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Reaction-diffusion equation

u(x,t) — depending on considered applications describes temperature
or concentration distribution, the density of some populations, etc

2
u o°u heat or mass production
F(u) -
or reproduction rate

\ mass diffusion or heat
conduction or random

motion of individuals

One equation or systems of equations



Beginning of the theory of
reaction-diffusion eguations

» Heat explosion (Semenov, Frank-Kamenetskii,
19305)

» \Vave propagation (Fisher, KPP, Zeldovich-Frank-
Kamenetskii, 1938)

» Pattern formation (Turing, 1952)



Frank-Kamenetskii model of
heat explosion

a—U:Au+e“

ot

Temperature distribution

Ammonium nitrate explosion,
Beyrouth, 2020

ExM{ence of stationary solutions or
blow\up (unbounded) solution?



Wave propagation (KPP-Fisher
eqguation)

F
ou 0% F(u)=u(1-u)
u
%\ - u(x,t) = w(x-ct)
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Infection spreading in the USA



Combustion engines, fires
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Tumor growth
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Excitable medium: brain, heart

AMRABOTHICRIT

_ _ KOHLIEHTPALIHOHHBIE
Nerve impulse: Hodgkin-Huxley ABTOROJTEBAH A

model

Belousov, Zhabotinskii
reactions

From Zhabotinskii.
Concentrational auto-
oscillations. 1974.

(from Keener, Sneyd)

5.1: THe HOpGkiN-HuxLey MODEL 197

Heart waves

(from D. Noble paper)

Figure 5.1 The infamous giant squid (or even octopus, if you wish to be pedantic), having
nothing to do with the work of Hodgkin and Huxley on squid giant axon. From Dangerous Sea
Creatures, © 1976, 1977 Time-Life Films, Inc.




Turing structures
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Pattern formation



Existence and stability

of waves and pulses



Main definitions

ou  O%u
— = —+ F(u
ot  Ox? (u)
Travelling wave solution:
u(z,t) = w(r — ct) ¢ — wave speed — unknown constant
satisfies’'the problem:

w”" +cw' + F(w) =0 w(—00) =1, w(oo) =0

Three types of nonlinearity:
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Wave existence: monostable case

/ w(X) F(w)

—\1 T T ?_L-'” +C'lU’+ F(ur) - O

OK X u'(—oc) = { ; ‘U’(OC) = 05

First—o?m/system: w' = D, p’ = —cp — F(.w)

b

. — W :
/1 We look for a trajectory

connecting (1,0) and (0,0)

|
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Wave existence: monostable case

[ ow(x) E(w)

0.5

First-order system: w=p, p=—cp— F(w)
—— Sl 4 W . | Ir\ ¢ ¢ v 7
oIN_ /1 We look for a trajectory | g
|\ ‘ connecting (1,0) and (0,0) | ¢

Theorem 1. Monotone waves exist for all values of the speed ¢
greater than or equal to some minimal speed c0



Wave existence: bistable case

[ ow(x) E(w)

First-order system: w = D, p’ = —cp — F(.w)

/1 We look for a trajectory 6 NSe.p o1
connecting (1,0) and (0,0) \\ L,

Theorem 2. A monotone waves exists for a single value of speed c.




Examples

Population dynamics

F(u) = au*(1 — u) — ou

Combustion

F(u) = ae®™(1 —u) — ou

=1

0:5+————




Existence of pulses

u_ o /\\

of Ox

Pulse — positive stationary Bistable nonlinearity
Soluti?With 0 limits at infinity

\  w"+ Flw)=0 w'=p, p=-F(w)

20

EsismisE: '4 w(xo0) =0
X Theorem 3. Pulse exists if and only if | ' Plu)du > 0




" F)
Examples PPN

Local model
\/\ k=1 No pulse

0

F(u) = au*(1 — u) — ou /\ |
Nonlocal model

u + 'r‘ll.2 —ou=0 r=a (1 - /:OC ur(y)dy) tWO pulses




Genaralizations

» Systems of equations
» Multi-dimensional equations and systems
» Nonlocal (integrodifferential equations)

» Delay equations




Stability of waves: definitions

Invariance with respect to translation: w(x+h) is a solution for any real h



Stability of waves: definitions

Wave w(X) is a solution of the equation

w”" +ecw' + F(w) =0

Linearized operator
Lv ="+ ' + F'(w(z))v

Existen’ce of zero eigenvalue: L w’ =0 - the previous stability result is not applicable

ability with shift — — —— + F(u) iz, 0) = w(z) +dlz)

Initial condition

Asymptotic stability with shift (with respect to small perturbations): for any sufficiently
small perturbation, solution u(x,t) converges to the shifted wave w(x-ct+h) for some h.



Krein-Rutman theorem

Consider a linear elliptic operator in a bounded domains:

n a
Lu= Au+ Z a,('l)d—lu + b(x)u 'U|@Q =4l
i=1 -

The principal eigenvalue (with the maximal real part) of the problem

Lu = A\u

is real, simple, and the corresponding eigenfunction is positive.
There are no other positive eigenfunctions

Remarks: valid for scalar problem and bounded domains. Can be
generalized for monotone systems and unbounded domains (cf. essential
spectrum)



Stability of waves (scalar equation)

Equation for the wave w(x)
u=w'(z) Differentiating (1)
w”" +cw'+ F(w) =0

u" +cu' + F'(w(z))u =0 (2)
Linearized ="
operator u(x)=w’(x)>
Lu=u"+cu' + F'(w(x))u = g T 0

From (2): operator L has 0 eigenvalue and the corresponding
eigenfunction w’(x) is positive. Hence 0 is the eigenvalue with the maximal
real part, and all other eigenvalues lie in the left half-plane.

Theorem. Monotone waves for the scalar equation are stable.



Wave speed: minimax representation

w” + F(w
U;‘” + (_‘-u',v’ + F('u_}) — 0 ‘ e uw (lL)

est function

U /!
g P +F’(p) 2w )
= —P z —r
Minimax representation
/7 F 1/ F
¢ = inf sup ) = sup inf s ,(p)
& im —p p T —pP

The proof uses global asymptotic stability of waves for monotone systems



Instability of waves and pulses

Equation for the wave w(x)
Differentiating (1)

u=w'(zx)

w” + cw' + F(lL‘) =0
u" +cu' + F'(w(z)u=0 (2)

Linearized
operator | ; | u(x)=w’(x)
Lu=u"+cu' + F'(w(x))u — —

‘o

From (2): operator L has 0 eigenvalue and the corresponding
eigenfunction w’(x) has variable sign. Hence 0 is not the eigenvalue with
the maximal real part, and there are eigenvalues in the right half-plane.

Theorem. Non-monotone waves and pulses for the scalar equation are unstable




Reaction-diffusion systems: monotone
systems

ou 0%*u OF;

>0, 2#7

i ¥
f}’uj

uz Bistable: existence, uniqueness, convergence to
waves, minimax representation of the speed

Monostable: existence for c>=c0, stability,
minimax representation of the minimal wave
speed

Unstable: non-existence

ui



