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Chapter 1

semigroups of Linear Operators

Consider the differential equation

x′ = ax,

with a ∈ R. The solution of this equation is

x(t) = x(0)eat

and satisfies x(t+ s) = easeatx(0). If we define for t ∈ R, S(t) by

S(t) :

{
R → R
x 7→ eatx

then, we have,

S(t+ s) = S(t)S(s)

and

S(0) = I.

The main purpose of this chapter is to analyze what happens when a is replaced by an operator acting
on functional spaces. We refer to [Gre06] for more details on the historical links between the original
works of Peano on ordinary differential equations and the further developments in functional analysis.

1.1 Uniformly Continuous semigroups

Let X be a Banach space and let L(X) be the set of all linear bounded operators from X to X.
Endowed with the operator norm || · ||L(X), defined for U ∈ L(X) by

||U ||L(X) = sup
||x||≤1

||U(x)||.

It is known that L(X) is a Banach space.

Definition 1. A family {S(t); t ≥ 0} in L(X) is a semigroup of linear operators on X, or simply
semigroup if

(i)S(0) = I

(ii)S(t+ s) = S(t)S(s) for each t, s ≥ 0.

If, in addition, it satisfies the following continuity condition at t = 0

lim
t→0+

S(t) = I

in the norm topology of L(X), the semigroup is called uniformly continuous.
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6 CHAPTER 1. SEMIGROUPS OF LINEAR OPERATORS

A first important example of an uniformly continuous semigroup is given by S(t) = etA, where etA

is the exponential of the matrix tA.

Exercise 1:

Let A be a n× n real matrix. Define, for each t > 0, S(t) : Rn → Rn y S(t)x = etAx, where

etA =

+∞∑
k=0

tkAk

k!

1. Prove that {S(t); t ≥ 0} is a uniformly continuous semigroup of linear operators.

2. Prove that t → S(t) if of class C1 from [0,+∞) to L(Rn) and satisfies

d

dt
S(t) = AS(t) (1.1)

Solution 1:

1. The fact that e(t+s)A = etAesA follows from the absolute convergence of the exponential series.
The computations are analog to the equality for the exponential of complex numbers, see for example
the prologue in [Rud87]. For the reader’s convenience we provide here a few details. First for all t ≥ 0

+∞∑
k=0

1

k!
||At||k = et||A||.

Therefore the series
+∞∑
k=0

1

k!
(At)k

converges absolutely so it converges in L(Rn) (to a matrix). Next we want to compare

e(t+s)A and etAesA.

To do that, we compare
N∑

k=0

1

k!
(At)k

N∑
k=0

1

k!
(As)k,

and
N∑

k=0

1

k!
((A(t+ s))k.

We remark that

||
N∑

k=0

1

k!
(At)k

N∑
k=0

1

k!
(As)k −

N∑
k=0

1

k!
((A(t+ s))k||

= ||
N∑

k=0

1

k!
(At)k

N∑
k=0

1

k!
(As)k −

N∑
k=0

1

k!

k∑
i=0

k!

i!(k − i)!
||At||i||As||k−i||

= ||
N∑

k=0

1

k!
(At)k

N∑
k=0

1

k!
(As)k −

N∑
k=0

k∑
i=0

1

i!(k − i)!
||A||k||tisk−i||

≤ ||
2N∑
k=N

1

k!

(
||A||(t+ s)

)k|| −−−−−→
N→+∞

0.
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One have also S(0) = Id. To prove that the semigroup is uniformly continuous we need to prove
that ||etA − Id|| converge toward 0 as t → 0+. Note that

||S(t)− Id|| = ||
∑+∞

k=0
tkAk

k! − Id||

= ||
∑+∞

k=1
tkAk

k! ||

≤
∑+∞

k=1
|t|k||A||k

k!

≤
∑+∞

k=0
|t|k||A||k

k! − 1

≤ e||A||t − 1 −−−−→
t→0+

0

2. Next, we consider the quantity
S(t+ h)− S(t).

We have

S(t+ h)− S(t) =
∑+∞

k=0
(t+h)kAk

k! −
∑+∞

k=0
(t)kAk

k!

=
∑+∞

k=0

∑k
i=0

(ki )
k! t

k−ihiAk −
∑+∞

k=0
(t)kAk

k!

=
∑+∞

k=0
(t)kAk

k! +
∑+∞

k=1

∑k
i=1

(ki )
k! t

k−ihiAk −
∑+∞

k=0
(t)kAk

k!

=
∑+∞

k=1

∑k
i=1

(ki )
k! t

k−ihiAk

(1.2)

It follows that
S(t+ h)− S(t)

h
=

∑+∞
k=1

∑k
i=1

(ki )
k! t

k−ihi−1Ak
(1.3)

When h → 0 this quantity converges toward

+∞∑
k=1

k

k!
tk−1Ak

which is equal to

A

+∞∑
k=1

1

(k − 1)!
tk−1Ak−1

or
AeAt.

It follows that S(t) admits a derivative and that

d

dt
eAt = AeAt.

To prove that S′(t) is continuous, we write

||AeA(t+h) −AeAt|| = ||AeAt(eAh − Id)||

≤ ||A||e||A||t||eAh − Id||

≤ ||A||e||A||t||eAh − Id||

−−−→
h→0

0

(1.4)

Exercise 2:

Let X be the space of all bounded and uniformly continuous functions from R+ to R, endowed
with the sup-norm || · ||∞ , and let {S(t); t ≥ 0} ⊂ L(X) be defined by

(S(t)f)(s) = f(t+ s)

for each f ⊂ X and each t, s ⊂ R+.
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1. Prove that S is a semigroup.

2. Prove that S is not uniformly continuous.

Solution 2:

1. Write it down!
2. Consider the sequence of functions

fn(t) =


0 if t ≤ 1

n

n(t− 1

n
) if 1

n ≤ t ≤ 2
n

1 if t ≥ 2
n

and remark that

||S( 1
n
)fn − f ||∞ = 1.

Definition 2. The infinitesimal generator, or generator of the semigroup of linear operators {S(t); t ≥
0} is the operator A : D(A) ⊆ X → X, defined by

D(A) = {x ∈ X; lim
t→0+

S(t)x− x

t
exists}

and

Ax = lim
t→0+

S(t)x− x

t

Equivalently, we say that A generates {S(t); t ≥ 0}.

1.2 Generators of Uniformly Continuous Semigroups

Theorem 1. A linear operator A : D(A) ⊂ X → X is the generator of a uniformly continuous
semigroup if and only if D(A) = X and A ∈ L(X).

Proof
Assume that {S(t); t ≥ 0} is a uniformly continuous semigroup. By definition,

lim
t→0

S(t) = I

in L(X). Next remark that
1

ρ

∫ ρ

0

S(t)dt− I

=
1

ρ

∫ ρ

0

(I + S(t)− I)dt− I

=
1

ρ

∫ ρ

0

(S(t)− I)dt

Since
1

ρ
||
∫ ρ

0

(S(t)− I)dt|| ≤ 1

ρ

∫ ρ

0

||S(t)− I||dt → 0 as ρ → 0+

we obtain that

||1
ρ

∫ ρ

0

S(t)dt− I|| < 1
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for ρ small enough. It follows that 1
ρ

∫ ρ

0
S(t)dt and therefore

∫ ρ

0
S(t)dt is invertible (this is because if

||B|| < 1 then (I +B)
∑+∞

n=0(−1)nBn = I). Next, we write

1

h

(
S(h)− I

) ∫ ρ

0

S(t)dt =
1

h

∫ ρ

0

S(t+ h)dt− 1

h

∫ ρ

0

S(t)dt

We set s = t+ h in the right-hand side of the equation. This gives

1

h

(
S(h)− I

) ∫ ρ

0

S(t)dt =
1

h

∫ ρ+h

h

S(s)ds− 1

h

∫ ρ

0

S(t)dt

=
1

h

∫ ρ

h

S(s)ds+
1

h

∫ ρ+h

ρ

S(s)ds− 1

h

∫ h

0

S(t)dt− 1

h

∫ ρ

h

S(t)dt

=
1

h

∫ ρ+h

ρ

S(s)ds− 1

h

∫ h

0

S(t)dt

and then
1

h

(
S(h)− I

)
=
( 1
h

∫ ρ+h

ρ

S(s)ds− 1

h

∫ h

0

S(t)dt
)( ∫ ρ

0

S(t)dt
)−1

Now, the right-hand side converges in L(X) as h → 0. So do the left hand side then. It follows that

A =
(
S(ρ)− I

)( ∫ ρ

0

S(t)dt
)−1

(1.5)

Now assume that A ∈ L(X). We define:

S(t) =

+∞∑
k=0

tkAk

k!

S(t) is a semigroup of linear operators (see exercise 1). We need to proof that it is uniformly continuous.

S(t)− I =

+∞∑
k=1

tkAk

k!

S(t)− I = At

+∞∑
k=1

tk−1Ak−1

k!

It follows that
||S(t)− I|| ≤ t||A||e||A||t

which shows that S is uniformly continuous. It remains to prove that A is the infinitesimal generator
of S.

1

h

(
S(h)− I

)
−A =

+∞∑
k=1

hk−1Ak

k!
−A

=

+∞∑
k=2

hk−1Ak

k!

= hA2
+∞∑
k=2

hk−2Ak−2

k!

It follows that

|| 1
h

(
S(h)− I

)
−A|| ≤ h||A||2e||A||h.

This completes the proof. □
Consider now the Cauchy problem {

u′ = Au+ f
u(0) = ξ

(1.6)

where A ⊂ L(X) and f ∈ C([0, T ];X).
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Theorem 2. For any (ξ, f) ∈ X×C([0, T ];X), Equation (1.6) has a unique solution u ∈ C([0, T ];X)
given by the so called variation of constants, or Duhamel, formula

u(t, ξ, f) = S(t)ξ +

∫ t

0

S(t− s)f(s)ds

for each t ∈ [0, T ] where {S(t); t ≥ 0} is the semigroup generated by A.

1.3 C0-semigroups

Definition 3. A semigroup of linear operators {S(t); t ≥ 0} is called a semigroup of class C0, or
C0-semigroup if for each x ∈ X we have

lim
t→0+

S(t)x = x

Theorem 3. If {S(t); t > 0} is a C0-semigroup, then there exists a constant M > 1 and ω ∈ R such
that

||S(t)|| ≤ Meωt ∀t ≥ 0.

Proof
We first prove that there exists M > 1, µ > 0 such that for

||S(t)||L(X) ≤ M∀t ∈ [0, µ]

Assume that this is not the case. Then for all M ≥ 1 and for all µ > 0 there exists tM,µ ∈ (0, µ] such
that

||S(tM,µ)||L(X) > M.

So we can construct a sequence tn such that for all n ∈ N

0 < tn <
1

n
and ||S(tn)||L(X) > n. (1.7)

Note that since (S(t)) is a C0-semigroup,

∀x ∈ X lim
n→+∞

S(tn)x = x

It follows that
∀x ∈ X sup

n∈N
||S(tn)x|| < +∞.

From the uniform boundedness theorem, we deduce that

sup
n∈N

||S(tn)||L(X) < +∞,

which contradicts eq. (1.7). Next, for t > 0, we write t = nµ+ δ, with δ ∈ (0, µ). We have

S(t) = S(δ)S(µ)n

and therefore
||S(t)|| ≤ Mn+1

≤ e(n+1) lnM

≤ e(
t−δ
µ +1) lnM

≤ Me
t
µ lnM

with gives the result with ω = lnM
µ .

Definition 4. A C0 semigroup is called a C0 semigroup of type (M,ω) if

||S(t)||L(X) ≤ Meωt ∀t ≥ 0
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Definition 5. A C0 semigroup is called a C0 semigroup of contractions if

||S(t)||L(X) ≤ 1∀t ≥ 0

Exercise 3:

1. Discuss the notion of Riemann integral do define∫ t

0

S(s)ds

where (S(t)) is a uniformly continuous semigroup.
What can you say if S is a C0 semigroup?
2. Look for the definition of the Bochner Integral, for example in [Yos68]. See also [Eva10].

Solution 3:

1. Let t > 0. We consider the sum

Kn =
t

n

n−1∑
k=0

S(k
t

n
).

We can prove that (Kn) is a Cauchy sequence in L(X). Indeed, assume n > p

Kn −Kp =
t

n

n−1∑
k=0

S(k
t

n
)− t

p

p−1∑
k=0

S(k
t

p
).

Reordering (ktp ) and (ntp ) as a subdivision (ti), we can rewrite this last equality as

Kn −Kp =

l−1∑
i=0

(ti+1 − ti)S(ϕ
n(ti))−

l−1∑
i=0

(ti+1 − ti)S(ϕ
p(ti)).

where |ϕp(ti)− ϕn(ti)| < t
p . Now, since (S(t)) is uniformly continuous, we have that

∀ϵ > 0∃δ s.t. τ < δ ⇒ ∀s ∈ [0, t− τ) ||S(s+ τ)− S(s)|| ≤ ||S(s)||||S(τ)− Id|| < e||A||sϵ

It follows that for all ϵ > 0, for p, n large enough

≤
l−1∑
i=0

(ti+1 − ti)||S(ϕn(ti))− S(ϕp(ti))||

≤
l−1∑
i=0

(ti+1 − ti)||S(min(ϕn(ti), ϕ
p(ti))||||S(|ϕn(ti)− ϕp(ti)|)− I||

≤ te|A|tϵ.

Therefore (Kn) is Cauchy. So it converges. We set∫ t

0

S(s)ds = lim
n→+∞

Kn.

If (S(t)) is a C0-semigroup one can define in the same way∫ t

0

S(s)xds∀x ∈ X.

Exercise 4:
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Let {S(t); t ≥ 0} be a C0 semigroup. Show that the map

[0,+∞)×X → X
(t, x) → S(t)x

is continuous.

Solution 4:

Let h > 0 and y ∈ X

||S(t+ h)y − S(t)x|| = ||S(t+ h)y − S(t+ h)x+ S(t+ h)x− S(t)x||

≤ ||S(t+ h)y − S(t+ h)x||+ ||S(t+ h)x− S(t)x||

≤ ||S(t+ h)||||y − x||+ ||S(t)||||S(h)x− x||

≤ Meω(t+h)||y − x||+ ||S(t)||||S(h)x− x||

−−−−−−−−−→
(h,x)→(0+,x)

0

Let h < 0 and y ∈ X

||S(t+ h)y − S(t)x|| = ||S(t+ h)y − S(t+ h)x+ S(t+ h)x− S(t)x||

≤ ||S(t+ h)y − S(t+ h)x||+ ||S(t+ h)x− S(t)x||

≤ ||S(t+ h)||||y − x||+ ||S(t+ h)||||x− S(−h)x||

≤ Meω(t+h)
(
||y − x||+ ||x− S(−h)x||

)
−−−−−−−−−→
(h,x)→(0−,x)

0

Exercise 5:

Check Equation (1.5) if S(t) = eat.

Solution 5:

Left to the reader.

Exercise 6:

Prove Theorem 2.

Solution 6:

Left to the reader.

Theorem 4. Let A : D(A) ⊆ X → X, be the generator of a C0 semigroup of linear operators
{S(t); t ≥ 0}. Then

1.

∀t > 0∀x ∈ X lim
h→0+

1

h

∫ t+h

t

S(s)xds = S(t)x (1.8)

2.

∀t > 0∀x ∈ X,

∫ t

0

S(s)xds ∈ D(A) and A

∫ t

0

S(s)xds = S(t)x− x

3. for each x ∈ D(A) and each t ≥ 0, S(t)x ∈ D(A). In addition, the mapping t → S(t)x is of class
C1 on [0,+∞), and satisfies

d

dt
S(t)x = AS(t)x = S(t)Ax
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4. for each x ∈ D(A) and each 0 ≤ s ≤ t < +∞, we have∫ t

s

AS(τ)xdτ =

∫ t

s

S(τ)Axdτ = S(t)x− S(s)x

Proof

1.

|| 1
h

∫ t+h

t

S(s)xds− S(t)x||

= || 1
h

( ∫ t+h

t

S(s)xds−
∫ t+h

t

S(t)xds
)
||

≤ 1

h
||S(t)||L(X)

∫ t+h

t

||S(s− t)x− x||ds

which converges to 0 as h goes to 0+.

2.
1

h

(
S(h)

∫ t

0

S(s)xds−
∫ t

0

S(s)xds
)

=
1

h

( ∫ t

0

S(s+ h)xds−
∫ t

0

S(s)xds
)

=
1

h

( ∫ t+h

h

S(s)xds−
∫ t

0

S(s)xds
)

=
1

h

( ∫ t+h

t

S(s)xds−
∫ h

0

S(s)xds
)

Now from Equation (1.8), we deduce that,

lim
h→0+

1

h

(
S(h)

∫ t

0

S(s)xds−
∫ t

0

S(s)xds
)
= S(t)x− x

which gives the result.

3.

|| 1
h

(
S(t+ h)x− S(t)x

)
− S(t)Ax||

≤ ||S(t)||L(X)||
1

h

(
S(h)x− x

)
−Ax||

which proves that, since x ∈ D(A),

S(t)x ∈ D(A), and
d

dt+
S(t)x = AS(t)x = S(t)Ax

Now, for h < 0 and t+ h > 0, we write

|| 1
h

(
S(t+ h)x− S(t)x

)
− S(t)Ax||

≤ ||S(t+ h)|||| 1

−h
(S(−h)x− x)−Ax+Ax− S(−h)Ax||

≤ ||S(t+ h)||
(
|| 1

−h
(S(−h)x− x)−Ax||+ ||Ax− S(−h)Ax||

)
which show the left differentiability. Since S(t)Ax is continuous, we obtain that S(t)x is of class
C1 with respect to t.

4. for each x ∈ D(A) and each 0 ≤ s ≤ t < +∞, we have∫ t

s

AS(τ)xdτ =

∫ t

s

S(τ)Axdτ =

∫ t

s

d

dτ
S(τ)xdτ = S(t)x− S(s)x

□
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1.4 The Infinitesimal Generator of C0 semigroups

Definition 6. An operator A : D(A) ⊂ X → X is called closed, if its graph is closed in X ×X.

Theorem 5. Assume that A : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup
{S(t); t ≥ 0}. Then D(A) is dense in X, and A is a closed operator.

Proof
Let x ∈ X. For ε > 0, it follows from Theorem 4 2) that

1

ϵ

∫ ϵ

0

S(t)x ∈ D(A)

and from Theorem 4 1) that

lim
ϵ→0+

1

ϵ

∫ ϵ

0

S(t)xdt = x

which proves that D(A) is dense in X. Next, we prove that A is closed. Let (xn, Axn)n∈N a sequence
with xn ∈ A for all n ∈ N. We assume that (xn, Axn) converges to (x, y) in X ×X. We want to prove
that y = Ax. We know from Theorem 4 that

S(h)xn − xn =

∫ h

0

S(s)Axnds,

taking the limit in n in this last equation, we obtain

S(h)x− x =

∫ h

0

S(s)yds

Dividing both sides by h and taking the limit as h goes toward zero shoes that x ∈ D(A) and gives

Ax = y.

□

Theorem 6. Assume that A : D(A) ⊂ X → X is the infinitesimal generator of two C0-semigroups
{S(t); t ≥ 0} and {T (t); t ≥ 0}. Then S(t) = T (t) for t ≥ 0.

Proof
Let t > 0. For x ∈ D(A), let us consider the function

f(s) = T (t− s)S(s)x

for s ∈ [0, t]. Then
f ′(s) = −AT (t− s)S(s)x+ T (t− s)AS(s)x = 0.

Therefore f is constant in [0, T ] and f(t) = f(0) gives S(t) = T (t). Since D(A) is dense in X the
result is true for x ∈ X. □

Exercise 7:

Let A : D(A) ⊂ X → X be the infinitesimal generator of a C0-semigroup. The goal of this exercise
is to prove that

⋂
n∈N D(An) is dense in X.

1. Let φ : R → R+ be a function with a compact support [a, b] ⊂ (0,+∞). We define x(φ) as

x(φ) =

∫ +∞

0

φ(t)S(t)xdt.

Prove that
x(φ) ∈

⋂
n∈N

D(An).

2. Prove that there exists a sequence (φn) of functions as defined above that converge toward x.
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Solution 7:

Left to the reader.

Exercise 8:

We say that a semigroup of operators is a group of operators is the properties of the semigroup can
be extended to t ∈ R. Prove that a uniformly continuous semigroup can be extended to a uniformly
continuous group.

Solution 8:

...
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Chapter 2

The Hille-Yosida Theorem

2.1 The Hille-Yosida Theorem. Statement

Definition 7. Let A : D(A) ⊂ X → X a linear operator. The resolvent set ρ(A) is the set of all
the complex numbers λ, called regular values, for which λI −A is one-to-one and onto, and for which
R(λ;A) = (λI −A)−1 is continuous from X to X.

Theorem 7 (Hille-Yosida). A linear operator A : D(A) ⊂ X → X is the infinitesimal generator of a
C0-semigroup of contractions if and only if

(i)A is densely defined, closed,

(ii)(0,+∞) ⊂ ρ(A) and for each λ > 0

||R(λ;A)||L(X) ≤
1

λ
.

2.2 Proof of the Hille-Yosida Theorem. Necessity

ProofAssume that A is the infinitesimal generator of a C0 semigroup, then D(A) is dense and A is
closed. This results from Theorem 5. Therefore (i) holds. In order to prove (ii), we define

R(λ)x =

∫ +∞

0

e−λtS(t)xdt. (2.1)

We are going to prove that R(λ) = R(λ;A) and that ||R(λ)|| ≤ 1
λ . First note that

||R(λ)x|| ≤
∫ +∞

0

e−λt||S(t)||||x||dt

≤ 1

λ
||x||.

So the integral in Equation (2.1) is well defined. Next, we compute

lim
h→0+

1

h

(
S(h)R(λ)x−R(λ)x

)
.

We have that
S(h)R(λ)x−R(λ)x

=

∫ +∞

0

e−λtS(t+ h)xdt−
∫ +∞

0

e−λtS(t)xdt

=

∫ +∞

h

e−λ(t−h)S(t)xdt−
∫ +∞

0

e−λtS(t)xdt

17
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=

∫ +∞

0

e−λ(t−h)S(t)xdt−
∫ h

0

e−λ(t−h)S(t)xdt−
∫ +∞

0

e−λtS(t)xdt

= (eλh − 1)

∫ +∞

0

e−λ(t)S(t)xdt− e−λh

∫ h

0

e−λtS(t)xdt

from which we deduce that

lim
h→0+

1

h

(
S(h)R(λ)x−R(λ)x

)
= λR(λ)x− x.

This implies that R(λ)x ∈ D(A) and that

AR(λ)x = λR(λ)x− x

which means that
(λId−A)R(λ) = Id.

It remains to prove that
R(λ)(λId−A) = Id.

To do that, assume that x ∈ D(A), we compute

R(λ)Ax =

∫ +∞

0

e−λtS(t)Axdt

=

∫ +∞

0

e−λtAS(t)xdt

=

∫ +∞

0

e−λt d

dt
(S(t)x)dt

=

∫ +∞

0

e−λt d

dt
(S(t)x)dt

= −
∫ +∞

0

d

dt
(e−λt)S(t)xdt+ [e−λtS(t)x]+∞

0

= λR(λ)x− x,

which gives
λR(λ)x−R(λ)Ax = x

that is
R(λ)(λId−A) = Id.

2.3 Proof of the Hille-Yosida Theorem. Sufficiency

Definition 8. Let A : D(A) ⊂ X → X be a linear operator satisfying (i) and (ii) in Theorem 7. Then
the operator Aλ defined by Aλ = λAR(λ;A) is called the Yosida approximate of A

In order to prove the sufficiency, we will provide two lemmas.

Lemma 8. Let A : D(A) ⊂ X → X be a linear operator satisfying (i) and (ii) in Theorem 7. Then

∀x ∈ X, lim
λ→+∞

λR(λ;A)x = x (2.2)

∀x ∈ X, Aλx = λ2R(λ;A)x− λx (2.3)

∀x ∈ D(A), lim
λ→+∞

Aλx = Ax (2.4)
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Proof
Let x ∈ D(A). Since

R(λ;A)(λId−A) = Id

we have also

λR(λ;A)− Id = R(λ;A)A

Therefore, for all x ∈ D(A),

||λR(λ;A)x− x|| = ||R(λ;A)Ax|| ≤ 1

λ
||Ax||

so that Equation (2.2) holds for x ∈ D(A). For x ∈ X, we use the fact that D(A) is dense. Let ϵ > 0,
and y ∈ D(A) such that ||x− y|| < ϵ

4 . Since

||λR(λ;A)x− x|| = ||λR(λ;A)x− λR(λ;A)y + λR(λ;A)y − y + y − x||

≤ ||λR(λ;A)||||x− y||+ ||λR(λ;A)y − y||+ ||y − x||

≤ 2||y − x||+ ||λR(λ;A)y − y||

≤ ϵ

if λ is large enough which proves eq. (2.2).
Next, we remark that

λ2R(λ;A)− λId = λ
(
λR(λ;A)− (λId−A)R(λ;A)

)
= λ

(
λId− (λId−A)

)
R(λ;A)

= λAR(λ;A)
= Aλ

Finally, for x ∈ D(A),
Aλx = λAR(λ;A)x

= λ(λR(λ;A)− Id)x
= λ(λR(λ;A)−R(λ;A)(λId−A))x
= λR(λ;A)Axm

which converges toward Ax as λ converges to +∞ thanks to eq. (2.2).

Lemma 9. Let A : D(A) ⊂ X → X be a linear operator satisfying (i) and (ii) in Theorem 7. Then
for each λ > 0. Aλ is the infinitesimal generator of a uniform continuous semigroup {etAλ ; t ≥ 0}
which satisfies

∀t ≥ 0, ||etAλ || ≤ 1.

Furthermore,

∀x ∈ X, ∀λ, µ > 0, ||etAλx− etAµx|| ≤ t||Aλx−Aµx||. (2.5)

Proof
From eq. (2.3), we deduce that

||Aλx|| ≤ λ(λ||R(λ;A)||+ 1)||x||)

≤ 2λ||x||

therefore Aλ is the infinitesimal generator of a uniform continuous semigroup that we call {etAλ ; t ≥ 0}.
Furthermore,

||etAλ || = ||etλ2R(λ;A)−tλI ||
≤ ||etλ2R(λ;A)||||e−tλI ||
≤ etλ

2||R(λ;A)||e−λt

≤ eλte−λt

≤ 1.
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In order to prove eq. (2.5), we remark that

etAλx− etAµx =

∫ 1

0

d

ds

(
estAλe(1−s)tAµx

)
ds

=

∫ 1

0

tAλe
stAλe(1−s)tAµx− tAµe

stAλe(1−s)tAµx

It follows that
||etAλx− etAµx|| ≤ t||Aλx−Aµx||.

Proof(Hille-Yosida, sufficiency)
First, we need to define a good candidate S(t) to be the semigroup generated by A. From, eq. (2.5)
and eq. (2.4) we deduce that for any (λn) converging to +∞, for fixed t > 0 and x ∈ D(A), etAλnx is
a Cauchy sequence in X. Therefore it converges. We set:

S(t)x = lim
λ−→+∞

etAλ .

We note here that the convergence is uniform with respect to t on any closed interval [0, T ]. Note that
since S(t) is defined as a limit, it follows from the properties of etAλ that for all x ∈ D(A):

S(t+ s)x = lim
λ−→+∞

e(t+s)Aλx = lim
λ−→+∞

etAλesAλx = S(t)S(s)x.

Analogously, S(0)x = x and ||S(t)|| ≤ 1. Since S(t) is uniformly continuous on D(A) and D(A) is
dense, we can extend S(t) by continuity on X. We now want to prove that S(t) is a C0 semigroup.
Let ϵ > 0, and let xϵ ∈ D(A) such that ||x− xϵ|| < ϵ

4 . Then,

S(t)x− x = S(t)x− S(t)xϵ + S(t)xϵ − etAλxϵ + etAλxϵ − xϵ + xϵ − x

from which we deduce that

||S(t)x− x|| ≤ ϵ

2
+ ||S(t)xϵ − etAλxϵ||+ ||etAλxϵ − xϵ||

||S(t)x− x|| ≤ ϵ

2
+ ||S(t)xϵ − etAλxϵ||+ ||etAλ − Id||||xϵ||

Choosing λ such that ||S(t)xϵ − etAλxϵ|| < ϵ
4 on [0, T ], and t0 < T such that ||etAλ − Id|| < ϵ

4||xϵ|| on

(0, t0) proves that
||S(t)x− x|| < ϵ∀t ∈ [0, t0).

This proves that (S(t)) is a C0 semigroup of contractions. Next, we need to prove that A generates
(S(t)). Let x ∈ D(A). We consider

Bx = lim
h→0

S(h)x− x

h
,

whenever this limit exists. Note that

S(h)x− x = lim
λ→+∞

ehAλx− x

= lim
λ→+∞

∫ h

0

d

dt
etAλxdt

= lim
λ→+∞

∫ h

0

etAλAλxdt

We will prove below that
lim

λ→+∞
etAλAλx = S(t)Ax. (2.6)

Accordingly, we obtain

S(h)x− x =

∫ h

0

S(t)Axdt
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Dividing both sides by h and taking the limit at 0 gives

lim
h→0+

1

h

(
S(h)x− x

)
= Ax.

In other words, D(A) ⊂ D(B), and for all x ∈ D(A), Bx = Ax. Let us prove eq. (2.6).

∀x ∈ D(A), ||etAλAλx− S(t)Ax||

= ||etAλAλx− etAλAx+ etAλAx− S(t)Ax||

≤ ||etAλ ||||Aλx−Ax||+ ||etAλAx− S(t)Ax||

≤ ||Aλx−Ax||+ ||etAλAx− S(t)Ax||

which converges to 0 when λ goes to 0.
Finally, we need to prove that D(A) = D(B). We first remark that, since B generates a C0

semigroup of contractions, from the necessity condition, we deduce that 1 ∈ ρ(B). It follows that
(I −B)D(B) = X and subsequently D(B) = (I −B)−1X. On the other hand, from the assumptions,
we know that 1 ∈ ρ(A) and (I−A)D(A) = X. Note also that (I−A)D(A) = (I−B)D(A). Therefore
D(A) = (I −B)−1X which provides the result.

Exercise 9:

Prove that
R(λ;A)R(µ;A) =

Solution 9:

(λId−A)(µId−A) = (µId−A)(λId−A)

⇒ Id = (µId−A)(λId−A)R(µ;A)R(λ;A)

⇒ R(λ;A)R(µ;A) = R(µ;A)R(λ;A)
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Chapter 3

Classical Operators from Physics
generating C0 semigroups

3.1 The Heat equation -1d

In this section we consider the equation:

ut = uxx ∀(x, t) ∈ (0, 1)× R+∗

u(x, 0) = u0(x)∀x ∈ (0, 1)
u(0, t) = u(1, t) = 0∀t ≥ 0

(3.1)

This is the heat equation in one dimensional space which describes the evolution of the temperature in
a rod. Its study goes back to J. Fourier in the nineteenth century, see for example [GG05].. In order
to clarify the well-posedeness of this equation, we consider the following operator A.

A : D(A) ⊂ L2(0, 1) → L2(0, 1)
u → uxx

(3.2)

with
D(A) = H1

0 (0, 1) ∩H2(0, 1)

Exercise 10:

1. Prove that the operator A generates a C0 semigroup of contractions.

2. What do you conclude with respect to Equation (3.1)?

Solution 10:

1) The idea here is to use the theorem of Hille-Yosida (theorem 7) to prove the result. To prove
that the sufficient conditions i) and ii) hold, we shall study the equation

−Au+ λu = f

with λ > 0 and f ∈ L2(0, 1). We look for solutions u ∈ D(A) of

− u′′ + λu = f. (3.3)

One could apply the Lax-Milgram theorem. However, since we work with dimension 1, it is worth
to compute the solution explicitly. We first assume that f is regular to perform computations and
then return to f ∈ L2 by a limit process. Equivalently, we look at(

u′

v′

)
=

(
0 1
λ 0

)
−
(
0
f

)
,

23
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along with
u(0) = u(1) = 0. (3.4)

Since the eigenvalues of

(
0 1
λ 0

)
are −

√
λ and

√
λ, this gives,

(
u(x)
v(x)

)
= P

(
e−

√
λx 0

0 e
√
λx

)
P−1

(
u0

v0

)
−

∫
x

0

P

(
e−

√
λ(x−y) 0

0 e
√
λ(x−y)

)
P−1

(
0
f

)
dy.

where

P =

(
1 1

−
√
λ

√
λ

)
and P−1 =

(
1
2 − 1

2
√
λ

1
2

1
2
√
λ

)
After a few computations, and taking into account that u(0) = u(1) = 0, we obtain

u(x) = − 1

2
√
λ
e−

√
λxv0 +

1

2
√
λ
e
√
λxv0 +

1

2
√
λ
e−

√
λx

∫ x

0

e
√
λyf(y)dy − 1

2
√
λ
e
√
λx

∫ x

0

e−
√
λyf(y)dy

where v0 is given by

e−
√
λ
∫ 1

0
e
√
λyf(y)dy − e

√
λ
∫ 1

0
e−

√
λyf(y)dy

e
√
λ − e−

√
λ

.

Therefore, for each continuous f , there exists a unique u ∈ C1(0, 1) solution of (3.3)-(3.4). Note that
for f ∈ L2(0, 1), the expression found for the solution makes sense. Now, we approach f in L2 by a
sequence of continuous function (fn). Solving (3.3)-(3.4), we obtain a sequence of functions (un) which
converges toward u. Also u satisfies (3.3) in the sense of distributions and thanks to

(λId−A)u = f,

we deduce that u ∈ H2 (since u and f are in L2) and in H1 (see the computation below). Furthermore,
from the boundary conditions, we deduce that u ∈ H1

0 . Now,

λu− u′′ = f

implies

λ

∫ 1

0

u2 +

∫ 1

0

(u′)2 =

∫ 1

0

fu

and therefore ∫ 1

0

u2 ≤ 1

λ
||f ||L2 ||u||L2

which in turn implies that

||u||L2 ≤ 1

λ
||f ||L2 .

This gives the uniqueness and also the estimate

||(λId−A)−1|| ≤ 1

λ
.

Finally, to prove the sufficiency conditions, we remark that H2∩H1
0 is dense in L2 (see [Bre11, Eva10]).

Also (λId−A)−1 is well defined and continuous in L2, it is therefore closed. This implies that (λId−A)
is closed in D(A), indeed let (xn) ⊂ D(A) a sequence converging toward x in L2, such that (λxn−Axn)
converges toward y. Then by continuity,

xn = (λId−A)−1(λxn −Axn)

converges toward (λId−A)−1y which gives

(λId−A)x = y

and proves that (λId−A) is closed. This implies that A is closed.
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3.2 The Wave equation -1d

In this section we consider the equation:

utt = uxx ∀(x, t) ∈ (0, 1)× R+∗

u(x, 0) = ξ1(x)∀x ∈ (0, 1)
ut(x, 0) = ξ2(x)∀x ∈ (0, 1)
u(0, t) = u(1, t) = 0∀t ≥ 0

(3.5)

This is the wave equation in one dimensional space. It describes the variations of a string fixed at its
ends. It involves a second derivative with respect to the time. In order to study Equation (3.5) as
previously, we set v = ut, so that Equation (3.5) becomes

ut = v ∀(x, t) ∈ (0, 1)× R+∗

vt = uxx ∀(x, t) ∈ (0, 1)× R+∗

u(x, 0) = ξ1(x)∀x ∈ (0, 1)
v(x, 0) = ξ2(x)∀x ∈ (0, 1)
u(0, t) = u(1, t) = 0∀t ≥ 0

(3.6)

Setting z = (u, v), Equation (3.6) rewrites zt = Az, z(0) = z0 where we define A as

A : D(A) ⊂ H1
0 (0, 1)× L2(0, 1) → H1

0 (0, 1)× L2(0, 1)
(u, v) → (v, uxx)

(3.7)

with
D(A) = H1

0 (0, 1) ∩H2(0, 1)× L2(0, 1).

Furthermore, we endow the space X = H1
0 (0, 1)× L2(0, 1) with the scalar product

(
(u1, v1), (u2, v2)

)
=

∫ 1

0

u′
1u

′
2 +

∫ 1

0

v1v2.

Endowed with this scalar product, X is a a real Hilbert space.

Exercise 11:

1. Prove that the operator A generates a C0 semigroup of contractions. What about −A?

2. What do you conclude with respect to Equation (3.6)?

Solution 11:

1. As before for all given w = (f, g) ∈ X we study the equation

(λId−A)z = w

for z = (u, v) ∈ D(A). This rewrites (
λu− v
λv − uxx

)
=

(
f
g

)
(3.8)

Multiplying the first equation by λ and summing up the two equations gives

λ2u− uxx = λf + g

We can now use the same computations as in the previous section to obtain:

u(x) = − 1

2λ
e−λxh0 +

1

2λ
eλxh0 +

1

2λ
e−λx

∫ x

0

eλy(λf(y) + g(y))dy − 1

2λ
eλx

∫ x

0

e−λy(λf(y) + g(y))dy

with

h0 =
e−λ

∫ 1

0
eλy(λf(y) + g(y))dy − eλ

∫ 1

0
e−λy(λf(y) + g(y))dy

eλ − e−λ
.
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And then v is given by
v = λu− f.

Therefore, (λId− A)−1 is well defined in X. Next, multiplying the derivative of the first equation in
Equation (3.8) by ux and the second by v, integrating and summing up gives

λ

∫
u2
x −

∫
vxux + λv2 −

∫
uxxv =

∫
fxux +

∫
gv

Integrating by parts leads to

λ

∫
u2
x + λv2 =

∫
fxux +

∫
gv.

This rewrites
λ||z||2X =

(
z, w

)
.

Applying the Cauchy-Schwartz inequality gives

λ||z||2X ≤ ||z||X ||w||X

and therefore

||z||X ≤ 1

λ
||w||X

or equivalently

||(λId−A)−1w||X ≤ 1

λ
||w||X .

This proves the result.
An analogous result holds in Rn, see [Bre11, Vra03].

3.3 The Heat Equation in 3d with Dirichlet Boundary Condi-
tions

In this section we consider the equation:

ut = ∆u ∀(x, t) ∈ Ω× R+∗

u(x, 0) = u0(x)∀x ∈ Ω
u(x, t) = 0∀t ≥ 0∀x ∈ ∂Ω

(3.9)

where Ω ⊂ R3 is an open set. We will consider different space of functions in order to write Equa-
tion (3.9) as ut = Au where the operator A generates a C0 semigroup of contractions, as it was the
case in 1d. From now on, we assume that the reader is familiar with the basics of Sobolev spaces. We
refer for example to [Bre11, GT01, Jos13, Eva10, Vra03].

3.3.1 The L2 setting

Let X = L2(Ω), and A = ∆ with D(A) = {u ∈ H1
0 (Ω),∆u ∈ L2(Ω)}. Then A generates a C0

semigroup of contractions on X. The proof is suggested as an exercise for the reader.

Exercise 12:

Prove that the operator A generates a C0 semigroup of contractions.

Solution 12:

For f ∈ L2(Ω) and λ > 0, we consider the equation

−∆u+ λu = f (3.10)

We set

a(u, v) =

∫
Ω

∇u.∇vdx+ λ

∫
Ω

uvdx
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and

F (v) =

∫
Ω

fvdx.

We rewrite Equation (3.10) in a weak sense as∫
Ω

∇u.∇vdx+ λ

∫
Ω

uvdx =

∫
Ω

fvdx∀v ∈ H1
0 . (3.11)

Assume that H1
0 is endowed with scalar product induced by H1. Then F ∈ H−1 and a is bilinear

continuous and coercive on H1
0 . We deduce from the Lax-Milgram theorem (see for example [Bre11,

GT01]) that for every f ∈ L2 the equations admits a unique weak solution in H1
0 . Next, choosing

u = v in Equation (3.11), and applying the Cauchy-Schwarz inequality in the right hand side f=gives

||(λI −A)−1||L2 ≤ 1

λ
∀λ > 0.

3.3.2 The Lp setting

Let 1 < p < +∞. Let X = Lp(Ω), and A = ∆ with D(A) = W 1,p
0 (Ω) ∩W 2,p. Then A generates a C0

semigroup of contractions on X. Details can be found in [Vra03, Paz83]. The density of D(A) in X is
a classical result. For the existence and uniqueness of the solution of

−Au+ λu = f

with f ∈ Lp, we refer to [GT01]. For the estimate of R(λ,A), we propose to solve it as an exercise.
Exercise 13:

Prove that for λ > 0

||λI −A||X ≤ 1

λ

Solution 13:

This exercise is left to the reader.

3.3.3 The C0(Ω̄) setting

Let X = C0(Ω̄), and A = ∆ with D(A) = {H1
0 (Ω) ∩ C0(Ω̄),∆u ∈ C0(Ω̄)}. Then A generates a C0

semigroup of contractions on X. See [Vra03] and [GT01] for more details.

3.4 The Heat Equation in 3d with Neumann Boundary Con-
ditions

3.5 The Maxwell Equation

In this section, we discuss the existence of solutions of the Mxwell Equation. Maxwell Equations
describes the time evolution of electric field E and a magnetic field H. We recall that for φ ∈ L2(R3)
and F (F1, F2, F3) ∈ (L2(R3))3 :

∇φ =


∂φ
∂x1
∂φ
∂x2
∂φ
∂x3


∇ · F =

∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
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∇× F ==

 ∂F3

∂x2
− ∂F2

∂x3

−∂F3

∂x1
+ ∂F1

∂x3
∂F2

∂x1
− ∂F1

∂x2


Then, the Maxwell Equation writes

Et = −c∇×H
Ht = c∇× E

∇ · E = ∇ ·H = 0E(0) = E0,
H(0) = H0

Define

D(A) = {H,E ∈ (L2(R3))3,∇×H.∇× E ∈ (L2(R3))3}

A(E,H) = (−c∇×H, c∇× E)

The following theorem holds (see [Vra03]

Theorem 10. A generates a C0 semigroup in (L2(R3))3 × (L2(R3))3.

3.6 The Schrodinger Equation

The Schrodinger equation below describes the time evolution of a wave function, the quantum-
mechanical characterization of an isolated physical system.

∂

∂t
φ(x, t) = i

( h

2m
φxx(x, t)−

1

h
V (x)φ(x, t)

)
where φ is a complex valued function, m is the mass of the particle, V (x) is the potential that
represents the environment in which the particle exists and h is the reduced Planck constant. Define
X = L2(Ω,C), and

D(A) = {u ∈ H1
0 (Ω,C);∆u ∈ X}

Au = i∆u

The following theorem holds (see [Vra03]

Theorem 11. A generates a C0 semigroup in X .

3.7 Some insights about the Lp setting-Fundamental solutions
of the Laplace and the Poisson Equations

The Lp setting is much more technical than the L2 setting. This paragraph is intended to provide the
reader with the basic ideas on which rely the more advanced techniques of the Lp setting. A classical
reference is [GT01]. Two fundamental papers are [ADN59, ADN64]. A key ingredient is to provide
fundamental solutions of the Laplace and Poisson Equations. We follow here [Eva10] and [Jos13]. We
recall that the Laplace equation is

−∆u = 0

and the Poisson equation writes

−∆u = f.

Solutions of the Laplace equation are called harmonic functions. Those equations are very important
in Physics, see [Eva10].

Exercise 14:

Find radial solutions of the Laplace equation for n ≥ 2.

Solution 14:
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We start with the case n = 2. We set

u(x) = φ(||x||),

with x = (x1, x2).
∂u

∂x1
= φ′(||x||)× 1

2
(x2

1 + x2
2)

− 1
2 × 2x1

= φ′(||x||)(x2
1 + x2

2)
− 1

2x1.

And,
∂2u

∂x2
1

= φ′(||x||)(x2
1 + x2

2)
−1x2

1 − φ′(||x||)(x2
1 + x2

2)
− 3

2x2
1 + φ′(||x||)(x2

1 + x2
2)

− 1
2 .

It follows that

∆u = φ′(||x||) + 1

||x||
φ′(||x||).

Denoting ||x|| = r, we look, for a function φ such that

φ′′(r) +
1

r
φ′(r) = 0.

This equivalent to
φ′′(r)

φ′(r)
= −1

r
.

This gives
ln(|φ′|) = − ln(r) + c,

φ′ =
c

r
, c ∈ R,

and therefore
φ(r) = c ln(r) + c2.

For n ≥ 3 analog computations provide

φ(r) = cr2−n + c2.

In particular, we found that

ϕ(x) =

{
ln(||x||) if n = 2
||x||2−n if n > 2

is harmonic if x ̸= 0.

Exercise 15:

Prove that for n ≥ 2, and for K compact∫
K

|ϕ(x)|dx < +∞

Solution 15:

It is sufficient to prove the result for K = B(0, 1). For n = 2 use polar coordinates, x1 = r cos θ,
x2 = r sin θ. We find that ∫

B(0,1)

| ln(||x||)|dx1dx2

= −2π

∫ 1

0

r ln rdr

=
π

2
.
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For n ≥ 3, we write ∫
B(0,R)

φ(||x||)dx =

∫ R

0

∫
∂B(0,r)

φ(r)drdσ

=

∫ R

0

∫
∂B(0,1)

rn−1φ(r)drdσ

= nα(n)

∫ R

0

rn−1φ(r)dr

= nα(n)

∫ R

0

rn−1r2−ndr

= nα(n)
R2

2

where α(n) denotes the volume of the unit sphere in Rn, α(n) = π
n
2

Γ(n
2 +1)

Exercise 16:

Prove that if u, v ∈ C2(Ω̄),∫
Ω

∆uvdx−
∫
Ω

u∆vdx =

∫
∂Ω

v∇u.n⃗dσ(x)−
∫
∂Ω

u∇v.n⃗dσ (3.12)

Solution 16:

Hint: Use Green formula We set

ϕ(x) =

{ 1
2π ln(||x||) if n = 2
1

n(2−n)α(n) ||x||
2−n if n > 2

where α(n) is the volume of the unit ball in Rn.

Theorem 12. If u ∈ C2(Ω̄), then under the notations above, for x ∈ Ω

u(x) =

∫
∂Ω

(
u(y)

∂ϕ

∂ν
(x− y)− ϕ(x− y)

∂u

∂ν
(y)
)
dy +

∫
Ω

ϕ(x− y)∆u(y)dy (3.13)

Exercise 17:

Prove Theorem 12.

Solution 17:

Let ϵ > 0 such that B(x, ϵ) ⊂ Ω. The idea is to apply Equation (3.12) with u(y) = ϕ(x − y) and
v(y) = u(y) on Ω \B(x, ϵ), then take the limit at ϵ = 0.∫

Ω\B(x,ϵ)

Φ(x− y)∆u(y)dy −
∫
Ω\B(x,ϵ)

∆Φ(x− y)udy =

∫
∂Ω

Φ∇u.n⃗dσ −
∫
∂Ω

u∇Φ.n⃗dσ

−
∫
∂B(x,ϵ)

Φ∇u.n⃗dσ +

∫
∂B(x,ϵ)

u∇Φ.n⃗dσ

Then we remark that,

|
∫
∂B(x,ϵ)

Φ∇u.n⃗dσ| ≤
∫
∂B(x,ϵ)

|Φ|∇u|∞dσ

≤
∫
∂B(x,ϵ)

|Φ|∇u|∞dσ

≤ φ(ϵ)|∇u|∞ϵn−1

∫
∂B(x,1)

dσ
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≤ φ(ϵ)|∇u|∞ϵn−1

∫
∂B(x,1)

dσ

→ 0 as ϵ → 0.

Also, ∫
∂B(x,ϵ)

u∇Φ(x− y).n⃗dσ =

∫
∂B(x,ϵ)

φ′(ϵ)||n⃗||2u(y)dσ

= φ′(ϵ)|B(x, ϵ)| 1

|B(x, ϵ)|

∫
∂B(x,ϵ)

u(y)dσ

→ u(y) as ϵ → 0.

This proves the result.
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Chapter 4

Analytic semigroups

4.1 Definitions

Let X be a Banach space, and let L(X) be the space of all bounded linear operators on X.

Definition 9 (Analytic Semigroup). An L(X)-valued function U(z) defined in a sectorial domain

Σϕ = {z ∈ C; |argz| ≤ ϕ; }0 < ϕ <
π

2

is called an analytic semigroup on X if U(z) satisfies

1. U(z) is an analytic function in Σϕ with values in L(X).

2. U(z) satisfies the semigroup property U(z)U(z′) = U(z + z′) for z, z′ ∈ Σϕ.

3. U(O) = I and limz→0,z∈Σϕ
U(z)x = x for every x ∈ X.

Definition 10 (Spectrum). Let A be a densely defined, closed linear operator in X. The spectrum of
A is defined as the complement the resolvent set ρ(A). It is denoted by σ(A).

Definition 11 (Sectorial Operators). Let A be a densely defined, closed linear operator in X. Then
A is said to be sectorial if it satisfies:

1. the spectrum of A is contained in an open sectorialdomain,

σ(A) ⊂ Σω = {λ ∈ C; | arg λ| < ω}, 0 < ω ≤ π, and

2. its resolvent satisfies the estimate

||(λI −A)−1|| ≤ M

|λ|
, λ /∈ Σω,

with some constant M ≥ 1.

33
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Chapter 5

The Galerkin Method and some
applications

See Allaire, J.L Lions, DaytrayLions,Magenes− Lions....
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