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A B S T R A C T

Geometrical Singular Perturbation Theory has been successful to investigate a broad range of biological pro-
blems with different time scales. The aim of this paper is to apply this theory to a predator-prey model of
modified Leslie–Gower type for which we consider that prey reproduces mush faster than predator. This natu-
rally leads to introduce a small parameter ϵ which gives rise to a slow-fast system. This system has a special
folded singularity which has not been analyzed in the classical work [15]. We use the blow-up technique to
visualize the behavior near this fold point P. Outside of this region the dynamics are given by classical regular
and singular perturbation theory. This allows to quantify geometrically the attractive limit-cycle with an error of
O(ϵ) and shows that it exhibits the canard phenomenon while crossing P.

1. Biological motivation and formulation of the model

In [17], see also [18], Leslie introduced the following prey-predator
model:
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The first equation, which describes the evolution of the prey, has a
logistic term, −r x b x ,1 1

2 standing for growth under limited quantity of
food, as well as a classical Lotka–Volterra term, − a xy1 for the mortality

due to predation. More surprising is the term −a y
x2

2
instead of the

classical Lotka–Volterra term+ a xy2 or a logistic term− a y ,2
2 appearing

in the equation for the predator y. Leslie introduced it, to fit data on
growth of Paramedum Caudatum and Paramecium Aurelia cultures, in
which the food supply consisted of a suspension of Bacillus Pyocyaneus
in a buffered medium. It appeared that to fit data, the constant in front
of the term − y2 in the classical logistic term, should be inversely pro-
portional to the concentration of food. That was the argument which

originally led Leslie to introduce the term −a y
x2

2
.

A slightly improvement of this model, came with the following
equation which appeared in [27], and which we call, following [22],
the Holling–Tanner model:
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The difference with the previous equation is that the term − a yx1 is
replaced by the Holling functional response of type II, − + xa y

x k
1

1
. Recall

that, in [11], see also [9,10], Holling gives several examples of prey and
predator populations in which the response of predators as function of
prey density is classified into three types. For example, the functional
response of type II is found to fit the data of populations of Mantids
Hierodula crassa (predator) and houseflies (prey) put together in a
cage, see [11]. Related mathematical aspects of these models can also
be found in [14,19,23].

More recently, in [1], see also [20,21], Alaoui and Okiye introduced
the following model:
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The difference with the previous model is the constant k2. It was first
introduced to avoid a mathematical singularity at =x 0. From a bio-
logical point of view, in case of severe scarcity of prey, adding a positive
constant to the denominator, introduces a maximum decrease rate,
which stands for environment protection. There is a wide variety of
natural systems which may be modeled by system (3), see [7,20,21,28].
It may, for example, be considered as a representation of an insect pest-
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spider food chain. Let us give more details on the model parameters; r1,
r2, a1, a2, b1, k1 and k2 are assumed to be positive. They are defined as
follows: r1 (resp. r2) is the growth rate of prey x (resp. predator y), b1
measures the strength of competition among individuals of species x, a1
(resp. a2) is the maximum value of the per capita reduction rate of x
(resp. y) due to y, k1 (respectively, k2) measures the extent to which
environment provides protection to prey x (respectively, to the predator
y). In order to simplify (3), we proceed to the following change of
variables:
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For convenience, we drop the primes on t. We obtain the following
system:
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We assume here that the prey reproduces much faster than the pre-
dator, i.e. r1> > r2, which implies that ϵ is small. This will allow us to
use slow-fast analysis which simplifies the analysis by discriminating
between slow and fast trajectories.

2. Characterization of the attractive limit-cycle

We first note that there are special solutions to Eq. (4):
= = −( )u v v0, ϵ 1t

v
e2

and = = −v u u u0, (1 )t . Hence, the quadrant
(0≤ u≤ 1, v≥ 0) is positively invariant for (4). We restrict our ana-
lysis to this quadrant. We also assume the following conditions which
ensure the existence of a unique attractive limit-cycle for (4):

<ae e ae e, not to close of ,2 1 2 1
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2

, * not to close of 1
2

,1 1

where u* is solution of

+ =u e g u( ),2

and:

= − +g u
a

u u e( ) 1 (1 )( ).1

Under these assumptions, there are four fixed points in the positive
quadrant:

= = = =P P e P P u g u(0, 0), (0, ), (1, 0), ( *, ( *)).1 2 2 3 4

We will see that condition < < −u0 * e1
2

1 ensures that P4 belongs to the
repulsive part of =v g u( ), whereas the condition <e e

a2
1 implies that P2

lies on the repulsive part of the v axis.
These conditions also prevent additional singularities for the folded

points. Fig. 2 illustrates nullclines and the attractive limit-cycle for (4).
Our aim is to characterize the limit-cycle. The first step, is to proceed to
the classical slow-fast analysis. It is of fundamental importance and will
be detailed in Section 3. It provides an efficient geometrical description
of the dynamics and can be summarized trough the observation of
Fig. 2. Indeed, this figure gives the main dynamics of the system. Ba-
sically, outside of a neighborhood of the nullcline

− − =+u u a(1 ) 0,uv
u e1

(i.e. =u 0 or =v g u( ) with

= + −g u u e u( ) ( )(1 )a
1

1 ), the trajectories are horizontal and their di-
rection are given by the sign of − − +u1 av

u e1
. Let C the representative

curve of g in the positive quadrant (in green in Fig. 2). When the tra-
jectories reach the right part of ,C they remain stuck there, and grow
slowly, until they reach a fold (the point D). Then, they jump to the
manifold =u 0. There, the trajectories remain stuck again until they are
repelled after crossing a fold point. However, near this special fold

point, the classical analysis fails. We will call it P. The blow-up tech-
nique is naturally introduced in the fourth section, to analyze the tra-
jectories near P. The blow-up technique is a clever change of variables,
see [4,5,15]. Hence, in our article, the dynamics of system (4) are de-
scribed thanks to:

• classical slow-fast analysis and geometrical, regular and singular,
perturbation theory outside of a neighborhood of P,

• blow-up technique in a neighborhood of P.

These techniques allow to quantify the limit-cycle which attracts all
the trajectories of the positive quadrant. Now, we introduce some no-
tations to quantify the limit-cycle.

We fix a small value α>0 and define a cross section . This means
that V intersects the y axis just above the intersection of C and the y
axis. By the regularity of the flow with regard to ϵ, the limit cycle will
cross V at a point + +k α o α( ( )ϵ (ϵ), ),e

a
1 with k(α)> 0 (below, for

convenience, we do not write the dependence on α). We now introduce
some notations which will be used throughout the article. Let
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Note that c1> 0, whereas c2< 0. This implies that B is under P, which
will be important regarding the existence of canard solutions. Let γ′ be
the closed curve defined by:

′ = ∪ ∪ ∪γ A B B C ζ D A[ , ] [ , ] [ , ]

where,

= ≤ ≤ζ u g u u u u{( , ( )); *}.

The following result holds.

Theorem 1. All the trajectories not lying in =u 0 and =v 0, and different
from the fixed point P4, evolve asymptotically towards a unique limit-cycle γ
which is O(ϵ) close of γ′.

Proof. The existence of the cycle results from Poincare–Bendixon
theorem. For uniqueness, we refer to [2]. The approximation by γ′
results from slow-fast analysis and the blow-up technique which will be
carried out in Sections 2 and 3. □

Remark 1. According to [3,15,26], the canard phenomenon occurs
when a trajectory crosses a folded point from the attractive manifold
and follows the repulsive manifold during a certain distance before
being repelled away. We will see that according to this definition, the
canard phenomenon occurs here. That is why we have introduced α and
k. Another way to express this comes with the following argument: for
those who are somehow familiar with slow-fast analysis, the first naive
interpretation which comes in mind after the computation of critical
manifolds, is to believe that the limit-cycle leaves the manifold =u 0 at
a jump point, when the manifold u becomes unstable. In fact, this is not
the case, the trajectory follows the unstable manifold until reaching B
as our theoretical analysis as well as numerical simulations show.

Remark 2.We can try to interpret the slow-fast attracting limit-cycle in
the prey-predator modeling context. For a time large enough, the
dynamics of populations follow the cycle. If we start on the cycle close
to the point A, there is near zero quantity of prey u, and a certain
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quantity of predator v. Since there is no prey, the quantity of predator
decreases. It decreases quite slowly, along the slow manifold (this
geometrical expression will be detailed in the next section), until it
reaches the point B. There, due to the low quantity of predator and the
fast reproduction of prey (i.e. due to the ϵ of the u derivative), a very
fast increase in the prey population occurs. It corresponds to the time at
which the trajectory leaves the slow manifold. The predator population
do not increase during this short time, it remains near constant (this is a
jump in u). When the prey reaches a region (a neighborhood of C),
where its derivative is zero i.e. another part of the slow manifold
(related with the first Holling–Tanner equation), the increase of u stops.
Then, there is enough preys to induce an increase in the predator
population. In the meantime, as the predator population increases, the
prey population decreases. This is a slow process which occurs all along
the slow manifold: the relation between u and v are given by the slow-
manifold equation. This remains true until the trajectories reach the
fold of the slow manifold (the point D), again given by the
Holling–Tanner profile. There, due to the fold, the prey population
decreases quickly while the predator remain near constant (this is
another jump in u). The trajectories reach the region near the point A
and the scenario is repeated. Basically, we can summarize the process as
follows:

1. When the quantity of prey is near zero, the quantity of predator
decreases. This is a slow process along the left part of the slow
manifold.

2. When the predator population is below a threshold, the trajectory
leaves the left slow manifold. There is a quick increase in prey, this
is a fast process, a jump. And the trajectory reaches the right slow
manifold.

3. The prey population is now large. The predator population starts to
increase. As the predator population increases, the prey population
decreases. This occurs along the slow manifold. The prey and pre-
dator populations are related by the slow manifold equation. This is
a slow process.

4. When the trajectory reaches the fold, which corresponds to a
threshold in predator population and its related prey population
along the slow manifold, there is a quick decrease in the prey po-
pulation. This is again a fast process, a jump. The trajectory reaches
the near zero quantity of prey, which corresponds to the right part of
the slow manifold. The loop is closed (4).

See Figs. 1,2,3,4 and 5, for illustrations of the process.

Fig. 1. Limit cycle and nullclines of system (4) for =a 1, =e 0.08,1 =e 0.012 and =ϵ 0.01.

Fig. 2. Limit cycle of system (4) for =a 1, =e 0.08,1 =e 0.012 and =ϵ 0.01. We represent
the preys u, in purple, and the predators, in green, as functions of time. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 3. Limit cycle of system (4) for =a 1, =e 0.08,1 =e 0.012 and =ϵ 0.0001. We re-
present the preys u, in purple, and the predators, in green, as functions of time. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Vector field and three orbits solutions of system (18) (chart K2) for =a 1,

=e 0.08,1 and =e 0.012 . These solutions are defined on the time interval − ∞ ⎡
⎣⎢

] ;
c x

1
1 2 (0)

.

According with Proposition 3, we observe that =x 02 is a vertical asymptote for each of
them while they have a distinct horizontal asymptote.
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3. Slow-Fast analysis

In this section, we proceed to a classical slow-fast analysis, see for
example [6,8,12,13,15]. We study the layer system and the reduced
system. The layer system is obtained by setting =ϵ 0 in system (4). It
reads as,
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⎨⎩

= − − =

=
+u u u F u v

v

(1 ) ( , ),

0.
t

auv
u e

t

1

(5)

The stationary points of this system are given by:

= = = − + ={ }M u v
a

u u e g u0 or 1 (1 )( ) ( ) .0 1 (6)

The set M0 is called the critical manifold. Outside from a neighborhood
of this manifold, for ϵ small, regular perturbation theory ensures that
trajectories of system (4) are O(ϵ)-close to those of system (5). The
trajectories of system (5) are tangent to the u-axis, which justifies the
name of “layer system”. These trajectories are the fast trajectories.
Furthermore, the Fenichel theory, see [6] or references cited above,
provides the existence of a locally invariant manifold Mϵ, O(ϵ)-close to
the critical manifold M0 for compact subsets of M0 where ′ ≠F u v( , ) 0u .
The system will follow the fast trajectories outside of this manifold. We
have to evaluate ′F u v( , )u on the critical manifold. The parts of M0

where ′ <F u v( , ) 0u is called the attractive part of the critical manifold.
Analogously, the part of M0 where ′ >F u v( , ) 0u is called the repulsive
part of the critical manifold. Now, we compute these subsets of M0. We
start our computations with the case =u 0. We have,

′ = −F v av
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1 (7)

Therefore,
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For =v g u( ), we obtain,
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Finally, the attractive critical manifold M0, a is given by =u 0 and
>v ,e

a
1 or =v g u( ) and < ≤− u 1e1

2
1 :
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Analogously, the repulsive critical manifold M0, r is given by:

= ≤ < ∪ ≤ <{ }M v v e
a

u g u u u(0, ); 0 {( , ( )); 0 }.r0,
1

The non-hyperbolic points of the critical manifold, or fold points, where
′ =F u v( , ) 0 are =P (0, )e

a
1 and =D u g u( , ( )). Now, we look at the

reduced system. The reduced system gives the slow-trajectories i.e., the
trajectories within the critical manifold which persists for ϵ small within
the locally invariant manifold Mϵ. It is obtained by setting =ϵ 0 after
the change of time =τ tϵ in (4). It reads as (to avoid complications, we
keep the notation with t, but it should be with τ),
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For =u 0, we obtain,
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Note that (0, e2) are the coordinates of the fixed point P2 of the original
system.

In the other part of the critical manifold, i.e. for =v g u( ), we have

⎜ ⎟

>

⇔ ⎛
⎝

− ⎞
⎠

>

⇔ < +

+

v

v

v u e

0

1 0

.

t

v
u e

2

2

Also, using the second equation of (12) = ′v g u u( ) ,t t we find,
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The points where ′ =g 0 correspond to a jump-point if ≠ +g u u e( ) ,2

since in this case, we have formally at this point, = −∞ut . The analysis
of the layer and the reduced system give the qualitative behavior of the
system outside of the neighborhood of the fold-points. Trajectories
reach the slow attractive manifold, and follow it according to the dy-
namics, or are repelled by the repulsive slow manifold. Furthermore,
the behavior near the jump-point u g u( , ( )), has been rigorously de-
scribed in [15]. Trajectories reaching a neighborhood of the fold point
from the right exit the neighborhood at left along fast fibers, and there
is a contraction of rate −e c

ϵ for some constant c between arriving and
exiting trajectories. The Fig. 2 illustrates this behavior. Therefore, it
remains only to analyze the behavior of trajectories near the fold point

=P (0, )e
a
1 . This is the point we deal with, in the next section, thanks to

the blow-up technique. Note that this has not been done in [15] since it
is assumed there that critical manifold can be written =v φ u( ) with

′ =φ (0) 0 and φ′′(0)≠ 0, which is not the case here since M0 writes

Fig. 5. Solutions of system (4) with =a 1, =e 0.08,1 and =e 0.012 . Limit-cycles for
= −ϵ 10 2 in purple and = −ϵ 10 4 in green. As ϵ approaches 0 the limit-cycle approaches γ′.

Choosing =α 0, we obtain an approximate value of ≃ −k c
Dc

2
1
where D is the distance

between the coordinate of the fast-fiber followed by the limit cycle and e
a
1 . Here, we find

D≃ 0.045 and k≃ 1.086, = = −c c( 11.5, 0.56)1 2 . This means that the limit-cycle crosses
the axis =v e

a
1 at a value + o1.086ϵ (ϵ). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

B. Ambrosio et al. Mathematical Biosciences 295 (2018) 48–54

51



=u 0 in a neighborhood of the fold-point =P (0, )e
a
1 .

Remark 3. Canards may appear near the fold point =D u g u( , ( )),
when

≃ +g u u e( ) .2 (14)

As we have already mentioned, canards are solutions that follow the
repulsive manifold during a certain distance after crossing the fold
before being repelled. They have been discovered by French
mathematicians with non standard analysis and studied after with
geometrical singular perturbation theory, see [3,15,26]. Our
assumptions prevent the apparition of canards near D. Near

=P (0, ),e
a
1 the limit-cycle exhibit the canard phenomenon as it is

stated in Theorem 1, since it is repelled by the slow repulsive manifold
only within a region O(ϵ) close of B, which is above P. The condition

≃e ,e
a2
1 which is the analog of (14) for P would lead to higher

singularity. We do not consider this case here.

4. Blow-up technique near the fold-point =P (0, )e
a
1 .

In this section, we deal with the blow-up technique which gives the
dynamics near the fold point and provides the final argument for the
proof of Theorem 1. First, in Proposition 1, we rewrite Eq. (4) with local
coordinates around P. Then, we compute the blow-up. The blow-up
may be seen as a zoom, which allows a de-singularization near the fold
point. We will focus only in the chart called K2. Propositions 2–4 detail
the dynamics on this chart. Then, we prove Theorem 1. For this, we
need to compute the y-coordinate at which the limit-cycle leaves the
left repulsive slow manifold. Remark 4 gives first the intuition of the
proof which immediately follows. It relies directly on the solution
computed explicitly in chart K2. Finally, the last remark of the section
makes the link with existing works. The following proposition gives the
formulation of Eq. (4), when written around =P (0, )e

a
1 :

Proposition 1. Near the fold point =P (0, ),e
a
1 system (4) rewrites:
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Proof. Classically, the constant ϵ is first turned into a variable of the
system by setting =ϵ̇ 0. Then we proceed with the change of variables

= = +u x v e
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y, .1

Plugging into (4) gives:
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Then, we use the following Taylor development:
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We find,
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(16)

which gives the result. □

We will now apply the blow-up technique. Here, the blow-up
technique consists in a local change of variables, from 3 into ,4 which
allows to de-singularize the fold-point and visualize the trajectories in
different charts. We use the following change of variables:

= = =x rx y r y r, , ϵ ϵ.2 3

Note that the analysis will be done for r small. Hence, this change of
variables is a kind of zoom, with different weights (1,2 and 3), around
the point (0, 0, 0). If the x, y and z were very small near the origin, the
x y, and z do not need to be small anymore. Moreover, the weights
chosen here are good for our computations and will allow to visualize
the trajectories when they cross the fold point. These weights are taken
from [15]. For a general description of blow-up methods, see [4]. For
applications to the canards in the paradigmatic Van Der Pol equation,
see [5]. Here, the computation gives (we drop the bar):

+ = − + +

+ = + + − +
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rx rx c r x r xy O r x y O r x

ryr r y r c rx r y O rx r y
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2 2 3 4 2 3 3
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2
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2 3

1

1
2

2
2
2
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2

Classically, see [15] and references therein, the chart K1 is obtained by
setting =y 1. The chart K2 is obtained by setting =ϵ 1. The chart K3 is
obtained by setting =x 1. Hence, choosing a particular chart, means
that we focus in a particular region of the new coordinate system. In
this paper, we only consider the chart K2. It will be fundamental in our
analysis, and will allow to prove Theorem 1. Since we work in chart K2,
according to classical notations, we use the subscript 2.

Dynamics in chart K2.

Proposition 2. The dynamics in chart K2 are given by the system:

= +
= +
=

x c x O r
y c O r
r

˙ ( ))
˙ ( )
˙ 0

2 1 2
2

2

2 2 2

2 (17)

Proof. Setting =ϵ 1 in (4) gives:

= +
= +
=

x r c x O r
y r c O r
r

˙ ( ( ))
˙ ( ( ))
˙ 0.

2 2 1 2
2

2

2 2 2 2

2

Then, we perform the change of time =τ r t2 . This gives:

= +
= +
=

r x r c x O r
r y r c O r

r

˙ ( ( ))
˙ ( ( ))
˙ 0.

2 2 2 1 2
2

2

2 2 2 2 2

2

Which by dividing by r2 gives the result. □

This computation is an essential key of our blow-up. The last change
of time and the division by r2 has allowed to blow-up the dynamics.
Here occurs the de-singularization. We can now visualize how the
trajectories behave when crossing the fold. For =r 0,2 we obtain:

=

= −

=
( )

x c x

y

r

˙

˙ 1

˙ 0.

e
a

e
ae

2 1 2
2

2

2

1 1
2

(18)

Proposition 3. The solution of system (18) is:
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=

= +
−−x t

y t y c t

( )

( ) (0)
x c t2

1
(0)

2 2 2

2
1 1

(19)

i.e.

=
−− −x t( )

x c
2

1

(0)
y t y

c2
1 1 2 ( ) 2 (0)

2

or

= + −( )y t y( ) (0) c
c x x t2 2

1
(0)

1
( )

2
1 2 2

It follows that orbits have the following properties:

1. Every orbit has a horizontal asymptote =y y ,r where yr depends on the
orbit such that → +∞x as y approaches yr from above.

2. Every orbit has a vertical asymptote = +x 0 .

3. The point (x2(0), α, 0) is mapped to the point + −( )( )δ α, c
c x δ

1
(0)

12
1 2

.

Proof. It follows easily from the explicit solution. □

Proposition 4. Solutions of (17) are O(r)-close of those of (18).

Proof. This follows from regular perturbation theory. □

Remark 4. Let us make a remark on the first statement of Proposition 3.
For =t* ,c x

1
(0)1 2

x2 blows-up. Since =x ,x
r2 2

and = = +∞r xϵ ,2 2
1
3

correspond, when =ϵ 0 to a point x>0 where we can consider that
trajectory has left the neighborhood of the fold and where the previous
slow-fast analysis applies. This gives for y2:

= +y t y c
c x

( *) (0)
(0)

.2 2
2

1 2 (20)

This means, that fixing x2(0) and y2(0), the value where the trajectory
leaves the slow manifold and connects the fast fiber is determined by
(20). Therefore, if we choose (x2(0), y2(0)) on the limit-cycle, this
determines the fast fiber followed by the limit-cycle. We will now detail
this argument which gives the proof of Theorem 1.

Proof of Theorem 1. Fix a value x far from 0, let’s say =x 1
2 . We want

to determine t* such that =x t( *) ,1
2 which corresponds to =x t( *)2

1

2ϵ
1
3
.

Taking = +x k o(0) ϵ (ϵ), and according to equation (19), this gives:

⎜ ⎟= ⎛
⎝ +

− ⎞
⎠

t
c k o

* ϵ 1
ϵ (ϵ)

2
1

1
3

and for Eq. (17),

⎜ ⎟= + ⎛
⎝ +

− ⎞
⎠

+y t y c
c k o

O( *) (0) ϵ 1
ϵ (ϵ)

2 (ϵ),2 2
2

1

1
3

which in original coordinates gives:

= + +y t y c
kc

O( *) (0) (ϵ).2

1

This proves the theorem. □

Remark 5. Note that the folded node P is at the intersection of the two
branches of the manifold M0, =v g u( ) and =u 0. Note also that these
two branches actually exchange their stability at P. This case has been
treated in a general form in [16] under the appropriate name of
transcritical bifurcation. However, here, we are precisely in the special
case =λ 1 excluded from theorem 2.1 of [16]. Indeed, using the
notations of this article, we can compute from Eq. (16):

= − = − = −

= =
( )α β g

γ δ

1, 1

0 0
e

e
a

e
a

e
e

1
01

1 1 1
2

(21)

and

=
+

−
= =λ

δα g β

g β γα

g β
g β

1.0

0
2

0

0 (22)

The authors have announced the existence of the canard in this case
without giving the detailed proof of it. Here, we have proved the canard
phenomenon using the blow up technique in the case of the limit-cycle
of this classical model of predator-prey.

Remark 6. Close phenomena have been analysed in [24,25] for prey-
predator and population models with different techniques.

Comments on numerical methods

The computation of solutions have been performed using the
Runge–Kutta 4 method in our own + +C program. Note that to com-
pute solutions of Fig. 3, we have started with final condition and
computed backward trajectories. This was to avoid the difficulty of the
sensitivity of initial conditions near the manifold =u 0.

5. Conclusion

In this article, we have characterized the limit-cycle of the system
(4). The system was originally introduced in [1] as a modification of the
Leslie–Gower model. We have proved that the limit-cycle of the model
exhibits the canard phenomenon when crossing a special folded node.
We have also computed the value at which it reaches the fast fiber. In a
forthcoming work, we hope to investigate the diffusive model obtained
by adding a Laplacian term in the first equation.
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