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Structured Models

In population dynamics, Metz and Diekmann 1986 studied the
structured models
The individual level

structured models⇐⇒ The population level

In order to distinguish individuals, take their physiological
conditions or physical characteristics such as age, size,
location, status, and movement into consideration.

The goal of structured population models is to understand
how these physiological conditions or physical characteristics
affect the dynamical properties of these models and thus the
outcomes and consequences of the biological and
epidemiological processes (Magal and Ruan 2018).
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Age-structured Models with Spatial Diffusion

In recent years age-structured models with random diffusion have been
used to model population dynamics with spatial internal intersections
from the population and individual levels, see Gurtin, MacCamy, Langlais,
Chan, Guo, Walker, Webb, Delgado and so on. Among some of them,
the principal eigenvalues of age-structured models with random diffusion
serve as a crucial tool for the investigation such equations, for example
Chan and Guo, 1990 MM, JMAA 1994 and Delgado et. al, 2006 JMAA,
2008 JDE.

However, studies cooperating age-structure and nonlocal diffusion, i.e.

age-structured models with nonlocal diffusion, are few to our best

knowledge besides our work. In this paper we are continuing to devote to

studying the criterion on the existence of principal eigenvalue, asymptotic

behaviors of generalized principal eigenvalue with respect to diffusion rate

and global dynamics of age-structured with nonlocal diffusion and KPP

type of nonlinearity.

4 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

Age-structured Models with Spatial Diffusion

In recent years age-structured models with random diffusion have been
used to model population dynamics with spatial internal intersections
from the population and individual levels, see Gurtin, MacCamy, Langlais,
Chan, Guo, Walker, Webb, Delgado and so on. Among some of them,
the principal eigenvalues of age-structured models with random diffusion
serve as a crucial tool for the investigation such equations, for example
Chan and Guo, 1990 MM, JMAA 1994 and Delgado et. al, 2006 JMAA,
2008 JDE.

However, studies cooperating age-structure and nonlocal diffusion, i.e.

age-structured models with nonlocal diffusion, are few to our best

knowledge besides our work. In this paper we are continuing to devote to

studying the criterion on the existence of principal eigenvalue, asymptotic

behaviors of generalized principal eigenvalue with respect to diffusion rate

and global dynamics of age-structured with nonlocal diffusion and KPP

type of nonlinearity.

4 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

Eigenvalue Problem


∂u(a,x)
∂a = D

σm

[ ∫
Ω
Jσ(x − y)u(a, y)dy− u(a, x)

]
− µ(a, x)u(a, x)

−λu(a, x), a > 0, x ∈ Ω,

u(0, x) =
∫ a+

0
β(a, x)u(a, x)da, x ∈ Ω.

(1)

where a+ <∞ represents the maximum age and Ω ⊂ RN is a
bounded domain with smooth boundary, diffusion rate D > 0,
diffusion range σ > 0 and cost parameter m ∈ [0, 2), with
Jσ(x) = 1

σN J
(
x
σ

)
for x ∈ RN . The diffusion kernel J ∈ C (RN) is

the nonnegative and supported in B(0, r) for some r > 0, and
satisfies J(0) > 0 and

∫
RN J(x)dx = 1. Assume that birth rate

β(a, x) and death rate µ(a, x) are positive and belong to
C 0,1([0, a+]× Ω) and define

µ(a) := inf
x∈Ω

µ(a, x), µ(a) := sup
x∈Ω

µ(a, x),

β(a) := inf
x∈Ω

β(a, x), β(a) := sup
x∈Ω

β(a, x),
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A Few Remarks

(i) Here we assumed the domain Ω ⊂ RN is bounded and the
kernel J is compactly supported simultaneously. In fact, for
the existence of principal eigenvalue it is only needed to
require Ω to be bounded. And the assumption that J has
compact support is only need to investigate the limiting
properties, see Berestycki et al, 2016 JFA.

(ii) If one only studies the generalized principal eigenvalue with
their properties, the assumption Ω is bounded can also be
removed, see Berestycki et al, 2016 JFA.

(iii) Here in order to give a comprehensive result, we provided a
unified assumption.
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Age-Structured Models


∂tu(t, a) + ∂au(t, a) = −µ(a)u(t, a), t, a > 0,

u(t, 0) =
∫ a+

0
β(a)u(t, a)da, t ≥ 0,

u(0, a) = u0(a) ∈ L1(0, a+)

(2)

By the method of characteristic lines, we can solve the first equation to
obtain

u(t, a) =

{
Π(a, a− t)u0(a− t), 0 ≤ t ≤ a < a+,

Π(a, 0)u(t − a, 0), t > a, 0 ≤ a < a+
(3)

where Π(a, σ) := e−
∫ a
σ
µ(τ)dτ , 0 ≤ σ < a can be interpreted as the

probability that an individual of age σ survives to age a.
Thus U(t) := u(t, 0) satisfies the Volterra equation

U(t) =

∫ t

0

h(a)β(a)Π(a, 0)U(t−a)da+

∫ a+

t

h(a)β(a)Π(a, a−t)u0(a−t)da

for t ≥ 0 with cutoff function h(a) := 1 if a ∈ (0, a+) and h(a) := 0

otherwise, which is also known as renewal equation.
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Nonlocal Diffusion

In the meanwhile there is an increasing interest in nonlocal diffusion
problems modeled by convolution diffusion operators such as

Lv := d

∫
Ω
J(x − y)[v(y)− v(x)]dy ,

where v ∈ X and X is a proper Banach space. J is the diffusion
kernel which is a C 0 and nonnegative function with unit integral
representing the spatial dispersal, i.e.,∫

RN

J(x)dx = 1, J(x) ≥ 0, ∀x ∈ RN , J(0) > 0.

The convolution J(x − y) is viewed as the probability distribution
of jumping from location y to location x , namely the convolution∫

Ω J(x − y)v(y)dy is the rate at which individuals are arriving to
position x from other places and

∫
Ω J(y − x)v(x)dy is the rate at

which they are leaving location x to travel to other sites.
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Commons and Differences

Laplace and nonlocal diffusions share many properties for instance,
both of them have maximum principle, bounded stationary
solutions are constants.

However,

(i) The solution operator for nonlocal diffusion corresponding to
this initial value problem is not a smoothing operator;

(ii) The semiflows generated by nonlocal diffusion is not compact
with respect to the compact open topology;

(iii) The solutions for nonlocal diffusion usually loss the spatial
regularity;

(iv) The operator of nonlocal diffusion may not have principal
eigenvalues;

(v) The spatial decay rates of traveling waves at infinity differ in
the two cases.
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Principal Eigenvalue of Age-Structure Operator

[Bη](a) = −∂η(a)

∂a
− µ(a)η(a), ∀η ∈ D(B), (4)

D(B) =
{
η(a)|η,Bη ∈ L1(0, a+), η(0) =

∫ a+

0
β(a)η(a)da

}
{γj}j≥0 are the eigenvalues of B, i.e., the solution of the following
equation

F (γ) :=

∫ a+

0
β(a)e−γaπ(a)da = 1,

where π(a) = e−
∫ a

0 µ(ρ)dρ. It follows that γ ∈ σ(B)⇐⇒ F (γ) = 1.
B has the unique real eigenvalue γ0 with algebraic multiplicity 1.
Moreover, γ0 is the principal eigenvalue of B, that is,

γ0 > Reγ1 ≥ Reγ2 ≥ · · ·

10 / 40
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Principal Eigenvalue for Nonlocal Operators

(i) Coville, 2010 JDE, studied the principal eigenvalue via
generalized principal eigenvalue (Berestycki et. al, 1994
CPAM) and gave a non-locally-integrable condition based on
the generalized Krein Rutman theorem (Edmunds et. al, 1972
PRSLA).

(ii) Berestycki et. al, 2016 JFA, investigated the asymptotic
behavior of generalized principal eigenvalue on the diffusion
rate.

(iii) Rawal and Shen, 2012 JDDE, Shen and Xie 2015 DCDS,
studied the existence of principal eigenvalue for autonomous
and time-periodic cases using the idea of perturbation of
positive operators from Burger, 1988 MZ.

(iv) Shen and Vo, 2019 JDE and Su et. al, 2020 JDE studied the
asymptotic behavior of the generalized principal eigenvalue on
the diffusion rate under the time-periodic case.
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Principal Eigenvalue of Nonlocal Diffusion Operator (Dirichlet)

(i) Autonomous (Shen & Xie, DCDS 2015):

[Lφ](x) := D

[∫
Ω

J(x − y)φ(y)dy − φ(x)

]
+ a(x)φ(x), φ ∈ C (Ω).

The principal eigenvalue of L exists iff λ1(L) > hmax, where
λ1(L) = s(L), hmax := maxx∈Ω(−D + a(x)). Moreover,

lim
D→0+

λ1(L) = max
x∈Ω

a(x), lim
D→∞

λ1(L) = −∞.

(ii) Time-Periodic (Rawal & Shen, JDDE 2012, Shen & Vo, JDE 2019):

[L̃φ](t, x) :=−∂tφ(t, x)+D

[∫
Ω

J(x − y)φ(t, y)dy− φ(t, x)

]
+a(t, x)φ(t, x),

for φ ∈ CT (R× Ω). The principal eigenvalue of L̃ exists iff
λ1(L̃) > h̃max, where λ1(L̃) = s(L̃), h̃max := maxx∈Ω(−D + â(x))

and â := 1
T

∫ T

0
a(t, x)dt. Moreover,

lim
D→0+

λ1(L̃) = max
x∈Ω

â(x), lim
D→∞

λ1(L̃) = −∞.
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Our age-structured models with nonlocal diffusion

(i) We can not directly choose the space of functions satisfying
the integral condition as in Rawal and Shen, 2012 JDDE,
where they worked on the space of time periodic functions,
since such a function space is unknown and heavily depends
on the birth rate β.

(ii) We introduce the theory of resolvent positive operators with
their perturbations that were studied by Thieme 1998 DCDS
and 2009 SIAM JAM, and Kato, 1982 MZ which is basically
like Burger’s idea, 1988 MZ to provide a criterion on the
existence of the principal eigenvalue.

(iii) Observing our case, since it contains the ∂a term, which is like
a parabolic type of nonlocal operator, it does not admit the
usual L2 variational structure in the elliptic type cases. This
fact suggests us to follow Berestycki’s idea to study the
generalized principal eigenvalue when investigating their
asymptotic behavior with respect to diffusion rate.
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Function Spaces and Operators

X = X × L1((0, a+),X ), X0 = {0} × L1((0, a+),X ), X := C (Ω),

X+
0 = {0} × L1

+((0, a+),X )

= {0} × {u ∈ L1((0, a+),X ) : u(a, x) ≥ 0, (a, x) ∈ (0, a+)× Ω},
X++

0 = {0} × L1
++((0, a+),X )

= {0} × {u ∈ L1((0, a+),X ) : u(a, x) > 0, (a, x) ∈ (0, a+)× Ω},

B(0, f ) =
(
−f (0, ·), −f ′ + Lσ,m,Ωf

)
,

C(0, f ) =

(∫ a+

0

β(a, ·)f (a, ·)da, 0

)
, (0, f ) ∈ X0.

where

Lσ,m,Ωf =
D

σm

[∫
Ω

Jσ(x − y)f (a, y)dy − f (a, x)

]
− µ(a, x)f (a, x),

f ∈ L1((0, a+),X )

14 / 40
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Continued

Note that X0 is a Banach space with a positive cone X+
0 which is

normal and generating. X0 can be identified with L1((0, a+),X ) in
an obvious way. Let

A = B + C, with domain D(A) = {0} ×W 1,1((0, a+),X )1, (5)

where W 1,1 represents the weak differentiability in a. Define A0 be
the part of A in X0,

D(A0) = {(0, f );Af ∈ X0}.

Then (0, f ) ∈ D(A0) implies that f (0, ·) =
∫ a+

0 β(a, ·)f (a, ·)da, i.e.
the boundary condition in (1). Moreover, define the nonlocal
operator for f ∈ L1((0, a+),X ) as

L0
σ,m,Ω[f ](a, x) =

D

σm

[∫
Ω
Jσ(x − y)f (a, y)dy − f (a, x)

]
. (6)

1W 1,1((0, a+),X ) ↪→ C([0, a+],X )
15 / 40
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Resolvent Positive Operators

Definition 1

A closed operator A in Z is called resolvent positive if the resolvent
set of A, ρ(A), contains a ray (ω,∞) and (λ− A)−1 is a positive
operator (i.e. maps Z+ into Z+) for all λ > ω.

Let A = B + C , where B is resolvent positive and C is linear positive,
define Fλ := C (λ− B)−1, λ > s(B). Then

a r(Fλ) ≥ 1 for all λ > s(B), then A is not resolvent positive;

b r(Fλ) < 1 for all λ > s(B), then A is resolvent positive and
s(A) = s(B);

c There exists ν > λ > s(B) such that r(Fν) < 1 ≤ r(Fλ): then A is
resolvent-positive and s(B) < s(A) <∞; further s = s(A) is
characterized by r(Fs) = 1.

16 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

Principal Spectral Theory

A = B + C with for (0, f ) ∈ D(A),

B(0, f ) =
(
−f (0, ·), −f ′ + Lf

)
, C(0, f ) =

(∫ a+

0
β(a, ·)f (a, ·)da, 0

)
.

where for f ∈ L1((0, a+),X ),

L[f ](a, x) = D

[∫
Ω
J(x − y)f (a, y)dy − f (a, x)

]
− µ(a, x)f (a, x),

Definition 2

The principal spectrum point of A is defined by
λ1(A) = sup{<λ : λ ∈ σ(A)}. If λ1(A) is an isolated eigenvalue
of A with an eigenfunction in X++

0 ∩ D(A), then it is called
principal eigenvalue of A.

Note that λ1(A) = s(A), which is the spectral bound of A.
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Decomposition

Define

B1(0, f ) =
(
−f (0, ·), −f ′ − (D + µ)f

)
,

B2(0, f ) =

(
0, D

∫
Ω
J(· − y)f (a, y)dy

)
, (0, f ) ∈ D(A).

It’s obvious that B = B1 + B2.

Observe that if α ∈ C is such that (α− B1 − C)−1 exists, then

(B2 + B1 + C)u = αu

has nontrivial solutions in X0 ⊕ iX0 is equivalent to

B2(α− B1 − C)−1v = v

has nontrivial solutions in X ⊕ iX , where

X0 ⊕ iX0 = {u + iv |u, v ∈ X0}, X ⊕ iX = {u + iv |u, v ∈ X}.
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A Key Proposition

Proposition 1

(α− B1 − C)−1 exists when <α > α∗∗, where α∗∗ ∈ R satisfying

r(Gα∗∗) = r

(∫ a+

0

β(a, x)e−(α∗∗+D)aΠ(0, a, x)da

)
= 1, (7)

where Π(γ, a, x) := e−
∫ a
γ
µ(s,x)ds , Gα : X → X is a linear bounded

operator defined in the following,

[Gαg ](x) =

∫ a+

0

β(a, x)e−(α+D)aΠ(0, a, x)g(x)da, g ∈ X . (8)

Moreover, B1 + C is a resolvent positive operator. In addition,
s(B1 + C) = α∗∗ and α∗∗ also satisfies the following equation,

max
x∈Ω

∫ a+

0

β(a, x)e−(α∗∗+D)aΠ(0, a, x)da = 1. (9)
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With Nonlocal Diffusion


∂u(a,x)
∂a = D

∫
Ω
J(x − y)u(a, y)dy − Du(a, x)− µ(a, x)u(a, x),

(a, x) ∈ (0, a+)× Ω

u(τ, x) = φ(x) ∈ X ,

Define the evolution system {U(τ, a)}0≤τ≤a≤a+ associated with above
equation, that is the solution u(a, x) of (10) can be written as

u(a, x) = U(τ, a)φ(x). (10)

Proposition 2

A is resolvent positive and s(A) = λ0 where λ0 satisfies

r(Mλ0 ) = r

(∫ a+

0

β(a, x)e−λ0aU(0, a)da

)
= 1, (11)

where Mλ : X → X is a linear bounded operator defined in above.
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Observation

A is resolvent positive implies s(A) ≥ s(B1 + C).

Remark 3

But we can not obtain the strict relation, i.e. s(A) > s(B1 + C)
even if

e−DaΠ(0, a, x)� U(0, a)

holds, because α∗∗ and λ0 are obtained by taking the spectral
radius of the operators equal to 1 where a limit process occurs
in which the strict relation may not be preserved. However, if
r(Gα) and r(Mλ) are eigenvalues of Gα and Mλ respectively, we
could obtain the strict relation, by the Frobenius theory for
positive operators.

Proposition 3

s(A) > s(B1 + C) if µ(a, x) ≡ µ(a) and β(a, x) ≡ β(a);
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A Criterion of Existence of Principal Eigenvalue

Now we provide a sufficient condition to make the principal
spectrum point λ1(A) = s(A) become the principal eigenvalue.

Theorem 4 (K.-Ruan, 2020)

If s(A) > s(B1 + C), then λ1(A) = s(A) is the principal eigenvalue
of A. Conversely, if λ ∈ R is an eigenvalue of A with a positive
eigenfunction φ(a, x), then λ = s(A).

Denote
Fλ = B2(λ− B1 − C)−1, <λ > α∗∗. (12)

Corollary 5

The inequality s(A) > s(B1 + C) holds if and only if there is
λ∗ > s(B1 + C) such that r(Fλ∗) ≥ 1, where Fλ is defined in (12).
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Main Theorem

Theorem 6 (K.-Ruan, 2020)

If for every α > α∗∗,

1

1− Gα
/∈ L1

loc(Ω), (13)

then λ1(A) = s(A) is the principal eigenvalue of A, where Gα(x)
is defined in the following,

Gα(x) =

∫ a+

0
β(a, x)e−(α+D)aΠ(0, a, x)da, (14)

Moreover, (13) is equivalent to for every ζ > α∗∗,

1

ζ − α
/∈ L1

loc(Ω).

23 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

A Counter Example (implies (13) sharp in some sense)


∂φ(a,x)
∂a =

∫
Ω J(x − y)φ(a, y)dy − φ(a, x)− µφ(a, x)− λ1φ(a, x),

(a, x) ∈ (0, a+)× Ω,

φ(0, x) =
∫∞

0 β(x)φ(a, x)da, x ∈ Ω.

Now for any α > αmax, where αmax ∈ R such that∫ ∞
0

e−(αmax+1+µ)ada = 1/βmax,

where βmax := maxx∈Ω β(x). It follows that

ρ/βmax

∫
Ω

1

1− Gα(x)
dx < 1⇒ ρ

∫
Ω

1

βmax − β(x)
dx < 1.

Thus the criterion for the existence of principal eigenvalue that we
gave in (13) is reasonable and comparable with one in nonlocal
problems, see Coville 2010 JDE and Shen and Vo 2019 JDE.
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Asynchronous Exponential Growth (An Unexpected Discovery)

Definition 7

A C0−semigroup {S(t)}t≥0 in a Banach space Z has asynchronous
exponential growth with intrinsic growth constant λ1 ∈ R, if there exists a
non-zero finite rank operator P on Z such that lim

t→∞
e−λ1tS(t) = P, where

the limit is in the operator norm topology.

Theorem 8 (Thieme, 1998 DCDS, Theorem 2.5)

Let X be a Banach lattice and A resolvent positive, S0 be the positive
C0−semigroup on D(A) generated by A0, the part of A in X0. Then S0 exhibits
asynchronous exponential growth iff S0 is essentially compact (ω1(S0) < ω(S0))
and S(A) is a first order pole of the resolvent of A.

1

1− Gα
/∈ L1

loc(Ω) ⇒ s(A) > s(B1 + C)2

⇒ S0 is essentially compact

⇒ r(A) > re(A) (15)

2(s(A) =)ω(S) > ω(T )(= s(B1 + C)) ≥ ω1(T ) = ω1(S). 25 / 40
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Generalized Principal Eigenvalue

Due to the lack of usual variational formula, following the idea
from Berestyki et. al, 1994 CPAM and 2016 JFA, we define

Definition 9


λp(A) := sup{λ ∈ R : ∃ (0, φ) ∈ D(A) ∩ X++

0 ,

s.t.(−A+ λ)(0, φ) ≤ (0, 0) in [0, a+]× Ω},
λ′p(A) := inf{λ ∈ R : ∃ (0, φ) ∈ D(A) ∩ X++

0 ,

s.t.(−A+ λ)(0, φ) ≥ (0, 0) in [0, a+]× Ω}.

(16)

Proposition 4

λ1(A) = λp(A) = λ′p(A) if λ1(A) is the principal eigenvalue of A.
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Limiting Properties without kernel scaling

Theorem 10 (K.-Ruan, 2020)

If λD1 (A) = s(A) is the principal eigenvalue of A, then the
function D → λD1 (A) is continuous on (0,∞) and satisfies

λD1 (A)→

{
s(B0

1 + C), as D → 0+,

−∞, as D →∞.
(17)

where

B0
1(0, f ) :=

(
−f (0, ·) +

∫ a+

0
β(a, ·)f (a, ·)da, −f ′ − µf

)
,

for (0, f ) ∈ D(A).
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Monotonicity with respect to D.

Remark 11

From Proposition 1, we know that s(B0
1 + C) equals to the value α1

which satisfies

max
x∈Ω

∫ a+

0

β(a, x)e−α1aΠ(0, a, x)da = 1.

Theorem 12

If µ(a, x) = µ1(a) + µ2(x) and β(a, x) ≡ β(a) and suppose that J is
symmetric with respect to each component and in addition, the operator

v → D

[∫
Ω

J(· − y)v(y)− v

]
− µ2v : X → X

admits a principal eigenvalue, then D → λD1 (A) is strictly decreasing.
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Continuous Dependence

Proposition 5

Let m ≥ 0, σ > 0,

(i) λ1(Bµσ,m,Ω + C) is Lipschitz continuous with respect to µ in

C ([0, a+],X ) if λ1(Aσ,m,Ω) is the principal eigenvalue of
Aσ,m,Ω. More precisely,

|λ1(Bµ1

σ,m,Ω + C)− λ1(Bµ2

σ,m,Ω + C)| ≤‖µ1 − µ2‖C([0,a+],X ) ,

for any µ1, µ2 ∈ C ([0, a+],X ).

(ii) If Ω1 ⊂ Ω2, then λp(Aσ,m,Ω1) ≤ λp(Aσ,m,Ω2). If in addition,
λ1(Aσ,m,Ω1) and λ1(Aσ,m,Ω2) are principal eigenvalues of
Aσ,m,Ω1 and Aσ,m,Ω2 respectively, then

|λp(Aσ,m,Ω1)− λp(Aσ,m,Ω2)| ≤ C0|Ω2 \ Ω1|,

where C0 > 0 depends on a, σ,m, Jσ and Ω2.
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Limiting Properties with kernel scaling

Theorem 13 (K.-Ruan, 2020)

If λ1(Aσ,m,Ω) = s(Aσ,m,Ω) is the principal eigenvalue of Aσ,m,Ω, then

(i) As σ →∞, there holds

λ1(Aσ,m,Ω)→

{
s(B0

1 + C)− D, m = 0,

s(B0
1 + C), m > 0.

(18)

(ii) Suppose, in addition, J is symmetric with respect to each
component and µ, β ∈ C 1,4([0, a+]× Ω). As σ → 0+, there holds

λ1(Aσ,m,Ω)→ s(B0
1 + C), ∀m ∈ [0, 2).

where for (0, f ) ∈ D(A),

B0
1(0, f ) :=

(
−f (0, ·) +

∫ a+

0

β(a, ·)f (a, ·)da, −f ′ − µf

)
.
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A Remark

Note that we did not discuss the case when m = 2 and σ → 0. We
conjecture that the principal eigenvalue for age-structured models
with nonlocal diffusion converges to the one for age-structured
models with Laplace diffusion. Actually, without age-structure, the
autonomous nonlocal diffusion operator has a L2 variational
structure which can be used to show the convergence, see
Berestycki et al. 2016 JFA and Su et al. 2019 JDE. While for the
time-periodic nonlocal diffusion operator, Shen and Xie 2015
DCDS-A used the idea of solution mapping to show the
convergence, where they employed the spectral mapping theorem
which is not valid in our case either since we have a first order
differential operator ∂a that is unbounded. However, when we add
a nonlocal boundary condition to the birth rate β, it can be proved
that the semigroup generated by solutions is eventually compact
where spectral mapping theorem holds. Thus we can use it to
show the desired convergence.
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Strong Maximum Principle

Definition 14

We say that A admits the strong maximum principle if for any
function (0, u) ∈ D(A) satisfying{

A(0, u) ≤ 0, in [0, a+]× Ω,

(0, u) ≥ 0, in [0, a+]× ∂Ω,
(19)

there must hold u > 0 in [0, a+]× Ω unless u ≡ 0 in [0, a+]× Ω.

Theorem 15

If λ1(A) is the principal eigenvalue of A, then A admits the strong
maximum principle if and only if λ1(A) < 0.
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Global Dynamics



[ ∂∂t + ∂
∂a ]u(t, a, x) = D

[∫
Ω
J(x − y)u(t, a, y)dy − u(t, a, x)

]
−µ(a, x)u(t, a, x) + f (a, x , u(t, a, x)),

(t, a, x) ∈ (0,∞)× (0, a+]× Ω,

u(t, 0, x) =
∫ a+

0
β(a, x)u(t, a, x)da, (t, x) ∈ (0,∞)× Ω,

u(0, a, x) = u0(a, x), (a, x) ∈ [0, a+]× Ω.

(20)

where f is a KPP type of nonlinearity. A typical example of such a

nonlinearity is given as f (a, x , s) = s(k(a, x)− s). In the following we will

only consider this case for the convenience.
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Steady States

Let’s first write down the equation which the equilibrium satisfies,
∂u(a,x)
∂a = D

[∫
Ω
J(x − y)u(a, x)dy − u(a, x)

]
− µ(a, x)u(a, x)

+u(a, x)(k(a, x)− u(a, x)), (a, x) ∈ (0, a+]× Ω,

u(0, x) =
∫ a+

0
β(a, x)u(a, x)da, x ∈ Ω.

(21)

where k(a, x) ≤ K for any (a, x) ∈ [0, a+]× Ω.

Definition 16

We call u is a supersolution (resp. subsolution) of (21) if =
becomes into ≥ (resp. ≤) in (21).
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Existence, Uniqueness and Stability of (20)

Now let’s define the linearized operator Ak which is obtained by
linearizing (21) at u = 0,

Ak(0, φ) :=

(
−φ(0, ·) +

∫ a+

0
β(a, ·)φ(a, ·)da, −φ′ + Lφ+ kφ

)
,

(22)
for (0, φ) ∈ D(Ak). Denote λk1 as the principal eigenvalue of Ak .

Theorem 17

There exists at least a positive nontrivial solution u∗(a, x) of (21)
when λk1 > 0. In addition, u∗ is unique if β is everywhere positive
in [0, a+]× Ω. Moreover, the nontrivial equilibrium u∗ is stable in
the sense of u(t, a, x)→ u∗(a, x) pointwise as t →∞, where
u(t, a, x) is a solution of (20) with initial data u0 ≥ 0 and u0 6= 0.

35 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

Existence, Uniqueness and Stability of (20)

Now let’s define the linearized operator Ak which is obtained by
linearizing (21) at u = 0,

Ak(0, φ) :=

(
−φ(0, ·) +

∫ a+

0
β(a, ·)φ(a, ·)da, −φ′ + Lφ+ kφ

)
,

(22)
for (0, φ) ∈ D(Ak). Denote λk1 as the principal eigenvalue of Ak .

Theorem 17

There exists at least a positive nontrivial solution u∗(a, x) of (21)
when λk1 > 0. In addition, u∗ is unique if β is everywhere positive
in [0, a+]× Ω. Moreover, the nontrivial equilibrium u∗ is stable in
the sense of u(t, a, x)→ u∗(a, x) pointwise as t →∞, where
u(t, a, x) is a solution of (20) with initial data u0 ≥ 0 and u0 6= 0.

35 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

With Kernel Scaling

Theorem 18

Equation (20) admits a unique equilibrium
u∗ ∈ C++([0, a+],X ) \ {0} that is stable for each 0 < D � 1 if
s(B0

1 + C) > 0, where s(B0
1 + C) = α2 satisfies (24).

Theorem 19

Equation (20) with kernel scaling defined in (5) admits a unique
equilibrium u∗ ∈ C++([0, a+],X ) \ {0} that is stable in the
following cases:

(i) For each m > 0, if s(B0
1 + C) = α2 > 0, then there exists

1� σ1 <∞ such that for each σ > σ1.

(ii) Suppose, J is symmetric with respect to each component. For
each m ∈ [0, 2), if s(B0

1 + C) = α2 > 0, then there exists
0 < σ2 � 1 such that for each σ ∈ (0, σ2).
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Asymptotic Behavior of Equilibrium


∂v(a,x)
∂a = −µ(a, x)v(a, x) + v(a, x)(k(a, x)− v(a, x)), (a, x) ∈ (0, a+]× Ω,

v(0, x) =
∫ a+

0
β(a, x)v(a, x)da, x ∈ Ω.

(23)

Lemma 20

Suppose α2 > 0, then for each x ∈ Ω, the equation (23) has a
unique positive solution, denoted by v∗(a, x), that is continuous in
x, where α2 satisfies the following equation,

max
x∈Ω

∫ a+

0
β(a, x)e−α2aK(0, a, x)da = 1. (24)

and K(γ, a, x) := e−
∫ a
γ (µ(s,x)−k(s,x))ds .

37 / 40



Introduction Preliminaries Principal Spectral Theory Limiting Properties Strong Maximum Principle Global Dynamics

Continued

Theorem 21

If α2 > 0, β is everywhere positive and v∗ is from Lemma 20, we have
the following asymptotic results,

(i)

lim
D→0+

u∗D(a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a+]× Ω, (25)

(ii) If m ∈ [0, 2) and J is symmetric with respect to each component,
then

lim
σ→0+

u∗σ(a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a+]× Ω, (26)

(iii) If m > 0, then

lim
σ→∞

u∗σ(a, x) = v∗(a, x), uniformly in (a, x) ∈ [0, a+]× Ω, (27)

where u∗σ is from Theorem 19.
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Summary

(i) We give the sufficient conditions to the existence of the
principal eigenvalue and an counterexample where no principal
eigenvalue is allowed.

(ii) We use generalized principal eigenvalue to characterize the
principal eigenvalue and use it to establish the effects of
diffusion rate on the principal eigenvalue.

(iii) We establish the strong maximum principle for such
age-structured models with nonlocal diffusion.

(iv) We investigate the existence, uniqueness and stability of such
equations with KPP type of nonlinearity.

We expect that such analysis on the principal eigenvalue is helpful
to study the traveling wave solutions and spreading speeds of
age-structured models with nonlocal diffusion.
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Thank you!
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