
POPULATION INVASION WITH BISTABLE DYNAMICS AND

ADAPTIVE EVOLUTION: THE EVOLUTIONARY RESCUE

MATTHIEU ALFARO AND ARNAUD DUCROT

Abstract. We consider the system of reaction-diffusion equations proposed

in [8] as a population dynamics model. The first equation stands for the

population density and models the ecological effects, namely dispersion and
growth with a Allee effect (bistable nonlinearity). The second one stands for

the Allee threshold, seen as a trait mean, and accounts for evolutionary effects.

Precisely, the Allee threshold is submitted to three main effects: dispersion
(mirroring ecology), asymmetrical gene flow and selection. The strength of

the latter depends on the population density and is thus coupling ecology and
evolution. Our main result is to mathematically prove evolutionary rescue:

any small initial population, that would become extinct in the sole ecological

context, will persist and spread thanks to evolutionary factors.

1. Introduction

In this work we consider the following reaction-diffusion system

(1.1)


∂u

∂t
=
∂2u

∂x2
+ u

(
u− a2

)
(1− u), t > 0, x ∈ R,

∂a

∂t
=
∂2a

∂x2
+ 2

∂a

∂x

∂ ln(u)

∂x
− ε(1− u)a, t > 0, x ∈ R,

where ε > 0 is a given parameter. The above system is supplemented with an initial
data

(1.2)

{
u(0, x) = u0(x) with u0 ∈ C(R), 0 ≤ u0 ≤ 1 and u0 6≡ 0,

a(0, x) = a0 with a0 ∈ (0, 1).

This system was proposed by Kanarek and Webb in [8] to analyze the effect of
environmental adaptive evolution on a species persistence or invasion.

In the above system, u = u(t, x) denotes the density of an invasive species at time
t ≥ 0 and spatial location x ∈ R. The first term in the right-hand side of the first
equation stands for spatial diffusion, whereas the second one stands for the growth
of the population which is assumed to exhibit an Allee effect with threshold a2 (the
growth per capita is negative when the population density is below this threshold).
Typically u0, the introduced amount of population, is small and spatially localized,
say compactly supported.

In (1.1), the Allee threshold a2 = a2(t, x) is assumed to be a spatio-temporal
varying parameter, that is considered to be a fitness related trait impacting the
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component Allee effect. In other words, this quantitative trait influences an organ-
ism’s ability to survive and reproduce in a small population, see [8]. Its evolution is
ruled by the second equation in (1.1). The first term in the right-hand side mimics
the diffusion of the population while the second term describes the gene flow due to
the population gradient. Thus, these two terms take into account the joint influence
of the motion and the position of individuals on the trait mean a. We refer the
reader to the works of Pease et al. [11], Kirkpatrick and Barton [9], Garćıa-Ramos
and Kirkpatrick [6] for modelling details on the convection gene flow term. The
last term in the right-hand side denotes the selection gradient with genetic variance
parameter ε > 0, that is typically small, and couples ecology and evolution. We
refer to [8] for more details and explanations on the modelling issue.

When the genetic variance parameter ε is null then a(t, x) ≡ a0 is no longer a
dynamical parameter, and the model reduces to the single bistable equation

∂u

∂t
=
∂2u

∂x2
+ u

(
u− a20

)
(1− u),

with initial data u(0, x) = u0(x). For such a problem, spatial invasion strongly
depends upon both the initial data u0 and the Allee threshold a20. For instance if 0 ≤
u0 ≤ a20 is compactly supported then the solution u = u(t, x) converges to 0 as t→
+∞, uniformly for x ∈ R. Hence a localized small amount of introduced population
leads to extinction and the population invasion fails. Even if maxx∈R u0(x) > a20
then population invasion may fail, in particular if the set {x ∈ R : u0(x) > a20}
is somehow too small. We refer to the works of Fife and McLeod [4], Zlatǒs [13],
Du and Matano [3], Muratov and Zhong [10] for precise results on the so-called
sharp threshold condition for bistable, combustion type equations and also for more
general scalar reaction-diffusion equations. See also the work of Poláčik [12] for
related results for non-autonomous equations. This threshold phenomenon is in
sharp contrast with Fisher-KPP dynamics, e.g. f(u) = u(1 − u), for which any
small amount of population implies successful invasion. This is referred as to the
Hair Trigger Effect. For more general monostable dynamics, e.g. f(u) = up(1− u)
with p > 1, we refer to Aronson and Weinberger [2]: the Hair Trigger Effect —
which is related to the Fujita blow-up phenomenon [5], [1]— holds if and only if
p ≤ 3 (in dimension one).

Hence, the threshold phenomenon mentioned above holds true for system (1.1)
without mutation, that is in the extreme case ε = 0. However based on numerical
simulations, Kanarek and Webb [8] show that some solutions of system (1.1), that
would go extinct for ε = 0, exhibit successful invasion as soon as ε > 0. In other
words, according to [8], adaptive evolution may save species from the brink of
extinction and may enable successful invasions. This phenomenon is referred to as
Evolutionary rescue. The aim of this note is to rigorously prove this statement in
the context of the model (1.1)–(1.2).

2. Main results

Throughout this note, a solution (u, a) = (u(t, x), a(t, x)) for the initial value
problem (1.1)–(1.2) is understood in the classical sense, which is more precisely
stated in the following definition.

Definition 2.1. A function pair (u, a) = (u(t, x), a(t, x)) is said to be a solution of
the initial value problem (1.1)–(1.2) if it satisfies the following set of properties.
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(i) The functions u and a belong to C1,2 ((0,+∞)× R) and 0 < u(t, x) ≤ 1,
0 < a(t, x) ≤ a0, for all t > 0, x ∈ R.

(ii) The pair (u, a) satisfies (1.1) for all t > 0 and x ∈ R.
(iii) (u(t, x), a(t, x))→ (u0(x), a0), locally uniformly for x ∈ R, as t→ 0+.

Our first result is concerned with the existence of a solution for (1.1)–(1.2).

Theorem 2.2 (Existence of a solution). Let (u0, a0) ∈ C(R) × (0, 1) be a given
initial data as in (1.2). Then (1.1) supplemented with the initial data (u0, a0)
admits, at least, a solution (u, a) = (u(t, x), a(t, x)) in the sense of Definition 2.1,
that moreover satisfies

sup
x∈R
|a(t, x)− a0| = O (t) , as t→ 0+.

The main difficulty in proving the above theorem consists in handling the singular
convection term in the second equation in (1.1). Indeed, while the function u
becomes immediately positive, it is rather intricate to handle the term ∂x ln(u),
especially for small times when u0 vanishes at some places. The above result is
proved using a regularisation procedure and a suitable limiting argument to recover
the initial data. As it will be clear from the proof given below, this procedure only
allows to handle constant initial data a(0, x) ≡ a0. The case of non-constant initial
data a(0, x) is much more delicate and is not considered here. One may also note
that the above result provides the existence of a solution but not the uniqueness,
that is also an open problem especially when u0 vanishes at some locations.

Our next result deals with the asymptotic behaviour as t→ +∞ of the solutions
of the Cauchy problem (1.1)–(1.2).

Theorem 2.3 (Evolutionary rescue result). Let (u0, a0) ∈ C(R)× (0, 1) be a given
initial data as in (1.2). Let (u, a) = (u(t, x), a(t, x)) be a solution of (1.1)–(1.2).
Then the population density u(t, x) enjoys the following weak persistence property

lim sup
t→+∞

sup
x∈R

u(t, x) = 1.

If we furthermore assume that a20 <
1
2 , then the population exhibits a total spatial

invasion, in the sense that

lim
t→+∞

u(t, x) = 1 locally uniformly for x ∈ R.

In the above theorem, the first part ensures that the population does not uni-
formly become extinct at large times. More interestingly when the initial Allee
threshold is small, namely a20 <

1
2 , the population persists and successfully invades

the whole space. Note that this assumption is hardly a restriction since in ecologi-
cal problems, the Allee threshold is usually rather small and in particular typically
smaller than 1

2 . This is the case in the simulations of [8] where a20 is set to 0.3.

Notice also that a20 <
1
2 is equivalent to

∫ 1

0
u(u − a20)(1 − u)du > 0, which is a

natural assumption in the seminal work of Fife and McLeod [4] to allow an invasion
in a bistable situation.

Remark 2.4. When the population enjoys a more general bistable dynamics of the
form u 7→ ug(θ, u) with threshold θ = a2, namely

g(a2, u) < 0 if 0 ≤ u < a2, g(a2, u) > 0 for u ∈
(
a2, 1

)
and g(a2, 1) = 0,
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then (1.1) becomes

(2.1)


∂u

∂t
=
∂2u

∂x2
+ ug

(
a2, u

)
, t > 0, x ∈ R,

∂a

∂t
=
∂2a

∂x2
+ 2

∂a

∂x

∂ ln(u)

∂x
+ εa

∂g

∂θ

(
a2, u

)
, t > 0, x ∈ R.

In this more general setting, if the function g(θ, u) satisfies

(i) g(θ, u) = (u − θ)h(θ, u) with a smooth function h : [0, 1]2 → [0,∞) such
that

h(θ, u) > 0 ∀(θ, u) ∈ [0, 1]× [0, 1) and h(θ, 1) = 0 ∀θ ∈ [0, 1];

(ii) for all α ∈ (0, 1) one has sup
0≤a≤a0
0≤u≤α

∂g

∂θ

(
a2, u

)
< 0;

then the solutions of (2.1) equipped with the initial data (1.2) satisfy the Evolu-
tionary rescue result as stated in Theorem 2.3, with a total spatial invasion when a0
satisfies

∫ 1

0
ug(a20, u)du > 0. The proof of this extension follows from the arguments

presented in this note for the system (1.1), see also Remark 3.3.

To prove the above theorem, we first derive preliminary results for a single
bistable reaction-diffusion equation with time varying threshold θ(t), namely

∂u

∂t
=
∂2u

∂x2
+ u (u− θ(t)) (1− u), t > 0, x ∈ R.

Using a suitable energy method, we roughly prove that when the Allee threshold θ(t)
decay to zero rather fast as t→ +∞ (see Assumption 3.1 for a precise statement),
then the above bistable equation enjoys the Hair Trigger Effect. This result is the
goal of Section 3, while both Theorem 2.2 and Theorem 2.3 are proved in Section
4.

3. Bistable equations with decreasing threshold

In this section we provide preliminary results that will be used to study (1.1).
We consider the bistable reaction-diffusion equation with time varying threshold

(3.1)
∂u

∂t
=
∂2u

∂x2
+ f (θ(t), u) , t > 0, x ∈ R.

The function f = f(θ, u) reads as the following bistable nonlinearity with threshold
θ ∈ (0, 1)

(3.2) f(θ, u) = u(u− θ)(1− u).

Here we consider that the threshold θ depends on time, θ = θ(t), and decreases to
0 sufficiently fast as t→ +∞. Our precise set of assumptions reads as follows.

Assumption 3.1 (Decreasing threshold). The function θ : [0,+∞) 7→ (0, 1) is
continuous, decreasing and satisfies∫ +∞

0

θ(s)ds < +∞.
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Under the above assumption, if u0 ∈ C(R) is a given function such that 0 ≤ u0 ≤
1, u0 6≡ 0 and u0 6≡ 1, then (3.1) supplemented with the initial data u(0, x) = u0(x)
admits a unique solution u = u(t, x) that satisfies 0 < u(t, x) < 1 for all t > 0 and
x ∈ R. The main result of this section is concerned with its asymptotic behaviour
as t→ +∞.

Note that bistable reaction-diffusion equations with time-varying threshold have
been considered by Poláčik in [12]. In this work, the author deals with varying
threshold that stays uniformly away from 0 and 1 and proves that such a problem
exhibits a sharp threshold behaviour as in the case of a fixed threshold. Here our
problem is very different since the threshold function θ(t) decays to zero. In contrast
with the sharp threshold effect proved by Poláčik in the aforementioned paper, we
prove that the Hair Trigger Effect holds for (3.1) under Assumption 3.1. This reads
as follows.

Theorem 3.2 (Hair Trigger Effect). Under Assumption 3.1, for each u0 ∈ C(R)
with 0 ≤ u0 ≤ 1 and u0 6≡ 0, the solution u = u(t, x) of (3.1) with initial data u0
satisfies

lim
t→+∞

u(t, x) = 1 locally uniformly for x ∈ R.

Remark 3.3. Our proof actually applies to more general nonlinearities than the
cubic one (3.2) considered in [8]. Consider a scalar equation of the form

(3.3)
∂u

∂t
=
∂2u

∂x2
+ ug (θ(t), u) , t > 0, x ∈ R,

with g(θ, u) = (u − θ)h(θ, u), where h : [0, 1] × [0, 1] → [0,∞) is a continuous
function such that

h(θ, u) > 0, ∀(θ, u) ∈ [0, 1]× [0, 1) and h(θ, 1) = 0, ∀θ ∈ [0, 1],

and there exists θ̃ > 0 small enough such that for any θ1, θ2 ∈ (0, θ̃] one has

θ1 ≤ θ2 ⇒ (u− θ1)h(θ1, u) ≥ (u− θ2)h(θ2, u), ∀u ∈ [0, 1].

The above conditions roughly mean that the nonlinearity u 7→ ug(θ, u) is bistable
between u = 0 and u = 1 with intermediate zero θ, the two zeros u = 0, θ are
non degenerate and this nonlinear term exhibits an non-increasing dependence with
respect to θ for small threshold value. Under these assumptions, the Hair trigger
effect stated in Theorem 3.2 holds true for Problem (3.3). The proof is similar to
the one given below.

To prove Theorem 3.2 we use an energy method for a similar problem posed on
an interval (−R,R) and supplemented with Dirichlet boundary conditions.

A preliminary observation. Let R > 0 and θ0 ∈ (0, 1) be given. Consider the
Dirichlet problem

(3.4)


∂v

∂t
=
∂2v

∂x2
+ f (θ0, v) , t > 0, x ∈ (−R,R),

v(t,±R) = 0, t > 0,



6 MATTHIEU ALFARO AND ARNAUD DUCROT

supplemented with an initial data v0 ∈ H1
0 (−R,R) such that 0 ≤ v0 ≤ 1. We

consider the energy functional ER,θ0 = EdR + ErR,θ0 defined on H1
0 (−R,R) by

EdR(ϕ) =
1

2

∫ R

−R
|∂xϕ(x)|2dx,

and

ErR,θ0(ϕ) = −
∫ R

−R
F (θ0, ϕ(x))dx,

wherein we have set F (θ0, v) :=
∫ v
0
f(θ0, s)ds = − 1

4v
4 + 1+θ0

3 v3 − θ0
2 v

2.
Let us observe that if v = v(t, x) is a solution of (3.4) then one has

d

dt
ER,θ0 (v(t, ·)) = −

∫ R

−R
|∂tv(t, x)|2dx ≤ 0, ∀t > 0.

Notice that ER,θ0(0) = 0 and ER,θ0(v(t, ·)) → ER,θ0(v0) as t → 0. Hence if
ER,θ0(v0) < 0, the solution v = v(t, x) of (3.4) starting from v0 has to satisfy

lim sup
t→+∞

sup
x∈[−R,R]

v(t, x) > 0.

In other words, if ER,θ0(v0) < 0 with v0 ∈ H1
0 (−R,R) then the corresponding

solution v does not go to extinction as t→ +∞. �

Keeping the above argument in mind, we now come back to (3.1).

Proof of Theorem 3.2. Thanks to the comparison principle, it is sufficient to con-
sider a compactly supported initial data u0 ∈ C(R) with 0 ≤ u0 ≤ 1 and u0 6≡ 0.
Denote by u = u(t, x) the solution of (3.1) starting from u0. We split our proof into
two steps. We first show that u does not go extinct as t → +∞ by using energy
functional method. Next we show that u does converge to 1 as t → +∞, locally
uniformly in space.
First step: u does not go extinct as t→ +∞. The aim of this first step is to
show that

(3.5) ∃x0 ∈ R, lim sup
t→+∞

u(t, x0) > 0.

First observe that

f(θ(t), u) ≥ −θ(t)u for all u ∈ [0, 1], t ≥ 0.

Then the parabolic comparison principle applies and yields

(3.6) u(t, x) ≥ e−
∫ t
0
θ(s)dsw(t, x) ≥ Θw(t, x), ∀t > 0, x ∈ R,

with Θ := e−
∫ +∞
0

θ(s)ds > 0 (see Assumption 3.1), and w(t, x) the solution of the
heat equation starting from u0, that is

∂w

∂t
=
∂2w

∂x2
, t > 0, x ∈ R; w(0, ·) = u0.

Introducing the heat kernel Γ(t, x) = 1√
4πt

e−
x2

4t , the function w re-writes as

w(t, x) = (Γ(t, ·) ∗ u0)(x) =

∫
R

Γ(t, x− y)u0(y)dy, t > 0, x ∈ R.
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Now in order to prove that u persists as t → +∞, we consider a smooth cut-off
function χ : R→ R such that

0 ≤ χ ≤ 1 and χ(x) =

{
1 if |x| ≤ 1

2 ,

0 if |x| ≥ 1.

Claim 3.4. There exists a sequence (tn)n≥0 with tn →∞ as n→∞ such that, for
each n ≥ 0, the function

vn := Θχ

(
.√
tn

)
w(tn, ·) ∈ H1

0

(
−
√
tn,
√
tn
)

satisfies E√tn,θ(tn) (vn) < 0.

Equipped with the above claim, whose proof is postponed, we can conclude this
first step. Notice that, considering a single time t0 is enough for our purpose but
the whole sequence (tn) would be used for the generalization of Remark 3.3. Since
χ ≤ 1, (3.6) ensures that v0 ≤ u(t0, ·) on [−R0, R0] with R0 =

√
t0. Furthermore,

since t 7→ θ(t) is decreasing, one also has, for all t ≥ t0 and x ∈ [−R0, R0],

0 =
∂u

∂t
− ∂2u

∂x2
− f (θ(t), u) ≤ ∂u

∂t
− ∂2u

∂x2
− f (θ(t0), u) .

From the comparison principle, one gets

u(t0 + t, x) ≥ v(t, x), ∀t ≥ 0, x ∈ (−R0, R0),

where v is the solution of the Dirichlet problem (3.4), with θ(t0) and R0 playing
the roles of θ0 and R, starting from v0. Since ER0,θ(t0)(v0) < 0, we deduce from our
preliminary observation that

0 < lim sup
t→+∞

sup
x∈[−R0,R0]

v(t, x) ≤ lim sup
t→+∞

sup
x∈[−R0,R0]

u(t, x),

which concludes the proof of (3.5). To complete this first step, it remains to prove
Claim 3.4.

Proof of Claim 3.4. Set, for t > 0 and x ∈ R,

z(t, x) := Θχ

(
x√
t

)
w(t, x).

We first estimate Ed√
t
(z(t, ·)) = 1

2 ‖∂xz(t, ·)‖
2
L2(−

√
t,
√
t) = 1

2 ‖∂xz(t, ·)‖
2
L2(R). To

that aim, note that

∂z

∂x
(t, x) =

Θ√
t
χ′
(
x√
t

)
(Γ(t, ·) ∗ u0) (x) + Θχ

(
x√
t

)(
∂Γ

∂x
(t, ·) ∗ u0

)
(x),

so that, for all t > 0,∥∥∥∥∂z∂x (t, ·)
∥∥∥∥
L2(R)

≤Θ‖χ′‖∞√
t
‖Γ(t, ·)‖L2(R)‖u0‖L1(R)

+ Θ

∥∥∥∥∂Γ

∂x
(t, ·)

∥∥∥∥
L2(R)

‖u0‖L1(R),

and thus ∥∥∥∥∂z∂x (t, ·)
∥∥∥∥
L2(R)

= O
(
t−

3
4

)
as t→ +∞.



8 MATTHIEU ALFARO AND ARNAUD DUCROT

As a consequence we obtain

(3.7) Ed√
t
(z(t, ·)) = O

(
t−

3
2

)
as t→ +∞.

We now estimate Er√
t,θ(t)

(z(t, ·)). This part of the energy is defined by

Er√
t,θ(t)

(z(t, ·)) =

∫ √t
−
√
t

(
1

4
z4(t, x)− 1 + θ(t)

3
z3(t, x) +

θ(t)

2
z2(t, x)

)
dx

≤
∫ √t
−
√
t

(
1

4
z4(t, x)− 1

3
z3(t, x)

)
dx

+
θ(t)

2
Θ2

∫ √t
−
√
t

w2(t, x)dx.

Now observe that ‖z(t, ·)‖∞ = O
(
t−

1
2

)
as t→ +∞. Hence, for t > 0 large enough,

we have

Er√
t,θ(t)

(z(t, ·)) ≤ −1

6

∫ √t
−
√
t

z3(t, x)dx+
θ(t)

2
Θ2

∫ √t
−
√
t

w2(t, x)dx.

Since χ(x) = 1 for |x| ≤ 1
2 we get, for t > 0 large enough,

Er√
t,θ(t)

(z(t, ·)) ≤ −Θ3

6

∫ √
t

2

−
√
t

2

w3(t, x)dx+
θ(t)

2
Θ2

∫ √t
−
√
t

w2(t, x)dx

= −Θ3

6

∫ √
t

2

−
√
t

2

w3(t, x)dx+ θ(t)O(t−
1
2 ),(3.8)

since ‖w(t, ·)‖∞ = O(t−
1
2 ). Now recall that the function w = w(t, x), the solution

of the heat equation, becomes asymptotically self-similar in the sense that, for any
1 ≤ p ≤ +∞, one has (see for instance the monograph of Giga, Giga and Saal [7,
subsection 1.1.5])

(3.9) ‖w(t, ·)− αΓ(t, ·)‖Lp(R) = o
(
t−

1
2 (1− 1

p )
)

as t→ +∞,

wherein we have set α =
∫
R w(0, x)dx > 0. Also, for any 1 ≤ p ≤ +∞, there is

cp > 0 such that

(3.10) ‖Γ(t, ·)‖Lp(R) = cpt
− 1

2 (1− 1
p ).

Hence, denoting ‖ · ‖p = ‖ · ‖Lp(R), we have, as t→ +∞,∫ √
t

2

−
√
t

2

w3(t, x)dx = O
(
‖w(t, ·)− αΓ(t, ·)‖33 + ‖w(t, ·)− αΓ(t, ·)‖22‖Γ(t, ·)‖∞

+‖w(t, ·)− αΓ(t, ·)‖1‖Γ(t, ·)‖2∞
)

+ α3

∫ √
t

2

−
√
t

2

Γ3(t, x)dx

= o

(
1

t

)
+

1

t

(
α√
4π

)3 ∫ 1
2

− 1
2

e−
3
4y

2

dy.(3.11)
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Hence, in view of (3.8) and (3.11), we get the existence of some constant C > 0
such that, for t > 0 large enough,

(3.12) Er√
t,θ(t)

(z(t, ·)) ≤ −C
t

+ Cθ(t)t−
1
2 .

From (3.7) and (3.12), we have, up to enlarging C > 0, for t > 0 large enough,

tE√t,θ(t)(z(t, ·)) ≤ −C +
C√
t

+ Cθ(t)t
1
2 .

From Assumption 3.1 we know that lim inft→+∞ θ(t)t
1
2 = 0 and thus

lim inf
t→+∞

tE√t,θ(t) (z(t, ·)) < 0,

which completes the proof of Claim 3.4. �

Second step: u does converge to 1 as t → +∞. We now complete the proof
of Theorem 3.2 by showing limt→+∞ u(t, x) = 1 locally uniformly for x ∈ R.

To that aim let us fix 0 < θ0 <
1
2 , so that

∫ 1

0
f(θ0, u)du > 0. It is known [4,

Theorem 3.2] that we can find L > 0 large enough so that the solution v = v(t, x)
of the initial value problem

(3.13)


∂v

∂t
=
∂2v

∂x2
+ f (θ0, v) , t > 0, x ∈ R,

v(0, x) =
1 + θ0

2
1(−L,L)(x), x ∈ R,

satisfies v(t, x)→ 1 as t→ +∞, locally uniformly for x ∈ R.
Next, according to the first step, there exists x0 ∈ R and a sequence {tn}n≥0

going to +∞ as n→ +∞ such that

lim inf
n→+∞

u(tn, x0) > 0.

Consider the sequence of functions un(t, x) := u(t + tn, x). Because of parabolic
regularity, one may assume that un(t, x)→ u∞(t, x) locally uniformly for (t, x) ∈ R2

as n → +∞ and, since θ(t) → 0 as t → +∞, the function u∞ has to be an entire
solution of the following monostable problem

∂u∞
∂t

=
∂2u∞
∂x2

+ u2∞ (1− u∞) , (t, x) ∈ R2,

together with u∞(0, x0) > 0. According to the Hair Trigger Effect result of Aronson
and Weinberger [2], one knows that u∞(t, x)→ 1 as t→ +∞, locally uniformly for
x ∈ R. Therefore, there exists T > 0 large enough such that

u∞(T, x) ≥ 3 + θ0
4

, ∀x ∈ [−L,L].

As a result, there is n0 ≥ 0 large enough so that

u(T + tn0 , x) ≥ 1 + θ0
2

= v(0, x), ∀x ∈ [−L,L].

Also, up to enlarging n0, we have θ(t) ≤ θ0, so that f(θ(t), ·) ≥ f(θ0, ·), for all
t ≥ tn0

. The parabolic comparison principle yields

v(t, x) ≤ u(T + tn0
+ t, x), ∀t ≥ 0, x ∈ R.
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Because of the choice of the function v and since u ≤ 1, one concludes that
limt→+∞ u(t, x) = 1 locally uniformly for x ∈ R. This completes the proof of
Theorem 3.2. �

4. Evolutionary rescue

In this section, we first prove the existence of a solution for the Cauchy problem
(1.1)–(1.2), namely Theorem 2.2, and then prove the evolutionary rescue phenom-
enon, namely Theorem 2.3.

4.1. Existence of a solution.

Proof of Theorem 2.2. We fix an initial data (u0(x), a0) as in (1.2). Let us observe
that the main difficulty arises due to the gene flow term, more precisely the term
∂ ln(u)
∂x = 1

u
∂u
∂x in the a−equation. Indeed, despite the solution of the u−equation

becomes immediately strictly positive for t > 0, this term may become singular as
t → 0 in particular when u0 vanishes at some points. To overcome this we make
use of a regularisation procedure and we consider (1.1) with a sequence of positive
initial data (un0 (x), a0). Next we pass to the limit n → +∞ to recover a solution
of (1.1)–(1.2) and complete the proof of Theorem 2.2. Due to the aforementioned
singular term in the a−equation, the main difficulty in this proof consists in dealing
with the initial data for a. Let us make this sketch precise.

For n ≥ 1 we define

un0 (x) := max

(
u0(x),

1

n

)
.

Since un0 ≥ 1
n , we are equipped with (un, an) = (un(t, x), an(t, x)) a classical

solution of (1.1) starting from initial data (un0 (x), a0). Let us first notice that
0 < un(t, x) ≤ 1 and 0 < an(t, x) ≤ a0 for all t ≥ 0, x ∈ R. Also, the comparison
principle ensures the following lower bound for un:

un(t, x) ≥ e−a0tUn(t, x), t ≥ 0, x ∈ R, n ≥ 1,

wherein Un denotes the solution of the following heat equation

∂Un
∂t

=
∂2Un
∂x2

, t > 0, x ∈ R; Un(0, ·) = un0 .

Note that Un(t, ·) = Γ(t, ·) ∗ un0 , where Γ denotes the heat kernel. Since un0 → u0
in L∞(R), we have Un(t, ·)→ U∞(t, ·) := Γ(t, ·) ∗ u0 in L∞(R) uniformly for t > 0.
Here since u0 6≡ 0, one has U∞(t, x) > 0 for all t > 0 and x ∈ R. As a result, on
any compact set K of (0,+∞) × R, there is CK > 0 such that, for all n ≥ 1, all
(t, x) ∈ K, un(t, x) ≥ CK .

From standard parabolic estimates, the sequence {un} is relatively compact in

Cloc ([0,+∞)× R) and in C
1+α

2 ,2+α

loc ((0,+∞)× R) for any α ∈ (0, 1). Next, be-
cause of the above lower bound for un, 1

un
is uniformly bounded on each com-

pact set of (0,+∞)× R. As a consequence of standard parabolic estimates for the

an−equation, the sequence {an} is also relatively compact in C
1+α

2 ,2+α

loc ((0,+∞)× R)
for any α ∈ (0, 1). Therefore one has, possibly along a subsequence, un → u as

n → +∞ for the topologies of Cloc ([0,+∞)× R) and C
1+α

2 ,2+α

loc ((0,+∞)× R),
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while an → a as n → +∞ for the topology of C
1+α

2 ,2+α

loc ((0,+∞)× R). Further-
more the limit functions u and a satisfy the following properties

e−a0tU∞(t, x) ≤ u(t, x) ≤ 1, 0 ≤ a(t, x) ≤ a0,
u(t, x)→ u0(x) locally uniformly for x ∈ R as t→ 0,

∂u

∂t
=
∂2u

∂x2
+ u

(
u− a2

)
(1− u), t > 0, x ∈ R,

∂a

∂t
=
∂2a

∂x2
+ 2

∂a

∂x

∂ ln(u)

∂x
− ε(1− u)a, t > 0, x ∈ R.

To complete the proof of our existence result, it remains to show that ‖a(t, ·)−
a0‖∞ = O(t) as t→ 0. To that aim, we consider the auxiliary sequence of functions
vn(t, x) := an(t, x)un(t, x). Observe that vn satisfies

∂vn

∂t
=
∂2vn

∂x2
+ vnGn(t, x), t > 0, x ∈ R,

vn(0, x) = a0u
n
0 (x), x ∈ R,

wherein we have set

Gn(t, x) = −ε (1− un(t, x)) +
(
un(t, x)− an(t, x)2

)
(1− un(t, x)) .

Since un and an are uniformly bounded, there exists M > 0 such that

|Gn(t, x)| ≤M, ∀(t, x) ∈ [0,+∞)× R, ∀n ≥ 1.

As a consequence of the parabolic comparison principle, one obtains

a0Un(t, x)e−Mt ≤ vn(t, x) ≤ a0Un(t, x)eMt, ∀(t, x) ∈ [0,+∞)× R, ∀n ≥ 1.

Similarly, there exists some constant N > 0 such that

Un(t, x)e−Nt ≤ un(t, x) ≤ Un(t, x)eNt, ∀(t, x) ∈ [0,+∞)× R, ∀n ≥ 1.

Since an = vn

un , we infer from the two above estimates that

(4.1) a0e
−(M+N)t ≤ an(t, x) ≤ a0e(M+N)t, ∀(t, x) ∈ [0,+∞)× R, ∀n ≥ 1.

Passing to the limit n→ +∞ implies that the function a satisfies

a0e
−(M+N)t ≤ a(t, x) ≤ a0e(M+N)t, ∀(t, x) ∈ (0,+∞)× R,

which is enough to complete the proof of the theorem. �

Remark 4.1. If the initial data a0(x) is non constant and we try to reproduce the
above argument, then (4.1) is replaced by

Vn(t, x)

Un(t, x)
e−(M+N)t ≤ an(t, x) ≤ Vn(t, x)

Un(t, x)
e(M+N)t,

where Vn(t, x) solves the heat equation starting from a0(x)un0 (x). After letting
n→ +∞, we get

(Γ(t, ·) ∗ (a0u0)) (x)

(Γ(t, ·) ∗ u0) (x)
e−(M+N)t ≤ a(t, x) ≤ (Γ(t, ·) ∗ (a0u0)) (x)

(Γ(t, ·) ∗ u0) (x)
e(M+N)t,

for all (t, x) ∈ (0,+∞)× R, and this is not clear that one recovers the initial data
a0(x) for a(t, x), in particular in the points where u0 vanishes.
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4.2. Evolutionary rescue result.

Proof of Theorem 2.3. The proof is an application of Theorem 3.2. We fix u0 ∈
C(R) \ {0} with 0 ≤ u0 ≤ 1 and a0 ∈ (0, 1). Let (u, a) = (u(t, x), a(t, x)) be a
solution of (1.1), with initial data (u0(x), a0), in the sense of Definition 2.1.

Let us first show that u satisfies the weak persistence property, namely

(4.2) lim sup
t→+∞

sup
x∈R

u(t, x) = 1.

To that aim we argue by contradiction by assuming that there exist t0 > 0 and
α ∈ (0, 1) such that

u(t, x) ≤ α, ∀t ≥ t0, x ∈ R.
Hence, the a−equation yields

∂a

∂t
≤ ∂2a

∂x2
+ 2

∂a

∂x

∂ ln(u)

∂x
− ε(1− α)a, ∀t ≥ t0, x ∈ R,

and we deduce from the comparison principle that

a(t, x) ≤ a0e−ε(1−α)(t−t0), ∀t ≥ t0, x ∈ R.

Hence setting θ(t) := a20e
−2ε(1−α)(t−t0), one obtains from the comparison principle

applied to the u−equation that

u(t, x) ≥ u(t, x), ∀t ≥ t0, x ∈ R,

with u = u(t, x) the solution of the Cauchy problem
∂u

∂t
=
∂2u

∂x2
+ f(θ(t), u), t ≥ t0, x ∈ R,

u(t0, x) = u(t0, x) x ∈ R.

The function θ decays exponentially to 0 and clearly satisfies Assumption 3.1. More-
over u(t0, ·) ∈ C(R) \ {0} and 0 ≤ u(t0, ·) ≤ 1, so that Theorem 3.2 applies for the
above equation and ensures that u(t, x)→ 1 locally uniformly for x ∈ R as t→ +∞.
This contradicts 1 > α ≥ u ≥ u for large times and (4.2) follows.

The proof of the second statement in Theorem 3.2 is similar to the one of the
second step in the proof of Theorem 3.2. Since a20 <

1
2 we can find L > 0 large

enough so that, for any point x∗ ∈ R, the solution v = v(t, x;x∗) of the initial value
problem

(4.3)


∂v

∂t
=
∂2v

∂x2
+ f

(
a20, v

)
, t > 0, x ∈ R,

v(0, x;x∗) =
1 + a20

2
1(x∗−L,x∗+L)(x), x ∈ R,

satisfies v(t, x)→ 1 as t→ +∞, locally uniformly for x ∈ R. From (4.2), there are
tn → +∞ and xn ∈ R such that u(tn, xn)→ 1. Consider the sequences of functions

un(t, x) := u(t+ tn, x+ xn), an(t, x) := a(t+ tn, x+ xn).

From parabolic regularity and the uniform boundeness of an, we can let n→ +∞
and get an entire (weak) solution of

∂u∞
∂t

=
∂2u∞
∂x2

+ u∞(u∞ − a∞(t, x)) (1− u∞) , (t, x) ∈ R2,
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together with u∞(0, 0) = 1 and 0 ≤ u∞ ≤ 1. This enforces u∞ ≡ 1. Hence
un(t, x) → 1 locally uniformly for t ≥ 0, x ∈ R. Therefore, there is n0 ≥ 0 large
enough so that

u(tn0
, ·) ≥ 1 + a20

2
1(xn0

−L,xn0
+L) = v(0, x;xn0

).

Since f(a2(t, x), ·) ≥ f(a20, ·), the parabolic comparison principle yields

v(t, x;xn0) ≤ u(tn0 + t, x), ∀t ≥ 0, x ∈ R.
Because of the choice of the function v and since u ≤ 1, one concludes that
limt→+∞ u(t, x) = 1 locally uniformly for x ∈ R. This completes the proof of
Theorem 2.3. �
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2. D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in popu-
lation genetics, Adv. Math. 30 (1978), 33–76.

3. Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion

problems, J. Eur. Math. Soc. 12 (2010), 279–312.
4. P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to

travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335–361.

5. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u+u1+α, J. Fac.
Sci. Univ. Tokyo Sect. I 13 (1966), 109–124.
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