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Propagation of bursting oscillations
BY BENJAMIN AMBROSIO* AND JEAN-PIERRE FRANÇOISE

Laboratoire J.-L. Lions, UMR 7598, CNRS, Université P.-M. Curie,
Paris 6, Paris, France

We investigate a system of partial differential equations of reaction–diffusion type which
displays propagation of bursting oscillations. This system represents the time evolution
of an assembly of cells constituted by a small nucleus of bursting cells near the origin
immersed in the middle of excitable cells. We show that this system displays a global
attractor in an appropriated functional space. Numerical simulations show the existence
in this attractor of recurrent solutions which are waves propagating from the central
source. The propagation seems possible if the excitability of the neighbouring cells is
above some threshold.
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1. Introduction

We introduce in this article a system that exhibits propagation patterns of
bursting oscillations. Previous motivations for such mathematical developments
appeared in the literature of physiological models. For instance, in Aslanidi
et al. (2001), excitation wave propagation was proposed as a possible mechanism
for signal transmission in pancreatic islets of Langerhans. There are certainly
different possible biophysical scenarios to generate such propagations. We focus
here on one possible mechanism that seems rather mathematically tractable. This
article includes numerical simulations and summarizes the mathematical tools
developed to analyse the system. When a system is spatially extended, it is known
that a localized stimulus may generate stable propagating pulses. However, the
effect of periodic stimuli incorporating the spatially extended system has been
studied much less. For a review on travelling waves in excitable media, see, for
instance, Tyson & Keener (1988). For a general introduction to emergence of
coherent structure, see Scott (1999).

2. On an ordinary differential equation of FitzHugh-Nagumo type

We focus here on the differential equations
εu̇ = f (u) − v

and v̇ = u − c − δv.

}
(2.1)
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Parameter ε is small and the dynamics is of fast–slow type. The function f is
a cubic whose precise shape is irrelevant. We fix conveniently f (u) = −u3 + 3u
so that, with this scaling, f (0) = 0 and f displays u = −1 and u = 1 as critical
points. Parameter δ is also small and it will appear later to be quite relevant to
the mathematical discussion. We assume that δ is small enough so that the cubic
v = f (u) intersects the nullcline u = c + δv in a single point. The parameter c is
assumed to vary and accordingly system equation (2.1) undergoes bifurcations.
Assume δ = 0, then, if −1 < c < 1, equation (2.1) displays an attractive limit cycle.
If c < −1, equation (2.1) displays a single stable stationary point which is globally
attractive. A remarkable fact is the existence of a threshold such that, if the
initial data are above the threshold, the corresponding orbit goes straight to the
stationary point; if instead the initial data are below the threshold, the orbit
undergoes a long incursion in the phase plane before returning back to the stable
stationary point. This system is a paradigmatic model for the so-called excitability
property often observed with the action potential of electrophysiology. As the
parameter c varies, the value c = −1 is a bifurcation value; the system displays a
Hopf bifurcation. The limit cycle emerges very quickly with a large size in relation
to the fast–slow nature of the differential system. Such type of Hopf bifurcation
is usually called singular as it vindicates the singular perturbation context of
the parameter ε. This dynamical system is often used to describe the electrical
activity of cells (such as cardiomyocytes, neurons, etc.). In such a modelling
context, the electrical activity of the cell is either a pacemaker (if −1 < c < 1) or
excitable (if |c| > 1).

We consider finally a situation of the so-called dynamical bifurcation where the
bifurcating parameter c is replaced by a slowly varying function of the time. For
instance, this yields

εu̇ = f (u) − v

and v̇ = u − c(t) − δv,

}
(2.2)

with

c(t) = −1 + sin((0.01)t)

moving back and forth through the critical value −1. The generic solution of the
system displays alternatively pulsatile phases separated by quiescent phases. This
is characteristic of the so-called bursting oscillations. These complex oscillations
are ubiquitous in physiology and can be currently observed in neurophysiology,
cardiophysiology, hormone secretions, etc. System (2.2) is one of the simplest that
generates this type of oscillations (e.g. Françoise 2005).

Assume δ > 0. We observe the following important fact:

1
2

d
dt

(εu2 + v2) = εuu̇ + vv̇

= [f (u) − v]u + v[u − c(t) − δv] = f (u)u − δv2 − c(t)v

= [−u4 − δv2] + 3u2 − c(t)v. (2.3)
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Note then that

−δv2 − c(t)v ≤ −δ

2
v2 + 2|v| − δ

2
v2

= −δ

2

[
v2 − 4

δ
|v|

]
− δ

2
v2 − δ

2

[(
|v| − 2

δ

)2

− 4
δ2

]
− δ

2
v2

≤ 2
δ

− δ

2
v2.

Note furthermore that

−u4 + 3u2 + δε

2
u2 = −

[
u2 − 1

2

(
3 + δε

2

)]2

+ 1
4

(
3 + δε

2

)2

≤ 1
4

(
3 + δε

2

)2

.

This yields

[−u4 − δv2] + 3u2 − c(t)v ≤
[

1
4

(
3 + δε

2

)2

+ 2
δ

]
− δ

2
(εu2 + v2). (2.4)

If we set

M =
[

1
4

(
3 + δε

2

)2

+ 2
δ

]
,

by integration, we deduce

εu2(t) + v2(t) ≤ 2M
δ

+
[
εu2(0) + v2(0) − 2M

δ

]
e−δt .

This shows the existence of a bounded absorbing set and that equation (2.2)
generates a global dynamical system. Note the importance of the term δ in
bounds.

3. On a semi-linear partial differential equation of reaction–diffusion type

We now consider the partial differential equation (PDE) system

εut = f (u) − v + α�u

and vt = u − c(x) − δv + β�v,

}
(3.1)

Phil. Trans. R. Soc. A (2009)

 on July 2, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


4866 B. Ambrosio and J.-P. Françoise

with

x ∈ Ω ⊂ R
n ,

which is of reaction–diffusion type with a spatial heterogeneity

c(x) = 0, x ∈ B(0, r)

and c(x) = c0 < −1, x ∈ Ω − B(0, r).

The domain Ω is open and bounded with a Lipschitz boundary ∂Ω. This
system can be thought of as representing a set of cells constituted by a
small nucleus of pacemakers near the origin immersed among an assembly of
excitable cells. The parameter c0 defines the excitability of the neighbouring
cells. The excitability of the neighbouring cells is higher and higher as the
parameter c0 is close to −1. We denote the initial data (u(0, x), v(0, x)) and
assume boundary conditions of Neumann type on ∂Ω. There are several different
functional spaces that are interesting to develop the analysis of the equation.
We consider, for instance, the space Y = L2(Ω)×L2(Ω) or the Sobolev space
X = H 1(Ω)×H 1(Ω).

The next observation is that essentially the same computation previously done
for the ordinary differential equation extends to the PDE. Consider more precisely

1
2

d
dt

∫
Ω

[εu2(x , t) + v2(x , t)] dx ≤
[

1
4

(
3 + δε

2

)2

+ 2
δ

]
vol(Ω)

− δ

2

∫
Ω

[εu2(x , t) + v2(x , t)] dx

− α

∫
Ω

‖grad u(x , t)‖2 dx − β

∫
Ω

‖grad v(x , t)‖2 dx .

(3.2)

Note that the result above is actually true both for Neumann and for Dirichlet
boundary conditions. Denote

H (t) =
∫
Ω

[εu2(x , t) + v2(x , t)] dx ,

and M =
[

1
4

(
3 + δε

2

)2

+ 2
δ

]
vol(Ω),

equation (3.2) yields

H ′(t) < 2M − δH (t);
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hence

H (t) ≤ 2M
δ

+
[
H (0) − 2M

δ

]
exp(−δt).

This shows the existence of an absorbing set in Y .
The next step is that actually the orbit is bounded in X = H 1(Ω)×H 1(Ω). This

can be proved by multiplying the first equation by −�u, the second equation
by −�v, integrating over Ω and summing up the two equations. The calculus
used to obtain the bounds are a bit too involved to be included here, although
they can be adapted from Marion (1989) and Temam (1988); see also Ambrosio
(2009). By the Rellich–Kondrachov theorem, the orbit is thus precompact in Y .
This shows that the ω-limit set of the orbit is compact (and connected) and
defines an attractor. On the ω-limit set, the solution defines a semigroup. Classical
theorems of dynamical systems recurrence apply. By Birkhoff’s theory, a minimal
invariant set is a union of recurrent orbits.

4. On a system of partial differential equations of reaction–diffusion type with
a forcing term

We now consider the PDE system

εut = f (u) − v + α�u

and vt = u − c(x , t) − δv + β�v,

}
(4.1)

with

x ∈ Ω ⊂ R
n ,

which is of reaction–diffusion type with a spatial heterogeneity and a forcing term

c(x , t) = c(t) = −1 + sin(γ t), x ∈ B(0, r)

and c(x , t) = c0 < −1, x ∈ Ω − B(0, r).

The same inequalities are in order and again allow us to conclude that the orbit
is precompact in Y . The single difference is that, as the system is no longer
autonomous, the corresponding dynamical system is a process in the sense of
Daffermos. It is, as usual, possible to associate a semigroup on the product R×Y
(Haraux 1991). We conclude in both cases the existence of an attractor. We
now proceed to numerical simulations. They tend to show that the attractor is
not discrete and that it contains effectively recurrent trajectories. Some of these
trajectories are perhaps periodic, although we cannot determine this yet. These
recurrent trajectories are associated with a wave propagation. Our approach
should be compared with previous contributions. In Yanagita et al. (2005, 2006),

Phil. Trans. R. Soc. A (2009)

 on July 2, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


4868 B. Ambrosio and J.-P. Françoise

the authors considered a one-dimensional chain of coupled FitzHugh–Nagumo
systems of the type

εu̇i = f (ui) − vi + α2(ui+1 + ui−1 − 2ui) + I

and v̇i = ui − δvi ,

where I is a periodic input stimulus added to the first element and there
are periodic boundary conditions. The authors also discuss the existence of a
propagating pulse in terms of ε. Note that a simple change of variable vi �→ vi − I
yields the system

εu̇i = f (ui) − vi + α2(ui+1 + ui−1 − 2ui)

and v̇i = ui − δvi + ci(t),

whose continuous limit displays

ε
∂u
∂t

= f (u) − v + α2 ∂2u
∂x2

and
∂v

∂t
= u − δv − c(x , t).

Hence, this PDE system is quite similar to the one studied here except that
there is a single diffusion on u and that it is one-dimensional. We expect little
change due to the diffusion term in v and accordingly our system may be
seen as a two-dimensional version of theirs. As they explore the dependency
in ε, we have focused here on the dependency on c(x , t) in two ways: the
size of the central nucleus and the excitability of the neighbouring cells (c0).
Our interpretation in terms of propagation of bursting oscillations was not
evidenced previously.

5. Numerical simulations of the two-dimensional case

Numerical simulations are based on a discretization and a finite difference method
with five points in space and an explicit Euler scheme in time. We do not focus on
the weak diffusion limit and set α = β = 1. The domain is a square with a grid
of 100 × 100 squares. Initial data are chosen around u(0, x) = −1.5, v(0, x) = 0.1.
The solution at time tk is represented at each point of the grid as a vector
(u(tk), v(tk)) ∈ R

20 000. Given the solution at time tk , the solution at time tk+1
is given by

utk+1
ij = utk

ij + dt
ε

(
F1(u

tk
ij , v

tk
ij ) + 1

h2
δij(ukh)

)
(5.1)

and v
tk+1
ij = v

tk
ij + dt

(
F2(u

tk
ij , v

tk
ij , i, j , tk) + 1

h2
δij(vkh)

)
, (5.2)
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where the operator δij is defined as

δij(ukh) = utk
(i+1)j + utk

(i−1)j + utk
i(j+1) + utk

i(j−1) − 4utk
ij

for the points that are not on the boundary of the domain and, for instance, δ10
and δ00 are defined by

δ10(ukh) = utk
20 + utk

00 + utk
11 − 3utk

10

and δ00(ukh) = utk
10 + utk

01 − 2utk
00.

The operator δij is defined similarly for other points of the boundary, and probably
with vkh instead of ukh .

The two components of the reaction are F1(u, v) = f (u) − v, and F2(u, v,
i, j) = u − cij(tk) (cij(tk) is the vector that represents c(x , t) on the grid at
time tk).

Parameter ε is fixed around ε = 0.1; parameter δ has been varied around 0.01
and 0.1. The figures below are the result of the simulation for δ = 0.01. The central
nucleus B(0, r) is represented by four cells in the case of δ = 0.01.

(a) Numerical simulations of system (3.1)

The numerical simulations shows a propagation if the parameter c0, which
characterizes the excitability of the neighbouring cells, is above some threshold.
More precisely, we include the result of the numerical simulations for the following
fixed values of c0:

(i) c0 = −1.3 (figure 1)
The solutions evolve to a stationary solution.

(ii) c0 = −1.195 (figure 2)
The solutions still evolve to a stationary solution after several oscillations
of small amplitude.

(iii) c0 = −1.19302 (figures 3 and 4)
Above this value of c0, the solution is no longer asymptotically stationary.
After a rather long time, there is a propagation of a wave. The time of
appearance of this propagation depends on the initial condition.

(iv) c0 = −1.19 (figure 5)
After some oscillations of small amplitude, there is a propagation
of a wave.

(v) c0 = −1.15 (figure 6)
There are no more transitory oscillations of small amplitude and there is
a propagation of a wave.

Similar numerical simulations have been done with δ = 0.1. For the same size of
the central nucleus, for all values of c < −1 the solutions evolve asymptotically to
a stationary solution. But if the size of the central nucleus (B(0, r)) is increased
then there is again a propagation. This is related to the critical size of a
pacemaker, which is discussed in Keener & Sneyd (1998, ch. 14).
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Figure 1. Solutions for δ = 0.01, c0 = −1.3 and (a) u(x , y, 50), (b) u(50, 50, t) (solid line) and
(c) (u, v)(50, 50, t) (solid line). (a) Evolution to stationary solution for c0 = −1.3 and t = 50; (b)
evolution of the variable u for a central cell and c0 = −1.3; and (c) evolution of (u, v) for a central
cell and c0 = −1.3.
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Figure 2. Solutions for δ = 0.01, c0 = −1.195. (a) u(x , y, 50), (b) u(50, 50, t) (solid line) and
(c) (u, v)(50, 50, t) (solid line). (a) Evolution to stationary solution for c0 = −1.195 and t = 50;
(b) evolution of the variable u for a central cell and c0 = −1.195; and (c) evolution of (u, v) for a
central cell and c0 = −1.195.
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Figure 3. Solutions for δ = 0.01, c0 = −1.19302 (T = 200). (a) u(x , y, 50), (b) u(50, 50, t) (solid line)
and (c) (u, v)(50, 50, t) (solid line). (a) Solution for c0 = −1.19302 and t = 50; (b) evolution of the
variable u for a central cell and c0 = −1.19302; and (c) evolution of (u, v) for a central cell and
c0 = −1.19302.
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Figure 4. Solutions for δ = 0.01, c0 = −1.19302 (T = 2000). (a) u(x , y, 1950), (b) u(50, 50, t)
(solid line) and (c) (u, v)(50, 50, t) (solid line). (a) Solution for c0 = −1.19302 and t = 50;
(b) evolution of the variable u for a central cell and c0 = −1.19302; and (c) evolution of
(u, v) for a central cell and c0 = −1.19302.
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Figure 5. Solutions for δ = 0.01, c0 = −1.19. (a) u(x , y, 50), (b) u(x , y, 62), (c) u(50, 50, t)
(solid line), (d) u(51, 50, t) (solid line), (e) (u, v)(50, 50, t) (solid line) and (f ) (u, v)(51, 50, t)
(solid line). (a) Solution for c0 = −1.19 and t = 50; (b) solution for c0 = −1.19 and t = 62; (c)
evolution of the variable u for a central cell and c0 = −1.19; (d) evolution of the variable u for a
non-central cell and c0 = −1.19; (e) evolution of (u, v) for a central cell and c0 = −1.19; and (f )
evolution of (u, v) for a non-central cell and c0 = −1.19.

(b) Numerical simulations of system (4.1) and propagation of the
bursting oscillations

The same result is observed numerically: there is a threshold such that, if the
excitability c0 is below the threshold, the solution evolves to a stationary solution.
If it is above, there is a propagation of the bursting oscillations. The number of
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Figure 6. Solutions for δ = 0.01, c0 = −1.15. (a) u(x , y, 55), (b) u(50, 50, t) (solid line), (c)
u(51, 50, t) (solid line), (d) (u, v)(50, 50, t) (solid line) and (e) (u, v)(51, 50, t) (solid line). (a)
Solution for c0 = −1.15 and t = 55; (b) evolution of the variable u for a central cell and c0 =
−1.15; (c) evolution of the variable u for a non-central cell and c0 = −1.15; (d) evolution
of (u, v) for a central cell and c0 = −1.15; and (e) evolution of (u, v) for a central cell
and c0 = −1.15.

spikes increases as γ → 0 and/or as c0 → −1. Initial conditions are around the
values u(0, x) = −1, v(0, x) = 0.1, δ = 0.01; propagation of bursting oscillations is
seen in figure 7.
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Figure 7. Solutions of the system (4.1), for γ = 0.05 and c = −1, 05. (a) u(x , y, 28), (b) u(50, 50, t)
(red line), u(51, 50, t) (green line) and u(99, 50, t) (blue line) and (c) u(x , 49, t) (red line).

6. Conclusion

In conclusion, the numerical simulations suggest that the attractor whose
existence is proved mathematically contains non-trivial recurrent solutions
associated with a propagation phenomenon. The discretization techniques also
suggest that a similar situation occurs for a large system of linearly coupled
forced FitzHugh–Nagumo systems. We find previous interpretations of similar
systems in terms of an external periodic forcing acting on a central nucleus
in Yanagita et al. (2005, 2006). In this regard, our system proposes a natural
extension to a two-dimensional system (with both diffusions on the potential
and on the recovery variable). This relates to physiological experiments made in
cardiodynamics (Chialvo & Jalife 1987; Michaels et al. 1989) in which a central
nucleus of pacemaker is vagally driven. Our interpretation in terms of propagating
bursting oscillations seems novel.
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