) equations, that were introduced in 1952 to model action potential
propagation in the squid giant axon, and awarded with the 1963 Nobel Prize in
Physiology and Medicine [7, 10, 17]. In the network, the coupling between nodes
represent the synaptic activity which can be either electrical or chemical. A classical
question in dynamical systems is the existence of the attractor: basically, a set that
attracts all the trajectories for large time. This is the question we deal with, by
proving the existence of the network global attractor, whatever the topology (i.e.
graph connectivity which here, represents the synaptic connectivity) of the network
is. The existence of the attractor and the L∞- bound appear crucially in the related
article [4] in which we study the synchronization phenomena for these networks.

Mathematical framework and preliminaries. First of all, we introduce the
mathematical framework we use throughout this paper. Mathematically speaking,
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the network is represented by a graph, whose nodes are d-dimensional RD systems
and whose edges correspond to the coupling functions between these systems. The
general system reads as:

Uit = Q̃∆Ui + F̃ (Ui) + H̃i(U1, ..., Un), i ∈ {1, ..., n} (1)

with boundary conditions. In this equation, each variable Ui represents a function
from Ω × R+ into Rd, Ω is a bounded domain of RN and F̃ : Rd → Rd is the
nonlinear reaction term. For all i ∈ {1, ..., n}, H̃i : Rnd → Rd is the coupling

function between nodes, whereas Q̃ is a diagonal matrix of Rd×d with non-negative
coefficients. We do not go into details concerning the existence of the semi-group
of (1). We refer to [14, 15, 23] or [9, 21, 22], for classical results on the existence
of semi-group in Lp(Ω) or in Ck,α(Ω) spaces. Our main concern in this work is
the proof of the existence of the global attractor for complex networks of type
(1), for which the FHN equations are a particular case. FHN equations are a
two dimensional model for oscillations and excitability. They allow to generate
action potential propagation, see [1]. One can obtain FHN equations from Hodgkin-
Huxley equations, by substituting a variable by its asymptotic value, using a linear
correlation between two other variables and exploiting the cubic and linear shape
of null-clines. They capture excitability and oscillatory regime found in the HH
model, see [6, 7, 11, 17]. Good qualitative analysis of the FHN reaction-diffusion
system can be found for example in [12, 19]. In [2], we gave a first analysis of a
particular network of FHN RD systems. Here, we consider networks of RD systems
with partially diffusive components, that generalize FHN RD equations. This is
typical in neuroscience models for which only the membrane potential diffuses.
Using techniques coming from [16, 23], we prove the existence of the global attractor
for a general complex system representing neural activity. The study of the attractor
of RD systems has a quite long history. First works, motivated by biological or fluid
mechanics applications, appear in the articles [5, 13], while in [16] the attractor of
a partially diffusive system with two scalar equations has been considered. As far
as we know, the question of the existence of the attractor of a complex network
of RD is new. As we have already pointed out, this question arises naturally from
neuroscience since each neuron or group of neurons can be represented by a RD
system, whereas coupling terms take account of synaptic interactions between these
neurons. Note that we use the result proved here, namely the existence of the
attractor and the L∞-bound, to study, in [4], theoretically and numerically, the
synchronization phenomenon, for complex networks of RD systems. We present here
results for a network of n partially diffusive systems with d equations. We assume
that we can split the system (1) into two subsystems, diffusive and non-diffusive,
with s and d − s equations, respectively. Therefore, we set for all i ∈ {1, ..., n},
Ui = (ui, vi), and write (1) in the following form:{
uit = F (ui, vi) +Q∆ui +Hi(u1, ..., un), on Ω× (0,+∞), i ∈ {1, ..., n}
vit = −σ(x)vi + Φ(x, ui) on Ω× (0,+∞),

(2)

with Neumann boundary conditions (NBC) on ∂Ω, and where ui take values in Rs,
1 ≤ s < d, whereas vi take values in Rd−s, we use the classical notation ut for
∂u
∂t , Q is a diagonal matrix in Rs×s with coefficients qj , j ∈ {1, ..., s}, and Hi takes
values in Rs. This means that diffusion and coupling terms appear only in the s
first variables of each subsystem of the network. Finally, σ(x) is a diagonal matrix
with positive (diagonal) coefficients and with bounded derivatives. The application
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Φ takes values in R(d−s). Under certain conditions, the system (2) generates a semi-
group on H = (L2(Ω))nd, see [16, 18, 23]. Before going into details of the analysis
of system (2), we present some key features appearing in the proof of the global
attractor for some systems with one and two variables. These techniques will be
generalized to system (2) in section 2. Let us start with the following equation:

ut = ∆u− u3 + u2 + u, (3)

considered in a bounded domain Ω with Neumann boundary conditions. Multiply-
ing (3) by u gives,

d

dt

∫
Ω

u2 + 2

∫
Ω

|∇u|2 =− 2

∫
Ω

(u4 − u3 − u2) (4)

≤− δ
∫

Ω

u2 +K, (5)

for some constants δ and K. By Gronwall lemma, there exists a constant K ′ such
that, ∫

Ω

u2 ≤ K ′,

for all initial conditions in L2(Ω) and for t large enough. Now, integrating (5)
between t and t+ r for a given constant r gives,∫ t+r

t

∫
Ω

|∇u|2 ≤ K for another K. (6)

Multiplying (3) by u2k−1, by analog computations, we find that there exists a
constant K ′′ such that ∫

Ω

u2k ≤ K ′′, (7)

for all initial conditions in L2(Ω) and for t large enough.
Also, multiplying (3) by −∆u gives,

d

dt

∫
Ω

|∇u|2 =− 2

∫
Ω

(∆u)2 + 2

∫
Ω

(u3 − u2 − u)∆u

≤−
∫

Ω

(∆u)2 +K

∫
Ω

(u6 + u4 + u2) by using Young inequality,

for some positive constant K. Therefore, thanks to (6) and (7), we deduce, by using
the uniform Gronwall lemma (see appendix and the classical paper [8]), that∫

Ω

|∇u|2 < K,

for another given constant K and for all initial conditions in L2(Ω) for t large
enough.
This gives the compacity of trajectories of (3) thanks to the compact injection of
H1 in L2. Now, we consider the system with two variables,{

ut = ∆u− u3 + u2 + u+ v
vt = −δv + u

(8)

Multiplying the first equation of (8) by u and the second by v, integrating, using
Green formula, Young inequality and Gronwall lemma leads to:∫

Ω

(u2 + v2) < K,
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for a constant K, for all initial conditions in L2(Ω)×L2(Ω), and time large enough.
Then, we seek to obtain a similar bound in L2k(Ω) × L2k(Ω) for all k ∈ N, k ≥ 1.
From the computation above, this result is true for k = 1. We multiply the first
equation of (8) by u2k−1 and the second by v2k−1, sum the two equations and
integrate, we obtain,

1
2k

d
dt

∫
Ω

(u2k + v2k) = −(2k − 1)
∫

Ω
u2k−2|∇u|2 −

∫
Ω
u2k+2 +

∫
Ω

(u2k+1 + u2k) +
∫

Ω
vu2k−1

+
∫

Ω
uv2k−1 − δ

∫
Ω
v2k.

Using Young inequality, ab ≤ cpap

p + bq

cqq , leads to,

1
2k

d
dt

∫
Ω

(u2k + v2k) ≤ −
∫

Ω
u2k+2 +

∫
Ω

(u2k+1 + u2k) + γ1

∫
Ω
v

2k+2
3 + γ2

∫
Ω
u2k+2

+γ3

∫
Ω
u2k + γ4

∫
Ω
v2k − δ

∫
Ω
v2k,

with γ2 < 1 and γ4 < δ. Then, since 2k+2
3 < 2k, there exists two constants γ

and K such that,

d

dt

∫
Ω

(u2k + v2k) ≤ −γ
∫

Ω

(u2k + v2k) +K.

It follows that there exists a constant K (depending on k) such that:∫
Ω

(u2k + v2k) < K,

for all initial conditions in L2(Ω) × L2(Ω), and time large enough. By analog
computations as done for equation (3), we obtain,∫

Ω

|∇u|2 < K.

It remains to consider
∫

Ω
|∇v|2. By multiplying the gradient of the second equation

of (8) by ∇v, we obtain:

d

dt

∫
Ω

|∇v|2 = −2δ|∇v|2 + 2∇u.∇v,

it follows that,
d

dt

∫
Ω

|∇v|2 ≤ −δ|∇v|2 +K,

which gives, ∫
Ω

|∇v|2 < K,

for t large enough. Thus, we have the bounds in Lq for all q ∈ [2,+∞[. We can
obtain the bounds in L∞(Ω) thanks to a result in [21].

Note that we can apply the same techniques for the generalized system:{
ut = ∆u+ f(u, v)
vt = −δv + g(x, u)

(9)

if the following conditions hold

uf(u, v) ≤ −δ1|u|p + δ2|u||v|+ δ3 (10)

and,

|f(u, v)| ≤ δ1|u|p−1 + δ2|v|+ δ3 (11)

|∂g
∂x

(x, u)| ≤ c|u| and |∂g
∂u

(x, u)| ≤ K, (12)
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where p > 2, δi > 0, i ∈ {1, 2, 3}.

2. Existence of the global attractor. Now, we prove the existence of the global
attractor for the dynamical system (2) in H = (L2(Ω)d)n. The global attractor is
a compact invariant set for the flow that attracts all trajectories (see for example
[23]). Practically, it is very important since it is the set where all the solutions
asymptotically evolve. In particular, all the patterns and solutions relevant for
applications belong, asymptotically, to the global attractor, see [2, 3]. Now, we
specify some assumptions that we assume throughout the paper. First, we assume
that for all i ∈ {1, ..., n}, and for all j ∈ {1, ..., s},

ujiF
j(ui, vi) ≤ −δ1|uji |

p + δ2|uji |
s∑

k=1

|uki |p1 + δ3|uji |
d−s∑
k=1

|vki |+ δ4, (13)

with p > 2, δ1, δ2, δ3 > 0, 0 ≤ p1 < p− 1, and,

|F j(ui, vi)| ≤ δ1|uji |
p−1 + δ2

s∑
k=1

|uki |p1 + δ3

d−s∑
k=1

|vki |+ δ4. (14)

Condition (13) generalizes (10). It indicates a decrease of order p at infinity and
allows to obtain bounds in Lq spaces. Condition (14) generalizes (11) and allows
us to apply Young inequalities in order to obtain bounds in H1. A typical example
for which (13)-(14) hold, is given by a function F where the component j reads as:

F j(u1
i , ..., u

s
i , v

1
i , ..., v

d−s
i ) = −ap−1(uji )

p−1

+
∑p−2
k=0

∑
αk1+...+αks=k ak1...ks

∏s
l=1(uli)

αkl

+

d−s∑
l=1

bkv
l
i,

with ap−1 > 0, ak1...ks , bk ∈ R and p even. This simply means that, relatively to

ui, F
j is polynomial of several variables, with the dominant term given by (uji )

p−1

with negative coefficient, and p even. The other terms have a degree lower than
p− 1, whereas, F j is a linear function of vi.

Moreover, in order to maintain the effect of the decrease condition (13), we
suppose that the coupling functions have a polynomial increase lower than p − 1.
This reads as:

|Hj
i (u1, ..., un)| ≤ δ4(1 +

n∑
k=1

|ujk|
p1), 0 < p1 < p− 1. (15)

Finally, we assume that for all j ∈ {1, ..., d− s},∣∣∣∣∂Φj

∂xk
(x, ui)

∣∣∣∣ ≤ δ5(1 +

s∑
j=1

|uji |), k ∈ {1, ..., N}, (16)

and, ∣∣∣∣∂Φj

∂uki
(x, ui)

∣∣∣∣ ≤ δ5. (17)

Conditions (16) and (17) generalize condition (12). They allow to choose functions
Φ with spatial heterogeneity, which may lead to rich behavior, bifurcations and
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pattern formation (see [1]). We deduce from (17) that for all j ∈ {1, ..., d− s},∣∣Φj(x, ui)∣∣ ≤ δ6(1 +

s∑
l=1

∣∣uli∣∣). (18)

The following theorem gives the existence of the global attractor.

Theorem 2.1. Under assumptions (13)-(17), the semi-group associated with (2)
possesses a connected global attractor A in H = (L2(Ω))nd. Furthermore, A is
bounded in (L∞(Ω))nd.

The proof of theorem 2.1 relies on a general result that gives the existence of the
global attractor in Banach Spaces, see [23]. If there exists a bounded absorbing set
B in H, which means that B verifies the following condition,

for all bounded set B ⊂ H,∃tB ;∀t > tB , S(t)B ⊂ B, (19)

and if,

for all bounded set B ⊂ H,∃tB ;∪t≥tBS(t)B is relatively compact in H, (20)

then the ω-limit set of B, is an invariant connected compact set that attracts all
the trajectories. Therefore, we split the proof of theorem 2.1 into four parts, which
for the reader’s convenience, are presented as different lemmas. Before going into
details, let us briefly present the sketch of the proof. We first show, in lemma 2.2,
the existence of a bounded absorbing set in H, that is (19). Then, in lemma 2.3, we
obtain (Lq(Ω))nd-bounds for all q ∈ N. Next, in lemma 2.4, we prove the result of
compacity for trajectories, that is (20). More precisely, we establish the existence of
a bounded absorbing set in (H1(Ω))nd. Then, the result follows from the compact
injection of H1(Ω) into L2(Ω). Note that proving lemmas 2.2 and 2.4 gives the
global attractor existence. Finally, the theorem 2.1 follows form result that links
L∞ and Lq-norms for linear parabolic equations, see [21].
Let us introduce the following notations,

|u|p,Ω =
( ∫

Ω

|u|pdx
) 1

p , (21)

if u is a real or vector valued function.
The lemma below establishes the existence of a bounded absorbing set in H.

Lemma 2.2. There exists an absorbing bounded set in H, that is, there is a constant
K, such that for all initial conditions in H :

(|u|22,Ω + |v|22,Ω)(t) ≤ K for t large enough.

Proof. The proof mainly relies on the presence of −δ1|uji |p in (13) and the fact that
σ(x) is diagonal with positive coefficients. In the following, parameters δ, c and K
are generic constants. We multiply each scalar equation in (2), for all i and j, by

uji or vji , and sum. We show, by using Young inequality, ab ≤ ap

εpp + εqbq

q , and as it

has been done for equation (8), that,

d

dt
(|u|22,Ω + |v|22,Ω) + δ1(|u|22,Ω + |v|22,Ω) + δ2|u|pp,Ω + δ3|∇u|22,Ω ≤ δ4. (22)

Then by Gronwall inequality, we have for t large enough,

(|u|22,Ω + |v|22,Ω)(t) ≤ K. (23)
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Lemma 2.3. For all q ∈ N, there exists an absorbing bounded set in (Lq(Ω))nd:
for all q ∈ N, there is a constant Kq such that for all initial conditions in H,

(|u|qq,Ω + |v|qq,Ω)(t) ≤ Kq for t large enough.

Proof. In the following, K is a generic constant. We multiply the first equation of
(2) by |uji |2k−2uji , for all i, j and integrate. We obtain,

1

2k

d

dt

∫
Ω

|uji |
2k =

∫
Ω

F (ui, vi)|uji |
2k−2uji+

∫
Ω

qj∆uji |u
j
i |

2k−2uji+Hi|uji |
2k−2uji . (24)

Besides, ∫
Ω

qj∆uji |u
j
i |

2k−2uji = −(2k − 1)

∫
Ω

|∇uji |
2|uji |

2k−2. (25)

Thanks to (13) and to (15), it follows that:

1

2k

d

dt

∫
Ω

|uji |
2k ≤ −δ1′

∫
Ω

|uji |
2k−2+p + δ2

′
d−s∑
k=1

∫
Ω

|uji ||v
k
i |+

n∑
k=1

∫
Ω

|uki |p1 |u
j
i |

2k−2uji .

(26)
Hence, by Young inequality,

1

2k

d

dt
|u|2k2k,Ω ≤ −δ1|u|2k2k,Ω +K. (27)

By Gronwall lemma,

|u|2k2k,Ω ≤ K, (28)

for t large enough.
Besides, by similar techniques, we have,

d

dt
|v|2k2k,Ω = −σ|v|2k2k,Ω +K. (29)

Then, the final result follows thanks to Gronwall lemma.

Now, we prove the compactness of trajectories in H, by establishing (20).

Lemma 2.4. There exists an absorbing bounded set in (H1(Ω))nd: there is a con-
stant K, such that for all initial conditions in H and t large enough,

|∇u(t)|2,Ω ≤ K.

Proof. By integrating (22) between t and t + r, we have for t large enough and
∀r > 0: ∫ t+r

t

|∇u|22,Ω + δ

∫ t+r

t

|u|pp,Ω ≤ K + δr. (30)

Now, we multiply each component of the first equation of (2) by −∆uji , integrate
and sum over i and j to obtain,

1

2

d

dt
|∇u|22,Ω = −

n∑
i=1

s∑
j=1

(∫
Ω

(F j(ui, vi)∆u
j
i + qj∆u

j
i∆u

j
i +Hj

i (u1, ..., un)∆uji

)
(31)

which, thanks to (14) and (15), leads to:
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1

2

d

dt
|∇u|22,Ω + q|∆u|22,Ω

≤ c
n∑
i=1

s∑
j=1

∫
Ω

(
1 +

s∑
l=1

|uli|p−1 +

d−s∑
k=1

|vki |+
n∑
l=1

|ujl |
p1
)
|∆uji | (32)

≤ c
n∑
i=1

s∑
j=1

∫
Ω

( c
2q

(
1 +

s∑
l=1

|uli|p−1 +

d−s∑
k=1

|vki |+
n∑
l=1

|ujl |
p1
)2

+
q

2c
(∆uji )

2
)
,

(33)

where q = mini∈{1,...,s} qi and c is a generic constant. It follows that:

1

2

d

dt
|∇u|22,Ω ≤ c

n∑
i=1

s∑
j=1

∫
Ω

(
1 +

s∑
l=1

|uli|2p−2 +

d−s∑
k=1

|vki |2 +

n∑
l=1

|ujl |
2p1
)

(34)

≤ c(1 + |u|2p−2
2p−2,Ω + |v|22,Ω). (35)

Thanks to lemma 2.3, we have for t large enough:

|u|2p−2
2p−2,Ω ≤ K. (36)

Then we can apply the uniform Gronwall lemma (see appendix and [8]), and show
that:

|∇u|22,Ω(t) ≤ K for t large enough.

It remains to find a bound for |∇v|2,Ω. For all i ∈ {1, ..., n}, and k ∈ {1, ..., N}, we
have:

d
2dt |vixk

|22,Ω =
∫

Ω
(−σ′xk

(x)vi · vixk
− σ(x)vixk

· vixk
+ Φ′xk

(x, ui) · vixk

+
∑s
j=1 u

j
ixk

Φ′
uj
i

(x, ui) · vixk
),

(37)

with vixk
= ∂vi

∂xk
. Using Young and Cauchy-Schwarz inequalities, we find, thanks to

(16) and (17), for time large enough,

d

dt
|vixk
|22,Ω ≤ −

σ

2
|vixk
|22,Ω +K. (38)

Finally, the result follows by using the Gronwall inequality and summing over i.

Proof of theorem 2.1. It remains to prove the L∞-bound. For all i ∈ {1, ..., n}, and
for all j ∈ {1, ..., s}, we have:

uji (t) = T (t)uji0 +

∫ t

0

T (t− τ){F j(uji , v
j
i )(τ) +Hj

i (u1(τ), ..., un(τ)) + uji (τ)} (39)

where T represents the semi-group associated with ∂ϕ
∂t − q

j∆ϕ+ ϕ = 0 and NBC.
We know, see [21], lemma 3 p 25, that T verifies:

|T (t)ϕ|∞,Ω ≤ cm(t)−
1
2 e−λt|ϕ|2N,Ω, (40)

where m(t) = min(1, t), λ is the smallest eigenvalue of the operator I − qj∆, and c
is a positive constant. This allows us to conclude.

3. Conclusion. In this paper, we have considered a network of n coupled reaction-
diffusion systems. We have proven the existence of the network global attractor
whatever the topology is.
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Appendix A. The Gronwall uniform lemma.

Theorem A.1. Let g,h and y ∈ L1
loc three positive functions. We assume that for

all t ≥ t0,
dy

dt
≤ gy + h (41)

and, ∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3,

where r, a1, a2, a3 are positive constants. Then

y(t+ r) ≤ (a2 +
a3

r
)ea1 ,∀t ≥ t0 + r.

Proof. Let s0 ≥ t0. By (41), we have:

d

dt

(
e
−

∫ t
s0
g(s)ds

y(t)
)
≤ e−

∫ t
s0
g(s)ds

h. (42)

We integrate (42) between t and s0 + r for t ∈ [s0, s0 + r]. We obtain:

e
−

∫ s0+r
s0

g(s)ds
y(s0 + r)− e−

∫ t
s0
g(s)ds

y(t) ≤
∫ s0+r

t

exp{−
∫ t′

s0

g(s)ds}h(t′)dt′.

It follows that:

e−a1y(s0 + r)− e−
∫ t
s0
g(s)ds

y(t) ≤
∫ s0+r

t

h(t′)dt′.

By multiplying by exp{
∫ t
s0
g(s)ds}, we find:

e
∫ t
s0
g(s)ds

e−a1y(s0 + r)− y(t) ≤ e
∫ t
s0
g(s)ds

∫ s0+r

t

h(t′)dt′.

Then, we integrate between s0 and s0 + r with respect to t. This gives

e−a1y(s0 + r) ≤ a2 +
a3

r
,

thus,

y(s0 + r) ≤ (a2 +
a3

r
)ea1 .

Corollary 1. Let y, h ∈ L1
loc two positive functions. We assume that for t ≥ t0:

dy

dt
≤ h (43)

and, ∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

yds ≤ a3,

where r, a2, a3 are positive constants. Then

y(t+ r) ≤ a3

r
+ a2,∀t ≥ t0 + r.
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Proof. It follows obviously from theorem A.1 with a1 = 0. For sake of clarity, we
give here a direct proof: for all s0 ∈ [t0,+∞[, for all t ∈ [s0, s0 + r],

y(s0 + r)− y(t) ≤
∫ s0+r

t

hds.

Then, we integrate between s0 et s0 + r with respect to t. We obtain,

y(s0 + r) ≤ a3

r
+ a2.
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