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Global weak solution for a singular two component
reaction-diffusion system

Arnaud Ducrot and Michel Langlais

Abstract

We study a singular Reaction-Diffusion system motivated by a dedicated diffusive predator-prey
model system devised in the spatially homogeneous case by Courchamp and Sugihara [2]. The
reactive part features a functional response to predation and a singular numerical functional
response to predation specifically designed for modeling the introduction of greedy predators
into a fragile or insular environment. Under some circumstances this may lead to finite time
quenching of the solution, that is finite time extinction for both species. The aim of this work is
to derive a suitable notion of global (in time) weak solution and to prove that such global weak
solutions do exist. The existence part is achieved by approximating the reactive part by a more
classical and non singular one and then passing to the limit in the resulting Reaction-Diffusion
system. Our first result shows that this limiting process supply global weak solutions. In the case
of equidiffusivities such global weak solutions satisfy a suitable free boundary value problem.

1. Introduction

We consider the following singular Reaction-Diffusion system{
∂tu−D∆u = ku (1− u)− v,
∂tv −∆v = rv

(
1− v

u

)
,

(1.1)

wherein the above dimensionless problem is posed for time t > 0 and spatial location x ∈ Ω, a
bounded domain in RN with smooth boundary ∂Ω. Here D > 0 and r > 0 are given constants
while k ≥ 0. This problem is supplemented with homogeneous Neumann boundary conditions

∇u(t, x) · η(x) = ∇v(t, x) · η(x) = 0, t > 0 and x ∈ ∂Ω, (1.2)

η(x) being the outward unit normal vector to Ω at x ∈ ∂Ω, and initial conditions

u(0, ·) = u0, v(0, ·) = v0, (1.3)

the initial data satisfying (u0, v0) ∈ (L∞(Ω))
2

and

0 ≤ u0(x), v0(x) ≤ 1, x ∈ Ω.

The underlying Ordinary Differential Equation system has been proposed by Courchamp and
Sugihara [2] in order to model a strong predator-prey interaction within some fragile or insular
environment. The spatially structured system (1.1) has been introduced by Gaucel et al. [8]
and Gaucel and Langlais in [7] in order to take into account the spatial motion of both species,
u(t, x) (resp. v(t, x)) denoting the density of a prey species (resp. predator) at time t and
spatial location x ∈ Ω. It is shown in [7] that under suitable conditions on the parameter set
as well as on the initial data set System (1.1)-(1.2)-(1.3) may exhibit a finite time quenching,
that means that the density u may reach the singular value u = 0 at some finite time. A

2000 Mathematics Subject Classification 35K57, 35K67, 35D30, 92D40.



Page 2 of 13 ARNAUD DUCROT AND MICHEL LANGLAIS

simplified system, with k = 0, has been considered by Ducrot and Guo [4] where the authors
studied the quenching rate of the solutions as well as some properties of the quenching set. One
point quenching with non-self-similar type singularity may occur for some specific initial data.
From obvious biological reasons, the population dynamics continues to evolve in time beyond
a possible finite and spatially localized extinction, especially for one point quenching.

The aim of this work is to understand how to extend the notion of solution to (1.1)-(1.2)-
(1.3) to get a globally defined nonnegative semiflow. In this direction, some hints has been
recently provided by Ducrot and Langlais in [5] who deal with the existence of weak travelling
wave solutions for a singular system close to (1.1). Roughly speaking, System (1.1) with k = 0
admits a family of (weak) travelling waves describing the predator invasion process within an
homogeneous population of prey. Under some conditions on the parameter set the tail of the
invasion front corresponds to the zero level-set of both species.

In order to deal with the continuation of the solutions to (1.1)-(1.2)-(1.3), we introduce the
following notion of weak solutions.

Definition 1 Weak solution. A pair of nonnegative, measurable and bounded func-
tions (u, v) : (0,∞)× Ω→ [0,∞)× [0,∞) is a global weak solution to (1.1)-(1.2)-(1.3) if the
following properties are fulfilled:
(i) For each T > 0 the following regularity holds true

(∂tu,∇u) ∈ L2 (QT )
2
, ∇v ∈ L2 (QT ) ,

wherein we have set QT = (0, T )× Ω.

(ii) For each T > 0 and each pair of test functions (ϕ,ψ) ∈
(
C1
(
[0, T ]× Ω

) )2
with ϕ(T, ·) =

ψ(T, ·) ≡ 0 the pair (u, v) satisfies

− 1

2

∫
Ω

ϕ(0, x)u2
0(x)dx−

∫
QT

1

2
∂tϕu

2dtdx

= −D
∫
QT

∇u∇ (uϕ) dtdx+

∫
QT

ϕ
(
ku2(1− u)− uv

)
dtdx,

and

−
∫
QT

ψ(0, x)u0(x)v0(x)dx−
∫
QT

∂t(ψu)vdtdx

= −
∫
QT

∇ (uψ)∇vdtdx+ r

∫
QT

ψv (u− v) dtdx.

In order to prove the existence of such weak solutions, we shall consider the following
ε−perturbed Holling-Tanner reaction-diffusion system (see for instance [12], [15] and references
therein) {

∂tuε −D∆uε = kuε (1− uε)− vεuε
uε+ε

, t > 0, x ∈ Ω

∂tvε −∆vε = rvε

(
1− vε

uε+ε

)
,

(1.4)

supplemented with the boundary and initial conditions in (1.2)-(1.3).
From a formal point of view, System (1.1) is derived from (1.4) by taking ε = 0. The aim of
this work is to pass to the limit ε↘ 0+ into the globally defined solutions to (1.4) to show the
existence of a global weak solution to (1.1).

Similar regularization processes have been used in the literature in order to deal with the
continuation of solutions to parabolic equations beyond finite time blow-up or quenching. We
refer for instance to Quirós et al [13], the survey paper of Galaktionov and Vázquez [6] and
to the references cited therein. We also refer to Levine [11], Chan et al [1] and Dávila and
Montenegro [3] as well as to the survey chapter of Hernández and Mancebo [9] concerning
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singular parabolic problems. Here note that the ε−modification of the singularity appearing
into the v−equation has a regularisation effect provided that u ≥ 0. This latter condition is
ensured by the ε−modification into the u−equation.

In order to explain this limiting procedure let us consider the simplified ε−perturbed ODE
system 

u′ε(t) = −uε(t)vε(t)uε(t)+ε
,

v′ε(t) = rvε(t)− r vε(t)
2

uε(t)+ε
,

uε(0) = u0 > 0, vε(0) = v0 > 0.

(1.5)

For this ODE system one can check that the following relation holds true

uε(t)
r =

ur0
v0
vε(t)e

−rt, ∀t ≥ 0.

This allows to solve (1.5) in closed form to find

1

1− r
(
u1−r(t)− u1−r

0

)
− ε

r

(
u−r(t)− u−r0

)
= − v0

ur0

ert − 1

r
, ∀t ≥ 0.

If one assumes that r ∈ (0, 1) then by letting ε→ 0 one gets that uε converges locally uniformly
to a nonnegative function u

u(t) = max

[
0,

(
u1−r

0 − 1− r
r

v0

ur0

(
ert − 1

))] 1
1−r

,

while vε converges locally uniformly a function v satisfying

v(t) =
v0e

rt

ur0
ur(t), ∀t ≥ 0.

Since r ∈ (0, 1), the latter function u vanishes at the finite time T defined by

T =
1

r
ln

(
1 +

r

1− r
u0

v0

)
.

Therefore this implies that the pair (u, v) satisfies v = vχ{u>0} as well as the following system
of equations {

du(t)
dt = −v(t)χ{u>0} in D′(0,∞),

dv(t)
dt = rv(t)− r v

2

u χ{u>0} in D′(0,∞).
(1.6)

In the above system and in the sequel, for each set A, χA denotes the characteristic function
of A.

We now come back to System (1.4)-(1.2)-(1.3). Before stating our main result let us introduce
a first generic set of assumptions

Assumption 1.1. Let r > 0, D > 0 and k ≥ 0 be given.
The initial pair (u0, v0) satisfies u0 ∈ L∞ (Ω) \ {0}, v0 ∈ L∞ (Ω) and

0 ≤ u0(x) ≤ 1, 0 ≤ v0(x) ≤ 1, a.e. x ∈ Ω.

Then we shall first prove

Theorem 1.2. Let Assumption 1.1 be satisfied. Assume furthermore that u0 ∈ H1(Ω).
Then for each sequence {εn}n≥0 ⊂ (0,∞) such that εn ↘ 0, there exists a subsequence still
denoted by {εn}n≥0 such that the sequence {(uεn , vεn)}n≥0, solution to (1.4)-(1.2)-(1.3) with
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ε = εn, converges almost everywhere and locally uniformly on (0,∞)× Ω to some nonnegative
pair of functions (u, v), a weak solution to (1.1)-(1.2)-(1.3) according to Definition 1.

When D = 1 in (1.1) one shall show the limit solutions constructed above using the limit
procedure ε↘ 0 leads to a problem similar to the one obtained for the underlying ordinary
differential equation, namely (1.6).

Assumption 1.3. Assume that D = 1. In addition to Assumption 1.1, let us assume that
there exists some constant Mr > 0 such that

0 ≤ v0(x) ≤Mru0(x)min(1,r) a.e. x ∈ Ω.

Let us introduce {T∆(t)}t≥0 the strongly continuous semigroup on L1(Ω) generated by the
Laplace operator ∆ : D(∆) : L1(Ω)→ L1(Ω) together with homogeneous Neumann boundary
conditions on ∂Ω.
Then one shall prove the following results

Theorem 1.4 Case r ≥ 1. Let Assumption 1.3 be satisfied. Assume r ≥ 1.
There exists a sequence {εn}n≥0 such that εn ↘ 0 when n→∞ and such that

(i) (uεn , vεn) converges locally uniformly in (0,∞)× Ω to some positive pair of functions
(u, v), that is u(t, x) > 0 and v(t, x) > 0 for all (t, x) ∈ (0,∞)× Ω.

(ii) For each T ≥ 0 one has v2

u ∈ L
∞(QT ).

(iii) For all t > 0 one has

u(t) = T∆(t)u0 +

∫ t
0

T∆(t− s) [ku(s) (1− u(s))− v(s)] ds,

v(t) = T∆(t)v0 + r

∫ t
0

T∆(t− s)
[
v(s)− v2(s)

u(s)

]
ds.

Theorem 1.5 Case r < 1. Let Assumption 1.3 be satisfied. Assume r < 1.
There exists a sequence {εn}n≥0 such that εn ↘ 0 when n→∞, and a pair of nonnegative

functions (u, v) ∈
[
C
(
(0,∞)× Ω

)
∩ L∞ ((0,∞)× Ω)

]2
such that

(i) For all (t, x) ∈ (0,∞)× Ω, v(t, x) ≤Mre
rtu(t, x)r.

(ii) The sequence {uεn , vεn}n≥0 satisfies{
uεn → u locally uniformly on (0,∞)× Ω,

vεn → v in L1
loc ([0,∞)× Ω) .

(iii) For each p ∈
[
1, 1

1−r

)
and each T > 0, the function v2

u χ{u>0} belongs to Lp (QT ) and one

has for each t > 0

u(t) = T∆(t)u0 +

∫ t
0

T∆(t− s)
[
ku(s) (1− u(s))− v(s)χ{u(s)>0}

]
ds,

v(t) = T∆(t)v0 + r

∫ t
0

T∆(t− s)
[
v(s)− v(s)2

u(s)
χ{u(s)>0}

]
ds.

Furthermore when r ≥ 1
2 then function v2

u χ{u>0} belongs to L∞(QT ) for each T > 0.
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Remark 1. If there exists T > 0 such that u(T, .) ≡ 0 then one has

0 ≤ u(T + t) ≤ k
∫ t
0

T∆(t− s)u(T + s)ds, t ≥ 0.

The latter implies that u(T + t, .) ≡ 0 for all t ≥ 0.

Let us comment Theorem 1.5. The integrability property of v2

u χ{u>0}, namely v2

u χ{u>0} ∈
Lp (QT ) for each p ∈

[
1, 1

1−r

)
, shows that function v enjoys the usual Lp−parabolic regularity

and the solution pair (u, v) provided by Theorem 1.5 turns out to be a classical solution. This
actually implies that (u, v) satisfies the following free boundary value problem{

∂tu−∆u = ku(1− u)− v
∂tv −∆v = rv

(
1− v

u

) in {u > 0} and v = 0 in {u = 0},

without any jump condition for the gradient of v at the free-boundary ∂{u = 0}.
This manuscript is organized as follows. Section 2 is devoted to deriving basic estimates

independent of ε > 0 for the solution of System (1.4)-(1.2)-(1.3). This will allows us to prove
Theorem 1.2 and Theorem 1.4. Section 3 is concerned with the proof of Theorem 1.5. The
proof of such a result will require more refined ε−independent estimates on the solutions of
(1.4)-(1.2)-(1.3).

2. Proofs of Theorem 1.2 and Theorem 1.4

Let us first introduce some notations: for each τ ≥ 0 and T > 0 set

Qτ,T = (τ, T )× Ω, QT = Q0,T .

The following three lemmas hold true. Their proofs are rather straightforward using parabolic
estimates and usual integrations by parts.

Lemma 2.1. Let Assumption 1.1 be satisfied. Let r > 0 be given. Then for each ε > 0 one
has

0 ≤ uε(t, x) ≤ 1, 0 ≤ vε(t, x) ≤ 1 + ε, t > 0, x ∈ Ω.

For each T > 0 there exists some constant MT > 0 such that for each ε ∈ (0, 1] one has∫
QT

|∇vε|2(t, x)dxdt+

∫
QT

v2
ε

uε + ε
(t, x)dtdx ≤MT .

Lemma 2.2 Compactness. Let Assumption 1.1 be satisfied. Let r > 0 be given. Then the
family {(uε, vε)}ε∈(0,1] satisfies the following estimates:

(i) Let α ∈ (1, 2) be given. For each 0 < τ < T there exists some constant Kτ,T > 0 such that
for each ε ∈ (0, 1]

‖uε‖C α
2
,α([τ,T ]×Ω) ≤ Kτ,T .

(ii) The family {∂tvε}ε∈(0,1] is bounded for the topology of L1 + L2
((
H1
)′)

, (H1)′ being the

dual space of H1(Ω). More precisely, for each T > 0 there exists some constant CT > 0
such that for each ε ∈ (0, 1] one has

‖∂tvε‖L1(QT )+L2(0,T ;H1(Ω)′) ≤ CT .
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(iii) If moreover u0 ∈ H1(Ω) then the family {∇uε}ε∈(0,1] in compact for the topology of

L2
loc

(
[0,∞);L2(Ω)

)
while for each T > 0 there exists some constant M(T ) > 0 such that

for each ε > 0 ∫
QT

(
|∂tuε|2 + |∆uε|2

)
(t, x)dxdt ≤M(T ).

Proof. The proof of (i) relies on usual maximal parabolic regularity. We refer for instance
to Lamberton [10], Pruss [14] and the references therein for more details on this topic.
Let us first note that due to Lemma 2.1 the family of functions {fε}ε∈(0,1] defined by

fε := kuε (1− uε)−
uεvε
uε + ε

,

is uniformly bounded in L∞ ((0,∞)× Ω). Next note that one has

uε(t, .) = T∆(t)u0 +

∫ t
0

T∆(s)fε(t− s)ds, ∀t ≥ 0, (2.1)

wherein {T∆(t)}t≥0 denotes the usual heat semigroup associated to Neumann boundary
conditions. Next let recall (see [14]) that the heat semigroup {T∆(t)}t≥0 satisfies the so-called
maximal parabolic regularity, that reads as for each p ∈ (1,∞) and each T > 0 there exists
some constant Kp(T ) > 0 such that for each f ∈ Lp (0, T ;Lp(Ω)) one has:∥∥∥∥∫ .

0

T∆(s)f(.− s)ds
∥∥∥∥
W 2,1
p (QT )

≤ ‖f‖Lp(QT ).

Let α ∈ (0, 2) be given and let us select p ∈ (1,∞) such that α < 2− (N + 2)/p, that implies
the following Sobolev embedding W 1,2

p (QT ) ↪→ C
α
2 ,α
(
QT
)
. Finally let us recall that T∆(.)u0 ∈

C∞
(
(0,∞)× Ω

)
. Hence the above stated parabolic regularity applied with this choice of p

implies that (i) holds true.
Statement (ii) directly follows from the estimates for vε stated in Lemma 2.1.
It remains to prove (iii). To do so let us first notice that if u0 ∈ H1(Ω) ∩ L∞(Ω) then

T∆(.)u0 ∈ L2
loc

(
[0,∞);H1(Ω)

)
so that the compactness of {∇uε}ε∈(0,1] follows from the above

stated parabolic regularity. Next the estimates for ∂tuε and ∆uε are also a consequence of
parabolic regularity since T∆(.)u0 ∈W 1,2

2 (QT ) as soon as u0 ∈ H1(Ω). This can also be more
directly obtained by multiplying the u−equation in (1.4) by ∆uε and integrating over Ω that
yields to for each t > 0

d

dt

∫
Ω

|∇uε|2dx+D

∫
Ω

|∆uε|2dx = −
∫
Ω

∆uεfεdx.

This completes the proof of the result.

Using these basic estimates, we are now able to prove Theorem 1.2.

Proof of Theorem 1.2. Let {εn}n≥0 ⊂ (0,∞) be a given sequence such that εn ↘ 0 as
n→∞. Recalling that u0 ∈ H1(Ω), using Lemma 2.1 and 2.2 combined together with Aubin’s
like compactness arguments (see for instance [16]), up to a subsequence, one may assume that
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{(uεn , vεn)}n≥0 converges to a nonnegative pair of functions (u, v) for the following topologies

un := uεn → u locally uniformly in (0,∞)× Ω,

∇un → ∇u strongly in L2(0, T ;L2(Ω) for each T > 0,

∂tun ⇀ ∂tu weakly in L2(0, T ;L2(Ω)) for each T > 0,

vn := vεn → v a.e. for (t, x) ∈ (0,∞)× Ω,

∇vn ⇀ ∇v weakly in L2(0, T ;L2(Ω)) for each T > 0.

(2.2)

Let T > 0 be given and (ϕ,ψ) ∈ C1
(
[0, T ]× Ω

)2
be given such that (ϕ,ψ) (T, .) ≡ (0, 0).

Let n ≥ 0 be given, then multiplying the u−equation and the v−equation respectively by
(un + εn)ϕ and (un + εn)ψ and integrating over QT one obtains

− 1

2

∫
Ω

ϕ(0, x) (u0(x) + εn)
2
dx−

∫
QT

1

2
∂tϕ (un + εn)

2
dtdx

= −D
∫
QT

∇un∇ ((un + εn)ϕ) dtdx+

∫
QT

ϕ (kun(un + εn)(1− un)− unvn) dtdx.

and

−
∫
QT

ψ(0, x) (u0(x) + εn) v0(x)dx−
∫
QT

∂t (ψ (un + εn)) vndtdx

= −
∫
QT

∇ ((un + εn)ψ)∇vndtdx+ r

∫
QT

ψvn (un + εn − vn) dtdx.

Letting n→∞ into the above equalities and using the convergence properties described in
(2.2), the result follows.

Before going to the proof of Theorem 1.4, we first derive some preliminary estimates that
will be needed in the sequel. When Assumption 1.1 holds and using Aubin’s like compactness
arguments (see for instance [16]), as a direct consequence of the above estimates provided by
Lemma 2.1 and 2.2 (i) and (ii), one gets that for each sequence {εn}n≥0 ⊂ (0,∞) tending to
zero as n→∞, there exists a subsequence, still denoted by {εn}n≥0 such that εn ↘ 0+ as
n→∞ and

un := uεn → u locally uniformly in (0,∞)× Ω,

vn := vεn → v a.e. for (t, x) ∈ (0,∞)× Ω.
(2.3)

Lemma 2.3. Let Assumption 1.3 be satisfied. Let r > 0 be given. Then for each ε > 0 one
has

vε(t, x) ≤Mre
rtuε(t, x)min(r,1), ∀t ≥ 0, x ∈ Ω,

wherein the constant Mr is defined in Assumption 1.3.

Proof. First consider the cases r ≥ 1. Let ε > 0 be given. Let η > 0 be given. Consider uη

and vη the solution of (1.4) with initial data

uη(0, x) = u0(x) + η, vη(x) = v0(x) a.e. x ∈ Ω.

Note that from the comparison principle, one has

uη ≤ 1 + η and vη ≤ 1 + ε+ η.

Next let us notice that when η ↘ 0, using the continuity of the semiflow with respect to its
initial data, one obtains that uη → uε and vη → vε at least almost everywhere for (t, x) ∈
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(0,∞)× Ω. Consider now the map P η = P = vη

uη that satisfies the following equation

∂tP −∆P − 2∇P ∇uε
uε

= (1− r) P
2u

u+ ε
+ rP − kP (1− u). (2.4)

Since r ≥ 1 and u ≤ 1 + η then

∂tP −∆P − 2∇P ∇uε
uε
− (r + kη)P ≤ 0.

The comparison principle implies that

P η(t, x) ≤
∥∥∥∥ v0

u0 + η

∥∥∥∥
∞
e(r+kη)t, ∀x ∈ Ω.

Due to Assumption 1.3, one obtains that for each η > 0:

vη(t, x) ≤Mre
(r+kη)tuη(t, x),

and the first part of the result follows for r ≥ 1 by letting η ↘ 0.
Consider now the case r ∈ (0, 1). Let ε > 0 be given. Consider the function J(t, x) =

e−rtvε(t, x)−Mru
r
ε(t, x) where the constant Mr is defined in Assumption 1.3. Then one has

∂tJ = e−rt∂tv − re−rtv −Mrru
r−1∂tu,

∇J = e−rt∇v −Mrru
r−1∇u,

∆J = e−rt∆v −Mrr(r − 1)ur−2|∇u|2 −Mrru
r−1∆u.

Thus one obtains that J satisfies

∂tJ −∆J = e−rt(vt −∆v − rv) +Mrr(r − 1)ur−2|∇u|2 +Mrru
r−1 uv

u+ ε
− rMrku

r(1− u)

= −re−rtv v

u+ ε
+Mrr(r − 1)ur−2|∇u|2 +Mrru

r v

u+ ε
− rMrku

r(1− u)

= Kr(r − 1)ur−2|∇u|2 − rMrku
r(1− u)− rv

u+ ε
J.

Since r ∈ (0, 1) and u ≤ 1, this leads us to

Jt −∆J +
rvε
uε + ε

J ≤ 0.

Due to the definition of constant Mr one gets J(0, .) ≤ 0. The parabolic comparison principle
applies and completes the proof of the result.

Lemma 2.4. Let Assumption 1.3 be satisfied. Let r > 0 be given. Then the following holds
true

vn(t, x)un(t, x)

un(t, x) + εn
→ v(t, x)χ{u(t,x)>0} a.e. (t, x) ∈ (0,∞)× Ω.

Proof. Let (t, x) ∈ (0,∞)× Ω such that u(t, x) > 0. Then we obtain that 1
un(t,x)+εn

→
1

u(t,x) . As a consequence we get

vn(t, x)un(t, x)

un(t, x) + εn
→ v(t, x) a.e. for (t, x) ∈ {u > 0}.

Next for each (t, x) ∈ {u = 0} one has from Lemma 2.3 that

vn(t, x)un(t, x)

un(t, x) + εn
≤Mre

rtumin(1,r)
n (t, x).
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This implies that

vn(t, x)un(t, x)

un(t, x) + εn
→ 0 a.e. for (t, x) ∈ {u = 0}.

This completes the proof of the result.

Before completing the proof of Theorem 1.4 let us first derive a lower estimate for the
u−component that prevent from finite time quenching in the case r ≥ 1:

Lemma 2.5. Let Assumption 1.3 be satisfied. Let r ≥ 1 be given. Consider the map u
defined by the resolution of the linear heat equation

∂tu−∆u+Mre
rtu = 0, t > 0, x ∈ Ω,

∇u(t, x).η(x) = 0, t > 0, x ∈ ∂Ω,

u(0, .) = u0.

Then for all ε > 0 one has

uε(t, x) ≥ u(t, x), ∀(t, x) ∈ (0,∞)× Ω.

Proof. Since r ≥ 1 then from Lemma 2.3, one has for all ε > 0 that

vε(t, x) ≤Mre
rtuε(t, x), ∀(t, x) ∈ [0,∞)× Ω.

Then function uε satisfies

∂tuε −∆uε ≥ kuε(1− uε)−Mre
rtuε ≥ −Mre

rtuε.

The comparison principle applies and provides that

uε(t, x) ≥ u(t, x) ∀(t, x) ∈ [0,∞)× Ω,

and the result follows.

Proof of Theorem 1.4. Let us first notice that the sequence
{

vnun
un+εn

}
n≥0

almost everywhere

converges to v. In fact, it converges to vχ{u>0} by using Lemma 2.4 but u > 0 by Lemma 2.5
since r ≥ 1 and u(t, x) > 0 for all t > 0 and x ∈ Ω. Using once again Lemma 2.3, we obtain

that the sequence
{

vnun
un+εn

}
n≥0

is bounded on each QT for T > 0. Indeed we have

vnun
un + εn

≤ Kre
rtun ≤ Kre

rt, ∀n ≥ 0.

Therefore Lebesgue convergence theorem applies and provides that for each p ∈ [1,∞) and
each T > 0

lim
n→∞

∥∥∥∥ vnun
un + εn

− v
∥∥∥∥
Lp(QT )

= 0.

This remark implies that function u satisfies for each t ≥ 0:

u(t) = T∆(t)u0 +

∫ t
0

T∆(t− s) [ku(s) (1− u(s))− v(s)] ds.

In the same way, since u > 0 then

v2
n

un + εn
→ v2

u
a.e. for (t, x) ∈ (0,∞)× Ω.
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One the other hand, using Lemma 2.3, one has for each n ≥ 0

v2
n

un + εn
≤M2

r e
2rtun ≤M2

r e
2rt.

Therefore Lebesgue convergence theorem applies and provides that for each p ∈ [1,∞) and
each T > 0:

lim
n→∞

∥∥∥∥ v2
n

un + εn
− v2

u

∥∥∥∥
Lp(QT )

= 0.

We are now able to pass to the limit n→∞ in the weak formulation of vn, that reads

vn(t) = T∆(t)v0 + r

∫ t
0

T∆(t− s)
[
vn(s)− v2

n(s)

un(s) + εn

]
ds, ∀t ≥ 0

Thus function v satisfies for all t ≥ 0:

v(t) = T∆(t)v0 + r

∫ t
0

T∆(t− s)
[
v(s)− v2(s)

u(s)

]
ds.

This completes the proof of Theorem 1.4.

3. Proof of Theorem 1.5

It requires much more refined estimates given in the following statement

Proposition 3.1. Let Assumption 1.3 be satisfied. Let r ∈ (0, 1) be given. Then for each
p ∈ [1,∞) and each T > 0 one has

lim
n→∞

∥∥∥∥ vnunun + ε
− vχ{u>0}

∥∥∥∥
Lp(QT )

= 0, (3.1)

for each β ∈
[
0, r

1−r

)
, one has

v2

u
χ{u>0} ∈ L1+β(QT ),

the sequence

{
v2
n

un + ε

}
n≥0

is bounded in L1+β(QT ),
(3.2)

and one has possibly along a subsequence:

lim
n→∞

∥∥∥∥ v2
n

un + ε
− v2

u
χ{u>0}

∥∥∥∥
L1(QT )

= 0. (3.3)

The proof of Theorem 1.5 thus becomes a direct consequence of the above proposition. Indeed
let us recall that for each T > 0, each p ∈ [1,∞) and each sequence {fn}n≥0 ⊂ Lp(QT ) then if
fn → f in Lp(QT ) then uniformly for t ∈ [0, T ] one has

lim
n→∞

∥∥∥∥∫ t
0

T∆(t− s)fn(s)ds−
∫ t
0

T∆(t− s)f(s)ds

∥∥∥∥
Lp(Ω)

= 0.

Hence it remains to prove prove Proposition 3.1.
We will split the proof into two parts. We first investigate estimate (3.1).
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Proof of (3.1). The proof of this result is a direct consequence of the Lebesgue convergence
theorem. Indeed from Lemma 2.4, one has the following almost everywhere convergence

vnun
un + εn

→ vχ{u>0}.

Next from Lemma 2.3, one has
vnun
un + εn

≤ Kre
rturn ≤ Kre

rt, ∀n ≥ 0.

Then (3.1) follows from Lebesgue convergence theorem.

We shall now prove (3.2). This result relies on the following estimates:

Lemma 3.2. Let r ∈ (0, 1) be given. Let Assumption 1.3 be satisfied. Then for each T > 0

and each β ∈
[
0, r

1−r

)
, there exists C = C(β, T ) > 0 such that for each ε ∈ (0, 1]∫

QT

v2+β
ε

uβε (uε + ε)
dxdt ≤ C(β, T ).

Proof. Let β ∈
(

0, r
1−r

)
be given. (Note that the case β = 0 is already known). One shall

use a regularization procedure similar to the one given in the proof of Lemma 2.3. Let ε ∈ (0, 1]

be given. Let η > 0 be given. Consider the map wη = (vη)1+β

(uη)β
, where function uη and vη are

similar to the ones introduced in the proof of Lemma 2.3. For notational simplicity, in the
sequel, one shall write w, u and v for wη, uη and vη. Then function w satisfies

∂tw −∆w + (r + β(r − 1))
v

u+ ε
w =(β + 1)rw − βkw(1− u)

−
(
β(β + 1)

vβ−1

uβ
|∇v|2 − 2(β + 1)β

vβ

uβ+1
∇u∇v + β(β + 1)

vβ+1

uβ+2
|∇u|2

)
.

Therefore, since u ≤ 1 + η, function w satisfies

∂tw −∆w + (r + β(r − 1))
v

u+ ε
w ≤ ((β + 1)r + βkη)w − β(β + 1)

(
v
β−1
2

u
β
2

∇v − v
β+1
2

u
β
2 +1
∇u

)2

,

supplemented together with the homogeneous Neumann boundary condition on ∂Ω. This leads
us to 

∂tw −∆w + (r + β(r − 1)) v
u+εw ≤ ((β + 1)r + βkη)w,

∇w(t, x).η(x) = 0, t > 0, x ∈ ∂Ω,

w(0, x) = v0(x)1+β

(u0(x)+η)β
.

(3.4)

Let us now notice that one has

w =

(
v

1
r

u

)β
v1−β 1−r

r .

Since β ∈
(

0, r
1−r

)
, 1− β 1−r

r > 0 and we get due to Lemma 2.3 that

w ≤ K
1
r
r e

t(1 + η + ε)1−β 1−r
r .

(Note that vη ≤ 1 + η + ε) As a consequence for each T > 0, there exists some constant M̂(T ) >
0 such that for each ε ∈ (0, 1] and η ∈ (0, 1):

wη(t, x) ≤ M̂(T ), ∀(t, x) ∈ QT .
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Let T > 0 be given. Integrating (3.4) over QT yields

(r + β(r − 1))

∫
QT

vη

uη + ε
wdxdt ≤

∫
Ω

v0(x)1+β

(u0(x) + η)β
dx+ ((β + 1)r + ηβk)T |Ω|M̂(T ).

Using Assumption 1.3 and letting η ↘ 0, the result follows by using Fatou Lemma.

We are now able to complete the proof of (3.2). Let β ∈
(

0, r
1−r

)
be given. Let T > 0 be

given. Then one has for each n ≥ 0:∫
QT

(
v2
n

un + εn

)1+β

dxdt ≤
∫
QT

v2β+2
n

uβn(un + εn)
dxdt

≤ (1 + εn)β
∫
QT

v2+β
n

uβn(un + εn)
dxdt.

This above estimates show that for each T > 0 and β ∈
(

0, r
1−r

)
, the sequence

{
v2n

un+εn

}
n≥0

is bounded in L1+β(QT ). Next Fatou Lemma implies that for each T > 0

v2

u
χ{u>0} ∈ L1+β(QT ), ∀β ∈

(
0,

r

1− r

)
.

This completes the proof of (3.2).
Let us now prove the convergence result stated in (3.3). To do so, let us first notice that

v2
n

un + εn
→ v2

u
a.e. on QT ∩ {u > 0}.

Now let β ∈
(

0, r
1−r

)
be given. Note that for each n ≥ 0 one has(

v2
n

un + εn

)1+β

≤ v2+β
n

uβn(un + εn)
vβn.

Hence the estimate provided in Lemma 2.3 yields to(
v2
n

un + εn

)1+β

≤ Kβ
r e

rβt v2+β
n

uβn(un + εn)
urβn . (3.5)

Let 0 < τ < T be given. Integrating (3.5) over Qτ,T ∩ {u = 0} leads us to∫
Qτ,T∩{u=0}

(
v2
n

un + εn

)1+β

dxdt ≤ Kβ
r

∫
QT

erβt
v2+β
n

uβn(un + εn)
dxdt

(
sup

Qτ,T∩{u=0}
un

)rβ
. (3.6)

Recalling that {un} converges uniformly towards u on Qτ,T for each τ ∈ (0, T ) the above
inequality ensures that for each 0 < τ < T :

lim
n→∞

∫
Qτ,T∩{u=0}

(
v2
n

un + εn

)1+β

dxdt = 0.

Hence possibly along a subsequence, one obtains that
v2n

un+εn
→ 0 a.e. in QT ∩ {u = 0}. Finally

note that we have obtained that

v2
n

un + εn
→ v2

u
χ{u>0} a.e. in QT .

Due to the uniform bound in L1+β(QT ) for the sequence
{

v2n
un+εn

}
n≥0

stated in (3.2), one

obtains that
{

v2n
un+εn

}
n≥0

is uniformly integrable so that Vitali’s theorem applies and completes

the proof of (3.3).
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