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Abstract

In this paper we study the stability and the bifurcation properties of the positive interior
equilibrium for a reaction-diffusion equation with nonlocal advection. Under rather general as-
sumption on the nonlocal kernel we first study the local well posedness of the problem in suitable
fractional spaces and we obtain stability results for the homogeneous steady-state. As a special
case, we obtain that “standard” kernels such as Gaussian, Cauchy, Laplace and triangle, will lead
to stability. Next we specify the model with a given step function kernel and investigate two types
of bifurcations, namely Turing bifurcation and Turing-Hopf bifurcation. In fact, we prove that a
single scalar equation may display this two types of bifurcations with the dominant wave number
as large as we want. Moreover, similar instabilities can also be observed by using a bi-modal
kernel. The resulting complex spatio-temporal dynamics are illustrated by numerical simulations.
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1 Introduction

In this work we consider the following one-dimensional nonlocal reaction-diffusion-advection equation

∂u

∂t
= ε

∂2u

∂x2
− ∂

∂x
(uv) + f(u), t > 0, x ∈ R. (1.1)

Here ε ≥ 0 denotes the viscosity parameter. The velocity field v is derived from pressure P , where

v = −∂P
∂x

with P (t, x) = (ρ ∗ u(t, .)) (x) =

∫
R
ρ(x− y)u(t, y)dy. (1.2)

In the above equation we assume that the pressure P follows nonlocal Darcy law with the kernel
ρ ∈ L1(R) and the symbol ∗ denotes the convolution product on R. Hence with this closure equation,
(1.1) reads as a reaction-diffusion problem with a nonlocal advection term.

In this article Problem (1.1)-(1.2) is supplemented with an initial data u(0, x) = u0(x) that is
assumed to be 2L−periodic with some given and fixed value L > 0. In that periodic setting, the above
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problem re-writes as the following equation posed on (−L,L) with periodic boundary conditions
∂u

∂t
= ε

∂2u

∂x2
+

∂

∂x

(
u
∂

∂x
(K ◦ u)

)
+ f(u), t > 0, x ∈ (−L,L),

u(0, x) = u0(x), x ∈ (−L,L),

(1.3)

wherein the kernel K ∈ L1
per (−L,L) is defined by

K(x) = 2L
∑
k∈Z

ρ(x+ 2Lk), x ∈ R. (1.4)

Here and in the sequel of this article the symbol ◦ denotes the convolution product on the torus
R/(2LZ) i.e.,

(g ◦ h) (x) =
1

2L

∫ L

−L
g(x− y)h(y)dy, ∀g, h ∈ L1

per (−L,L) ,

while for any p ∈ [1,∞], we shall also make use of the notation Lpper (−L,L) to denote the usual
Lebesgue spaces of 2L−periodic functions on R.

System (1.1)-(1.2) (or the periodic equation (1.3)) appears in the mathematical modelling of cell
population dynamics. It allows to model the motion of cells by taking into account interactions
through cell-cell communication, but also the proliferation of cells and cell cycle through the active
part of the equation, namely the function f = f(u).

The nonlinear operator responsible for the motion of cells, denoted by M(u) and defined by

M(u) =
∂

∂x

[
ε
∂u

∂x
+ u

∂

∂x
(ρ ∗ u)

]
was proposed and studied by several authors in the literature. With zero viscosity term ε = 0, this
operator has been obtained by Oelschläger in [25] as a suitable limit of interacting system of particles.
We also refer to Morale, Capasso and Oelschläger [24] for the derivation of the above operator with
a viscosity term. The nonlinear operator M(u) has also been introduced in crowd dynamics and we
refer to the survey paper of Bernoff and Topaz in [1] and the references therein.

Some properties of the equation
∂u

∂t
= M(u) without viscosity has been studied for instance in

[4, 20, 28] (see also the references cited therein). We also refer to Burger and Di Francesco [5] and
the references therein for a study of a slightly different equation including nonlinear diffusion.

The nonlinear equation (1.1) has been considered by Ducrot and Magal in [12] with the zero
viscosity ε = 0. The authors mostly considered the case of logistic nonlinearity function f = f(u),
and most importantly, they considered a specific class of kernel function ρ. More specifically, the
aforementioned work deals with the global asymptotic behaviour of the problem for kernels with
positive Fourier transform. In this work, this situation roughly corresponds to the stability case (see
Remark 2.10 below).

As already mentioned, in the context of cell population dynamics, the function f models the
process of cell proliferation. Instead of considering the reaction term as logistic type, we shall make
use of the function derived by Ducrot et al. in [11]. Hence throughout this article we use the following
specific form for this function f

f(u) =
bu

1 + γu
− µu, b > 0, µ > 0, γ > 0. (1.5)

This specific form will allow us to make use of explicit computations in our analysis and to use the
parameter γ > 0 as a bifurcation parameter. In the context of cell population dynamics, this nonlinear
function takes account of the cell division and exit rate through the parameter b and µ respectively.

2



The saturation part due to the parameter γ > 0 reflects the cell cycle and more precisely the dormant
phase. We refer to [11] for more details on the modelling issues.

The aim of this article is to study stability and pattern formation for Problem (1.1)-(1.2) or more
specifically for its 2L−periodic counterpart (1.3) through bifurcation analysis methods. Roughly
speaking, a scalar and local reaction-diffusion equation typically does not exhibit pattern formation,
which is the result of suitable comparison arguments. However as far as nonlocal interaction are
concerned, the application of comparison arguments may fail and more complex dynamical behaviours
may occur.

Oscillations due to nonlocal interactions has already been observed and studied. We refer for in-
stance to Fiedler and Polácik [14] for a nice work in this direction. Here, we shall discuss the existence
of complex asymptotic behaviour of the solutions of (1.1)-(1.2) (or (1.3)) close to the positive homo-
geneous stationary state and, our discussion will be strongly related with some properties (expressed
in term of Fourier transform) of the kernel function ρ arising in the nonlocal advection term.

One type of kernel function that is of particular interest is a step function of the form

ρ(x) = ρη,s(x) =
1

2η
χ[−1,1]

(
x− s
η

)
, x ∈ R, (1.6)

for some scaling parameter η > 0, a shift s ∈ R and where χ[−1,1] denotes the characteristic function
of the interval [−1, 1], that is

χ[−1,1](x) =

{
1, if x ∈ [−1, 1],
0, otherwise.

As it will be seen in this article, this kernel may destabilize the positive homogeneous steady-state
yielding Turing instabilities and the existence of spatially heterogeneous steady-state and, more sur-
prisingly, it may also lead to spatio-temporal regime through Turing-Hopf bifurcation.

Using this kernel, one may observe that the solution of (1.1)-(1.2) is – at least formally – solution
of the following active nonlocal Burger equation with viscosity

∂u

∂t
= ε

∂2u

∂x2
+

∂

∂x
Q[u] + f(u), t > 0, x ∈ R,

wherein Q denotes the quadratic nonlocal operator

Q[u(t, .)](x) = u(t, x)
u(t, x− η + s)− u(t, x+ η + s)

2η
, x ∈ R.

As already mentioned above our goal in this article is to study the stability of the positive homo-
geneous equilibrium for Problem (1.3) and to provide a bifurcation analysis when it destabilizes. The
stability condition is studied using a rather general and possibly non smooth kernel function ρ. Our
bifurcation analysis is performed using the more specific kernel ρ proposed in (1.6) above involving
the two parameters η > 0 and s ∈ R. Here, this specific choice of the kernel ρ is used to compute
explicitly the bifurcation property of the system.

This work is organized as follows. In Section 2 we reformulate (1.3) as an abstract parabolic
Cauchy problem. From this we are able to study the local well posedness of Problem (1.3) and to
study the stability properties of equilibrium state through spectral analysis. In Section 3 we study
bifurcations at the positive equilibrium when it becomes spectrally unstable. Moreover, we prove,
using the kernel ρ proposed in (1.6), that Turing and Turing-Hopf bifurcations may occur yielding
complex spatio-temporal dynamics. We conclude this paper by a short discussion on (1.3) without
vital dynamics, namely f(u) = 0 and its connection with the porous medium equation.
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2 Semiflow and stability

2.1 Spectral analysis

In this section, we consider Problem (1.3). We assume that ε > 0, L > 0 are given and fixed. Next
recalling the definition of the function f in (1.5) we assume that

γ > 0, b > 0, µ > 0 and b− µ > 0.

In that case Problem (1.3) has a unique positive homogeneous steady state given by

ue :=
b− µ
γµ

> 0. (2.1)

In this section we first study some spectral properties of the – formally – linearized problem at the
above positive equilibrium. Then we turn to the stability analysis. The linearized problem in the
state space L2

per(−L,L) reads as follows
∂v

∂t
(t, x) =

∂2

∂x2
(εv + ue(K ◦ v(t, ·))(x)) + f ′(ue)v(t, x), t > 0, x ∈ (−L,L),

v(t,−L) = v(t, L), ∂xv(t,−L) = ∂xv(t, L), t > 0,

(2.2)

where

f ′(ue) =
µ(µ− b)

b
< 0.

To handle this problem we define the linear operator A : D(A) ⊂ L2
per(−L,L) → L2

per(−L,L) as
follows {

D(A) = H2
per(−L,L),

Aφ = εφ′′ + ue (K ◦ φ′′) .
(2.3)

Here recall that the kernel K ∈ L1
per(−L,L). To analyze this operator we shall make use of Fourier

analysis. To that aim we shall also use of the notation 〈., .〉 to denote the inner product in L2
per(−L,L;C)

defined by

〈f, g〉 =
1

2L

∫ L

−L
f(x)g(x)dx, ∀f, g ∈ L2

per(−L,L).

The corresponding norm on L2
per(−L,L) is denoted by ‖.‖0. We also introduce the Hilbert basis{

en : x→ eiπ
nx
L

}
n∈Z on L2

per(−L,L) as well as, for each function ϕ ∈ L1
per(−L,L;C), its Fourier

coefficients {cn(ϕ)}n∈Z ⊂ C defined by

cn(ϕ) = 〈en, ϕ〉 =
1

2L

∫ L

−L
ϕ(x)e−iπ

nx
L dx, for any n ∈ Z. (2.4)

Recall that using the above notation, the map ϕ 7→ {cn(ϕ)}n∈Z is an isometry from L2
per(−L,L;C) –

endowed with the norm ‖.‖0 – onto l2 (Z;C).
We now describe the spectrum of the operator A defined above.

Proposition 2.1. Recalling that K ∈ L1
per(−L,L), the spectrum of the linear operator A, denoted by

σ(A), consists in point spectrum and one has

σ(A) =

{
λn := −

(nπ
L

)2
[ε+ uecn(K)] , n ∈ Z

}
,

and the corresponding eigenvectors are given by Aen = λnen for all n ∈ Z.
In addition, for each λ ∈ ρ(A) := C \ σ(A), the resolvent set of A, and each f ∈ L2

per(−L,L), one
has

(λ−A)−1f =
∑
n∈Z

cn(f)

λ− λn
en.
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Remark 2.2. The key observation in the above lemma is the fact that since K ∈ L1
per(−L,L) we

have by the Riemann-Lebesgue lemma

lim
|n|→+∞

cn(K) = 0.

Therefore the results for purely diffusive systems (i.e. whenever K = 0) can be extended to the above
class of linear operators.

Recalling the definition of the kernel K in (1.4), one may notice that the Fourier coefficients cn(K)
can be expressed using the Fourier transform of the kernel ρ in the original model (1.3). In the one
dimensional setting, this relationship reads as follows

cn(K) = ρ̂
( n

2L

)
, n ∈ Z where ρ̂(ξ) =

∫
R
ρ(x)e−2iπxξdx. (2.5)

Proof. Let us first observe that for each n ∈ Z one has:

(Aen) (x) = −
(nπ
L

)2 [
ε+

ue
2L

∫ L

−L
K(y)e−

inπ
L ydy

]
en(x).

As a consequence one obtains Aen = λnen for all n ∈ Z, that is {λn, n ∈ Z} ⊂ σp(A), the point
spectrum of A.

Now we claim that:

Claim 2.3. Let λ ∈ C \ {λn, n ∈ Z} be given. Then for each f ∈ L2
per(−L,L) there exists a unique

uf ∈ H2
per(−L,L) such that

(λ−A)uf = f,

and that the linear map f 7→ uf is continuous on L2
per(−L,L) into H2

per(−L,L) and it is given by

uf =
∑
n∈Z

cn(f)

λ− λn
en.

Note that this claim ensures that

C \ {λn, n ∈ Z} ⊂ ρ(A),

which implies
σp(A) ⊂ σ(A) ⊂ {λn, n ∈ Z} ,

and this completes the first part of the proposition. Note also that the explicit formula for the resolvent
operator also follows from the above claim.

To prove this claim recall that the spaceH2
per(−L,L) can be re-written using the Fourier coefficients

as follows:

H2
per(−L,L) =

{
ϕ ∈ L2

per(−L,L) :
∑
n∈Z

(
1 + n2

)2 |cn(ϕ)|2 <∞

}
,

and the norm ‖.‖2 on H2
per(−L,L), defined by:

‖ϕ‖22 =
∑
n∈Z

(
1 + n2

)2 |cn(ϕ)|2 , ∀ϕ ∈ H2
per(−L,L),

is equivalent to the usual H2
per(−L,L)−norm. Using this characterization we are now able to complete

the proof of the above claim.
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Proof of Claim 2.3: Let λ ∈ C \ {λn, n ∈ Z} be given. Let f ∈ L2
per(−L,L) be given. Assume first

that there exists u = uf ∈ D(A) such that

(λ−A)u = f.

Then we get
〈en, (λ−A)u〉 = 〈en, f〉 , ∀n ∈ Z.

However, since for each n ∈ Z, one has

〈en, (λ−A)u〉 = (λ− λn) cn(u),

one obtains that

cn(u) =
cn(f)

λ− λn
, ∀n ∈ Z.

As a consequence, the solution is unique as soon as it exists.

On the other hand consider the sequence
{
Fn(λ) := cn(f)

λ−λn

}
n∈Z

, that is well defined since λ 6= λn for

all n ∈ Z. Since K ∈ L1
per(−L,L), one can use the Riemann-Lebesgue lemma to get that cn(K)→ 0

as |n| → ∞, so that

λn ∼ −ε
(nπ
L

)2
as |n| → +∞.

Hence the sequence
{

1+n2

λ−λn

}
n∈Z

is bounded. As a consequence one gets

∞∑
n=−∞

∣∣1 + n2
∣∣2 |Fn(λ)|2 ≤ sup

n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ∞∑
n=−∞

|cn(f)|2 ≤ sup
n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ‖f‖20. (2.6)

As a consequence the function u = uf defined by

uf =
∑
n∈Z

Fn(λ)en,

satisfies:
uf ∈ H2

per(−L,L) and (λ−A)uf = f.

Summarizing the above arguments we have obtained that for each f ∈ L2
per(−L,L) the function

uf ∈ H2
per(−L,L) is the unique solution of (λ−A)uf = f . Furthermore (2.6) ensures that

∥∥∥(λ−A)
−1
f
∥∥∥2
2
≤ sup

n∈Z

∣∣∣∣ 1 + n2

λ− λn

∣∣∣∣2 ‖f‖20, ∀f ∈ L2
per(−L,L),

that completes the proof of the claim.

Remark 2.4. As a corollary of the above proposition and more precisely of the resolvent formula,
one obtains the following estimate:
For each λ ∈ ρ(A) one has:

‖(λ−A)−1‖L(L2
per(−L,L)) ≤ sup

n∈Z

1

|λ− λn|
. (2.7)

Now observe that, since cn(K)→ 0 as |n| → ∞, one has

lim
|n|→+∞

Imλn
Reλn

= lim
|n|→+∞

ueIm{cn(K)}
ε+ ueRe{cn(K)}

= 0.
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Hence, since |λn| is bounded from above, for each a > 0 large enough there exists φa ∈
(
0, π2

)
and

0 < ka < a large enough such that {λn}n∈Z ⊂ Σa wherein Σa ⊂ C is defined by

Σa =
{
z = a+ reiθ ∈ C : r > ka and |π − θ| < φa

}
.

One concludes from the above estimate that the linear operator A is a sectorial operator in L2
per(−L,L).

Using the above proposition we now focus on the stability analysis of the homogeneous steady
state ue (defined in (2.1)) of Problem (1.3). To that aim we need to strengthen our assumption for
the kernel K ∈ L1

per(−L,L). More precisely we assume that

Assumption 2.5. There exists ν ∈ (0, 1] such that the convolution kernel K ∈ L1
per(−L,L) satisfies

sup
n∈Z

(|n|ν |cn(K)|) <∞.

Using the above assumption we shall re-write (1.3) as an abstract Cauchy problem involving a
sectorial operator and suitable fractional spaces. To reach this goal, let us introduce the scale of
Hilbert spaces Hs

per for s ∈ R by

Hs
per(−L,L) =

{
ϕ ∈ L2

per(−L,L) :
∑
n∈Z

(
1 + |n|2

)s |cn(ϕ)|2 <∞

}
.

These spaces are endowed with the inner product 〈., .〉s defined by

〈ϕ,ψ〉s =
∑
n∈Z

(
1 + |n|2

)s
cn(ϕ)cn(ψ).

We denote by ‖ϕ‖s :=
√
〈ϕ,ϕ〉s the corresponding norm. Beside, we denote that L2

per(−L,L) = L2
per

and with norm ‖.‖0.
Now define the sectorial operator A : D(A) ⊂ L2

per → L2
per by

D(A) = H2
per(−L,L) and A = −I + ε

∂2

∂x2
.

Next observe (see [17, 34]) that for all s ∈ R one has

(−A)s =

∞∑
n=−∞

[
1 + ε

(nπ
L

)2]s
cn(.)en,

so that H2s
per = D ((−A)s) and the norm ‖.‖2s is equivalent to the graph norm ‖(−A)s.‖ on H2s

per.
Moreover, noticing the norm of D((−A)s) = H2s

per is equivalent to the norm on Hs(−L,L) (See [31,
p.50]). Thus, for the simplicity of notation, we denote Hs := Hs

per(−L,L) for any s > 0 and we choose
H2−ν as our state space, therefore H2−ν ↪→ Cper([−L,L]) is a continuous embedding if 0 < ν ≤ 1
where Cper([−L,L]) denotes the space of the continuous 2L-periodic functions endowed with the
uniform norm ‖ · ‖∞. In the sequel we shall also use the notation H0 to denote L2

per.

2.2 Existence of a semiflow in some fractional space

In this section we shall re-write Problem (1.3) as an abstract Cauchy problem involving a sectorial
linear operator and prove that it generates a maximal semiflow in a suitable fractional space, namely
H2−ν where the parameter ν ∈ (0, 1] is defined in Assumption 2.5. To that aim we first need to prove
the following lemma.
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Lemma 2.6. Let Assumption 2.5 be satisfied. Then the bilinear map

B : (ϕ,ψ) 7→ d

dx

(
ϕ
d

dx
K ◦ ψ

)
,

is continuous from H1 ×H2−ν to L2
per.

Proof. Let ϕ and ψ be two 2L−periodic smooth functions. Then one has

B(ϕ,ψ) = ϕ′ (K ◦ ψ′) + ϕ (K ◦ ψ′′) .

Hence we get

‖B(ϕ,ψ)‖0 ≤ ‖ϕ
′‖0‖K ◦ ψ′‖0 + ‖ϕ‖L∞‖K ◦ ψ′′‖0

≤ ‖ϕ′‖0‖K‖L1‖ψ′‖0 + ‖ϕ‖L∞‖K ◦ ψ′′‖0.

Recalling that N = 1, due to Sobolev embedding one has H1 ↪→ L∞ and, there exists some constant
C1 > 0 (that does not depend on ϕ and ψ) such that

‖B(ϕ,ψ)‖0 ≤ ‖ϕ‖1‖K‖L1‖ψ‖1 + C1‖ϕ‖1‖K ◦ ψ′′‖0.

It remains to estimate the last term. To that aim note that

‖K ◦ ψ′′‖20 =

∞∑
n=−∞

(nπ
L

)4
|cn(K)|2|cn(ψ)|2 =

(π
L

)4 ∞∑
n=−∞

|n|2ν |cn(K)|2
(
|n|2−ν

)2 |cn(ψ)|2

≤
(π
L

)4(
sup
n∈Z
|n|ν |cn(K)|

)2 ∞∑
n=−∞

(
1 + |n|2−ν

)2 |cn(ψ)|2

≤ C2
2‖ψ‖22−ν with C2 =

(π
L

)2(
sup
n∈Z
|n|ν |cn(K)|

)
.

As a consequence of the above estimates and since ν ∈ (0, 1], so that H2−ν ⊂ H1, one obtains that
for any smooth periodic functions

‖B(ϕ,ψ)‖0 ≤ [‖K‖L1 + C1C2] ‖ϕ‖1‖ψ‖2−ν .

This completes the proof of the lemma using a usual density argument.

Using the above lemma we can re-write (1.3) as an abstract Cauchy problem. Recall that H2−ν ⊂
H1 ⊂ Cper([−L,L]) with continuous embedding. We also modify the reaction term f on the negative

real line. We consider f̃(u) that coincide with the formula (1.5) when u ≥ 0 and f̃ is C∞ on R. Hence
the map F : H2−ν → L2

per defined by

F (ϕ)(x) = B(ϕ,ϕ)(x) + f̃(ϕ(x)) + ϕ(x), ∀x ∈ (−L,L),

is smooth. Problem (1.3) re-writes in the space H2−ν as the following abstract Cauchy problem:
du(t)

dt
= Au(t) + F (u(t)), for t ≥ 0,

u(0) = u0 ∈ H2−ν .
(2.8)

A function u ∈ C([0, τ ], H2−ν) is called a mild solution of the equation (2.8) on [0, τ ], if

u(t) = eAtu(0) +

∫ t

0

eA(t−s)F (u(s))ds,∀t ∈ [0, τ ]. (2.9)

Before going further let us recall the following definition.
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Definition 2.7. Let τ (maximal time of existence) be a map from a Banach space X into (0,+∞]
and let U be a map from Dτ := {(t, u) ∈ [0,+∞)×X : 0 ≤ t < τ(u)} into X.
Set U(t)u := U(t, u),∀(t, u) ∈ Dτ . We say that (U, τ) is a maximal semiflow on X if the following
properties are satisfied:

i) U(t)U(s)u = U(t+ s)u,∀t, s ∈ [0, τ(u)) with t+ s < τ(u) and u ∈ X ;
ii) U(0)u = u for all u ∈ X;
iii) τ(U(s)u) = s+ τ(u) for any u ∈ X and s ∈ [0, τ(u));
iv) if τ(u) <∞ then

lim
t↗τ(u)

‖U(t)u)‖X =∞.

The existence of a maximal semiflow for (2.8) is based on the fact that the map F : H2−ν → L2
per

is smooth enough and Lipschitz continuous on bounded sets and the following estimate

sup
t∈[0,T ]

‖
∫ t

0

eA(t−s)ϕ(s)ds‖2−ν ≤ CT ν/2 sup
t∈[0,T ]

‖ϕ(t)‖L2
per
,

for any ϕ ∈ C([0, T ], L2
per) where C is some constant.

By using the above estimation we follow the same idea as in Cazenave and Haraux [7, Chapter 5],
Lunardi [21, Theorem 7.1.3 (i) p.260 and Proposition 7.1.9 (i) p.267] and Magal and Ruan [22, 23] to
derive the following theorem.

Theorem 2.8 (Existence of the unique maximal semiflow). The abstract Cauchy problem (2.8)
generates a unique maximal semiflow on H2−ν . This means for each u0 ∈ H2−ν , we can find a map
τ : H2−ν → (0,+∞] (maximal time of existence) and a map U : Dτ → H2−ν where

Dτ := {(t, u0) ∈ [0,+∞)×H2−ν : 0 ≤ t < τ(u0)}.

such that there exists a unique mild solution U(·)u0 ∈ C([0, τ(u0)), H2−ν). Moreover, for every
τ̂ < τ(u0), there exist two constants r > 0 and K > 0 such that if ‖u0 − û0‖2−ν ≤ r, then τ (û0) > τ̂
and

‖U(t)u0 − U(t)û0‖2−ν ≤ K‖u0 − û0‖2−ν ,∀t ∈ [0, τ̂ ].

2.3 Stability and instability of ue

In this section we discuss the linear stability and instability of the stationary state ue by using the
abstract Cauchy problem formulation described in the previous section. Towards that purpose, we
shall make use of Theorem 5.1.2 and 5.1.3 in the monograph of Henry [17] to deal with the stability
and instability of the stationary state ue. Within this framework the – local – stability and instability
of ue relies on the spectrum of the linear operator A+F ′(ue) that reads as A+ f ′(ue). The spectrum
of this linear operator has been fully described in Section 2 and one has:

σ (A+ F ′(ue)) =

{
−
(nπ
L

)2
[ε+ uecn(K)]− µ(b− µ)

b
, n ∈ Z

}
. (2.10)

As a consequence one obtains the following result:

Theorem 2.9. Suppose Assumption 2.5 is satisfied. Then the following statements hold true:

(i) If

−
(nπ
L

)2
[ε+ ue Re(cn(K))]− µ(b− µ)

b
< 0, ∀n ∈ Z,

then ue is a locally – exponentially – stable homogeneous steady state of (2.8) in a neighbourhood
of ue in H2−ν . Here cn(K) is the Fourier coefficient defined by (2.5).
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(ii) If there exists n ∈ Z such that

−
(nπ
L

)2
[ε+ ue Re(cn(K))]− µ(b− µ)

b
> 0,

then ue is an unstable stationary state of (2.8) in H2−ν .

Remark 2.10. Using the first statement (i) in the above result, note that if Re (cn(K)) ≥ 0 for all
n ∈ Z \ {0}, then the spectrum is contained in the left complex half plane and ue is locally stable.

Due to the above remark and by using the explicit computations of the Fourier transform coupled
with Remark 2.2, one obtains the following corollary showing that ”standard” kernels lead to stability.

Corollary 2.11 (Local stability for “standard” kernels). Standard kernel functions, ρ, such as
Gaussian, Cauchy, Laplace and triangle law respectively defined by the following forms

x 7→ e−πx
2

, x 7→ 2

1 + 4π2x2
, x 7→ πe−2π|x| and x 7→ ρtriangle(x),

lead to the local stability of the interior equilibrium ue. Here the function ρtriangle is defined by

ρtriangle(x) =

 1 + x, x ∈ [−1, 0),
1− x, x ∈ [0, 1],
0 otherwise.

The next lemma shows that the positive equilibrium is locally exponentially stable whenever the
parameter γ > 0 is large enough.

Theorem 2.12 (Local stability for γ >> 1). Let Assumption 2.5 be satisfied. Let ε > 0, with
b > µ ≥ 0. Then there exists γ0 = γ0(ε, b, µ) > 0 such that when γ ≥ γ0 the homogeneous steady state
ue = (b− µ)/(γµ) of the equation (2.8) is locally exponentially stable. i.e.,

Re(λn + f ′(ue)) = −
(nπ
L

)2
[ε+ ue Re(cn(K))]− µ(b− µ)

b
< 0, ∀n ∈ Z.

Proof. We denote ue as ue(γ) indicating ue is dependent on the parameter γ. For the moment, we
choose γ ≥ γ̄ for a fixed γ̄ > 0, therefore ue(γ) is bounded above. For any K satisfy the Assumption
2.5, we have cn(K)→ 0 as |n| → ∞. Therefore, for any ε > 0 fixed, there exists a n0 such that

inf
n≥n0

{ε+ ue(γ) Re(cn(K))} ≥ 0. (2.11)

Notice if we increase γ, the equation (2.11) still holds. Thus for the finite set {0, 1, . . . , n0} one can
easily deduce

lim
γ→∞

max
n∈{0,1,...,n0}

{
−
(nπ
L

)2
[ε+ ue(γ) Re(cn(K))]

}
< 0.

3 Bifurcation analysis

In this section we investigate pattern formation for Problem (1.3). Our study is based on bifurcation
analysis and we will show that with a suitable choice for the model parameters and with an appropriate
kernel function, Turing bifurcation and Turing-Hopf bifurcation can occur.

In this section, we always fix a specific kernel function ρ = ρη,s as in (1.6). The corresponding
2L−periodic kernel (see (1.4)) is denoted by K = Kη,s. This choice of the above kernel function is

10



motivated by Remark 2.10. Indeed the Fourier coefficients of Kη,s can be explicitly computed and
they read as follows (see Remark 2.2):

cn (Kη,s) = ρ̂η,s

( n
2L

)
=

sin (nηπ/L)

nηπ/L
e−i

nπs
L , ∀n ∈ Z. (3.1)

As we can see, the real part of the Fourier coefficients that changes signs will lead to the instability
of the system. Note also that, with such kernel, namely (1.6), Assumption 2.5 is satisfied so that the
results of the previous section holds true with such a choice.

3.1 Turing bifurcation

Throughout this subsection we consider Problem (1.3) with the kernel ρη,0 defined above in (1.6) with
s = 0. We shall focus on the existence of Turing bifurcation for this problem.

We denote by Aη the linear operator defined in (2.3) with the kernel K = Kη,0 associated to the
step function ρη,0 (see definition (1.4)). Next lemma describes that a proper choice of parameters can
lead to spectral Turing bifurcation singularities.

Lemma 3.1. Let k0 ∈ N\{0} and η0 > 0 such that L/(2η0) ∈ N. Then there exists a pair of

parameters ε0 > 0 and γ0 > 0, such that the eigenvalues λn + f ′(ue) =: λ̂n of the linear operator
Aη0 + f ′(ue) satisfy

λ̂±n0
= 0, λ̂n < 0, for any n ∈ Z\{±n0},

with n0 = L
2η0

(−1 + 4k0) ∈ N \ {0}. In other words one can choose k0 as large as we want, and set

ε0 =
4µ(b− µ)

b

(
η0

−π + 4k0π

)2

, γ0 =
b

4(µη0)2
(−π + 4k0π)

such that λ̂n0(= λ̂−n0) is the only zero eigenvalue of multiplicity two while the other eigenvalues are
negative.

Remark 3.2. Note that since the kernel ρη,0 is symmetric (hence is Kη,0) then cn(Kη,0) = c−n(Kη,0)

for all n ∈ Z. As a consequence λ̂n = λ̂−n for all n ∈ Z and, with the notations of the above lemma
one has

ker
(
λ̂n0
−Aη0

)
= span

(
x 7→ cos

(n0πx
L

)
, x 7→ sin

(n0πx
L

))
.

Proof. Our proof is divided in two steps. We first provide parameter conditions that ensure the
existence of a unique pair (due to symmetry) of dominant eigenvalues and then we describe conditions
for the dominant eigenvalue to be zero.
First step: Existence and uniqueness of a pair of dominant eigenvalues:

Set ue(γ) = b−µ
γµ . Then the eigenvalues of Aη + f ′(ue(γ)) reads as follows (recall here that s = 0

in this subsection)

λ̂n = −
(nπ
L

)2 [
ε+ ue(γ)

sin(nηπ/L)

nηπ/L

]
− µ(b− µ)

b
,∀n ∈ Z,

Due to symmetry we only consider n ∈ N and we set α = ε/η2, β = (b− µ)/(γµη2) and

φ(x) := −αx2 − βx sinx.

By using the above notations, we can re-write the eigenvalues λ̂n as

λ̂n = φ(
nηπ

L
)− µ(b− µ)

b
. (3.2)
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The function φ is of transcendental type and it is not easy to consider the maximum directly. Thus
we re-write φ(x) as follows

φ(x) = −α
(
x+

β sinx

2α

)2

+
β2 sin2 x

4α
≤ β2

4α
,

and φ reaches its maximum β2

4α if and only if

x = − β

2α
sinx, sin2 x = 1. (3.3)

If we assume x > 0, the above equation has an unique solution which satisfies

x =
β

2α
, sinx = −1.

Therefore, fix k0 ∈ N\{0} arbitrarily large and we choose γ and ε such that the product γε satisfies

β

2α
≡ b− µ

2µ(γε)
= −π

2
+ 2k0π. (3.4)

With such a choice, (3.3) is satisfied and thus φ( b−µ2γµε ) = supx≥0 φ(x). Next note that

nηπ

L
= −π

2
+ 2k0π ⇐⇒ n = L/(2η)(−1 + 4k0).

Hence choosing n0 = L/(2η0)(−1 + 4k0) ∈ N \ {0} one has

n0η0π

L
=
b− µ
2γµε

= −π
2

+ 2k0π ⇐⇒ n0 =
L

2η0
(−1 + 4k0). (3.5)

By (3.2) and (3.5) one deduces

λ̂n0
= φ(

n0η0π

L
)− µ(b− µ)

b
and λ̂n0

> max
n∈N\{n0}

λ̂n. (3.6)

Second step: The dominant eigenvalue is zero.
To complete the proof of the lemma we have to fix ε and γ such λ̂n0

= 0 keeping in mind that the
product εγ is already fixed by (3.4).

In order to ensure that λ̂n0 = 0 is the unique zero eigenvalue we fix γ0 > 0 such that

b− µ
2γ0µη20

(
−π

2
+ 2k0π

)
≡ φ(

n0ηπ

L
) =

µ(b− µ)

b
. (3.7)

Hence ε0 > 0 is fixed by (3.4) and we obtain that λ̂n0 = 0 and λ̂n < 0, for any n ∈ N\{n0}. This
completes the proof of the lemma.

Now we will show the configuration of the parameters described above induces a Turing bifurca-
tion using γ as a bifurcation parameter, that will lead to the existence of a spatially heterogeneous
stationary state. To that aim we fix k0 ∈ N \ {0}, η0 > 0, ε0 > 0 and γ0 > 0 as in Lemma 3.1 as
such that n0 ∈ N \ {0}. Next we re-write the stationary equation associated to (2.8) by shifting the
positive homogeneous steady state to 0. By setting w := u− ue(γ) we obtain the following stationary
equation

0 = H(w, γ) := Aw + F̃ (w, γ), w ∈ H2, (3.8)

where A : D(A)→ L2
per is the sectorial operator defined by

Aw = −w + ε0w
′′, (3.9)
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while F̃ : H2−ν × (0,+∞)→ L2
per is defined by

F̃ (w, γ) =
b− µ
γµ

(Kη0 ◦ w)
′′

+B(w,w) +

(
µ2

b+ γµw
− µ

)
w + w. (3.10)

Therefore F̃ (0, γ) = 0 for any γ ∈ (0,+∞) and

∂wF̃ (0, γ) · w̃ =
b− µ
γµ

(Kη0 ◦ w̃)
′′ − µ(b− µ)

b
w̃ + w̃.

Next the linear operator ∂wH(0, γ) = Aη0 + f ′(ue(γ)) and its spectrum is given by

σ (∂wH(0, γ)) =

{
λ̂n(γ) = −

(nπ
L

)2 [
ε0 +

b− µ
γµ

cn (Kη0)

]
− µ(b− µ)

b
, n ∈ Z

}
.

Due to Lemma 3.1 and the choice of the parameters we know that

λ̂±n0(γ0) = 0 and λ̂n(γ0) < 0, ∀n 6= ±n0. (3.11)

Furthermore by the continuity of the eigenvalues with respect to the parameter γ, there exists δ0 > 0
small enough such that

λ̂n(γ) < −δ0 < 0 : n 6= ±n0, ∀γ ∈ (γ0 − δ0, γ0 + δ0), (3.12)

together with

dλ̂n0(γ0)

dγ
=
(n0π
L

)2 b− µ
γ20µ

cn0
(Kη0) < 0. (3.13)

Now in order to investigate the existence of non trivial branch of solutions for (3.8) and provide a
simple proof, we shall overcome the difficulty coming from the zero eigenvalue of multiplicity two (see
Remark 3.2) by working on the close subspace of symmetric functions. To that aim let us consider
for s ∈ R, the closed subspace Hs

] defined by

Hs
] = {ϕ ∈ Hs : ϕ(−x) = ϕ(x), a.e. x ∈ (−L,L)} .

Note that the above spaces can also be characterized using the symmetry of the Fourier coefficients
as follows:

Hs
] = {ϕ ∈ Hs : cn(ϕ) = c−n(ϕ), ∀n ∈ Z} .

Using the above set of notations, we now state our Turing bifurcation result.

Theorem 3.3 (Turing bifurcation). Suppose η0, ε0, γ0 and n0 ∈ N are given as in Lemma 3.1
such that (3.11), (3.12) and (3.13) are satisfied. Then (0, γ0) is a bifurcation point for the stationary
equation H(w, γ) = 0 with w ∈ H2

] in the sense that there exist σ0 > 0 and a unique C1−curve
(γ, ψ) : (−σ0, σ0)→ R× Z] such that{

H
(
σ cos

(
n0π·
L

)
+ ψ(σ), γ(σ)

)
= 0,

γ(0) = γ0, ψ(0) = ψ′(0) = 0,
, ∀σ ∈ (−σ0, σ0). (3.14)

Herein Z] ⊂ H2
] denotes the closed subspace defined by Z] = {ϕ ∈ H2

] :
∫ L
−L ϕ(x) cos

(
n0πx
L

)
dx = 0}.

Furthermore, there is a neighbourhood V of (0, γ0) in H2
] × (0,∞) such that

H−1(0) ∩ V = {(0, γ) : γ ∈ (µ,∞)} ∪ {(sen0
+ ψ(s), γ(s)) : |s| < δ0}.

The proof of this theorem given below is based on the implicit function theorem. The idea of the
proof goes back to Crandall and Rabinowitz [8]. Here we closely follow the proof of Theorem 13.4 of
the monograph of Smoller [30].
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Remark 3.4. One can observe that, due to the translation invariance of (1.3), the above result allows
us to obtain a non-symmetric family of heterogeneous stationary states for the equation H(w, γ) = 0
in a neighbourhood of (0, γ0). Indeed, with the notations of the above theorem, for each σ ∈ (−σ0, σ0)
and each τ ∈ R one has

H (wσ(·+ τ, γ(σ)) = 0,

wherein we have set wσ(x) = cos
(
n0π
L x

)
+ ψ(σ)(x), x ∈ [−L,L]. Furthermore from the numerical

experiments provided in Figure 3, for each σ, the family {wσ(·+ τ)}τ∈R seems to be orbitally stable.

Proof. To prove this result, we shall apply the implicit function theorem on a space of symmetric
function such that the eigenspace associated to the zero eigenvalue is one dimensional. To that aim
we consider the map

G(σ, z, γ) := H
(
σ cos

(n0π·
L

)
+ σz, γ

)
= A

(
σ cos

(n0π·
L

)
+ σz

)
+ F̃

(
σ cos

(n0π·
L

)
+ σz, γ

)
,

that is of the class C2 and is defined on a small neighbourhood of (0, 0, γ0) ∈ R× Z × (0,+∞). Here

Z := {ϕ ∈ H2 :
∫ L
−L ϕ(x) cos

(
n0πx
L

)
dx = 0}. As a consequence we fix r > 0 small enough and

we consider the map G as defined from (−r, r) × BZ(0, r) × (γ0 − r, γ0 + r) with value in H0. Here
BZ(0, r) ⊂ H2 denotes the open ball in the Banach space Z with center 0 and radius r small enough.
Now observe that, since the kernel Kη0,0, is symmetric with respect to 0, the nonlinear operator G
satisfies

G(σ, ϕ, γ) ∈ H0
] , for all |σ| < r, ϕ ∈ BZ(0, r) ∩H2

] and |γ0 − γ| < r.

As a consequence we consider the map G](σ, z, γ) = G(σ, z, γ) defined from (−r, r)×BZ](0, r)× (γ0−
r, γ0 +r) with values in H0

] with BZ](0, r) = BZ(0, r)∩H2
] . As already mentioned it is a smooth map,

namely of the class C2, on this open set and it furthermore satisfies

G](0, z, γ) = 0, ∀(γ, z) ∈ (γ0 − r, γ0 + r)×BZ](0, r).

Now to prove our result we consider the C1 map F] defined from (−r, r)×BZ](0, r)× (γ0 − r, γ0 + r)
into H0

] by

F(σ, z, γ) =


1
σG] (σ, z, γ) if σ 6= 0

∂σG] (0, z, γ) if σ = 0.

Let us observe that one has

F(0, 0, γ0) = ∂σG](0, 0, γ0) = ∂wH(0, γ0) · Re (en0) = Re
(
λ̂n0(γ0)en0

)
= 0.

Hence to prove our result we shall apply the implicit function theorem for the C1−function F in the
neighbourhood of the point (σ, z, γ) = (0, 0, γ0). Thus to complete the proof of the theorem, it is
sufficient to prove that the partial derivative operator ∂(z,γ)F(0, 0, γ0) is a linear isomorphism from
Z] × R onto H0

] . To check the invertibility of ∂(z,γ)F(0, 0, γ0) first note that one has

∂(z,γ)F(0, 0, γ0) · (z, γ) = ∂wH(0, γ0) · z + γλ̂′n0
(γ0)Re (en0

) .

Let h ∈ H0
] be given and let us solve the equation

Find (z, γ) ∈ Z] × R such that ∂(z,γ)F(0, 0, γ0) · (z, γ) = h.

However writing h =
∑
n∈Z hnen with (hn) ∈ l2(Z;C) and hn = h−n for all n ∈ Z and projecting the

above equation on the Hilbert basis (en) the above equation re-writes as follows:{
λ̂n(γ0)zn = hn ∀n ∈ Z \ {±n0},
γλ̂′±n0

(γ0) = h±n0 .
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Herein zn ∈ C denotes the projection of z on en. Since λ̂′n0
(γ0) 6= 0, λ̂n(γ) = λ̂−n(γ) and hn = h−n

this yields

zn = z−n, ∀n ∈ Z\{±n0},

zn =
hn

λ̂n(γ0)
∀n ∈ N \ {n0} and γ =

hn0

λ̂′n0
(γ0)

.

Hence the above equation has at most one solution in Z] × R. Furthermore since λ̂n(γ0) ∼ −n2 π
2ε0
L2

as |n| → ∞, the vector (z, γ) defined by

z =
∑

n∈Z\{±n0}

hn

λ̂n(γ0)
en, γ =

hn0

λ̂′n0
(γ0)

,

satisfies z ∈ Z] and γ ∈ R as well as ∂(z,γ)F(0, 0, γ0) · (z, γ) = h. Hence ∂(z,γ)F(0, 0, γ0) is invertible
from Z] × R into H0

] . As a consequence, the implicit function theorem ensures the existence of a

C1−map σ 7→ (φ(σ), γ(σ)) ∈ Z] × R defined in some neighbourhood of σ = 0, denoted by (−σ0, σ0)
for some σ0 > 0, such that

γ(0) = γ0 and φ(0) = 0,

and for all σ ∈ (−σ0, σ0),{
z ∈ Z], ‖z‖H2 ≤ r, |γ − γ0| ≤ r,
G(σ, z, γ) = 0

⇔ z = φ(σ) and γ = γ(σ).

This completes the proof of the theorem by setting ψ(σ) = σφ(σ) ∈ Z].

We complete this section by the following stability result for the symmetric and spatially hetero-
geneous bifurcation branch. Let us notice that since the kernel Kη0,0 is symmetric, the nonlinear
maximal semiflow provided in Theorem 2.8 leaves the space H2−ν

] invariant. We denote the semiflow

restricted on H2−ν
] by U](t)(·). Next by using the results in [17, Theorem 6.3.2 p.178] and incorpo-

rating (3.11), (3.12) and (3.13), we obtain the following stability results of the bifurcated solution.

Theorem 3.5. Let η0, ε0, γ0 and n0 be parameters as in Lemma 3.1 such that (3.11), (3.12) and (3.13)
are satisfied. Then there exists r > 0 small enough and a nontrivial equilibrium uγ = uγ(x) ∈ H2

] for

γ ∈ (γ0 − r, γ0 + r) such that it is unstable with respect to U] (in H2−ν
] ) if γ > γ0 but asymptotically

stable for γ < γ0.

Remark 3.6. As the Lemma 3.1 shows, φ(x)− µ(b−µ)
b = 0 will be the curve above which the bifurcation

occurs. Re-writing it explicitly reads as follows

− ε

η2
x2 − b− µ

γµη2
x sinx =

µ(b− µ)

b
.

Therefore, for any fixed b, µ, η0 and L with L
2η0
∈ N. For n ≥ 0, regarding ε as a function of γ−1, the

curves

ε = −b− µ
µ

sin(nηπ/L)

nηπ/L
γ−1 −

(nπ
L

)−2 µ(b− µ)

b
=: Hn(γ−1),

determines the stability region of the system. In fact, the spatially homogeneous steady state ue = ue(γ)
is locally stable in the region above all the curves Hn(γ−1) for n = L

2η0
(−1 + 4k) with k ∈ N \ {0}.

We continue this section with numerical experiments of (1.3) with the kernel ρη0,0 (as defined in
(1.6)). To that aim we fix the parameter values

L = 2, b = 1.5, µ = 1.2 and η = 1. (3.15)
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Note that L
2η = 1 so that the condition L

2η ∈ N is satisfied.
Figure 1 depicts the stability region and the different bifurcation curves corresponding to different

k = 1, 2, ..., 10.

.
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Stability region n
0
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Figure 1: Plots of the curves ε = Hn(γ−1) with n = −1 + 4k and k = 1, 2, . . . , 10. They are
straight lines and their slopes is decreasing with respect to n, hence to k. The stability region of the
homogeneous steady state is above all these curves.

Our numerical experiments are concerned with the behaviour of the nonlinear system (1.3) with
the parameter (3.15). The choice of the parameter ε and γ are given in Table 3.17. These choices
of parameters are presented in Figure 1 by the circle and square dots respectively. Both situations
correspond to the instability of the homogeneous steady state and more deeply, both of these situations
correspond to a unique pair of unstable eigenvalues λ̂±n0

for n0 = 3 and 7 respectively. The results
of the simulations are presented in Figure 2. Here we use the following Gaussian type function

u0(x) =
0.05√
2πσ2

e
− x2

(2σ2) , x ∈ [−2, 2], (3.16)

with σ = 0.2 as initial distribution. The simulations show that the instability of the homogeneous
stationary state will give rise to a stable symmetric stationary pattern solutions. As we can observe
from Figure 2, the dominant wave number of the solutions of the nonlinear equation (1.3) is exactly in

accordance with the index n0 where λ̂±n0 is the unique pair positive eigenvalues of the linear operator
A+ f ′(ue).

First configuration: (ε, γ) = (0.0056, 3.03) ,

Second configuration: (ε, γ) = (0.0023, 4.80) .
(3.17)
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Figure 2: Simulations (1.3) with parameters values (3.15) and (3.17). The upper row corresponds
to (ε, γ) = (0.0056, 3.03) while the bottom row to (ε, γ) = (0.0023, 4.80). Figure (a), (d) describe
the spectrum of the linearized equation at the homogeneous steady state; (b), (e) present the spatial
distributions of the solution at a given large time T = 300; and, (c), (f) present the spatio-temporal
evolution of the solutions. The initial distribution is given in (3.16) with σ = 0.2.

As we have mentioned in Remark 3.4, the symmetric heterogeneous steady state is translation
invariant. Therefore, given a non-symmetric initial profile, we present the spatio-temporal evolution
of the solution as in Figure 3 and the simulation indicates the solution will converge to a non-symmetric
heterogeneous steady state. Therefore the family of steady states {wσ(·+ τ)}τ∈R should be orbitally
stable.

x
-2 -1 0 1 2

0

0.05

0.1

0.15
(a)

x
-2 -1 0 1 2

0

0.05

0.1

0.15
(c)

Figure 3: Choosing parameters values as in (3.15) and the first configuration in (3.17) we obtain the
above figures. Figure (a) presents the given non-symmetric initial value, figure (b) presents the spatio-
temporal evolution of the solution and figure (c) presents the solution at a large time T = 200 when it
is mostly stabilized close to a suitable shift of the symmetric stationary state. The other parameters
are the same as in Figure 2 for the wave number n0 = 3.
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3.2 Turing-Hopf bifurcation

In this section we continue the bifurcation analysis of Problem (1.3) by using the kernel function ρη,s
defined in (1.6). Here we shall vary the shift parameter s ∈ R which will lead us to what we call
Turing-Hopf bifurcation and the existence of spatially heterogeneous time periodic solutions.

The reason that we call it Turing-Hopf bifurcation is based on the fact that by choosing the
parameters of the system properly, it admits a Hopf bifurcation such that:
1) We can find some mode n0, as large as we want, such that the periodic orbit is tangent to the
eigenfunction en0 ;
2) It consists in the first Hopf bifurcation, which means that the equilibrium is passing from a stable
to an unstable situation, by playing on the Hopf bifurcation parameter.

Let us mention that the first bifurcation is of particular interest in practice since this is the
bifurcation that can be observed numerically.

As already mentioned that we will work on Problem (1.3) with the kernel Kη,s, the corresponding
2L−periodic kernel associated to ρη,s in (1.6), for some well chosen parameter η > 0 and s ∈ (0, L].
The corresponding linearized operator at the equilibrium ue = ue(γ) is denoted by Aη,s + f ′ (ue(γ)).

Note that introducing the shift parameter s implies that the step function is no longer symmetric
so that the eigenvalues of Aη,s+f ′(ue(γ)) can take complex – non real – values. In the next lemma we
shall prove a result rather similar to the one stated in Lemma 3.1 with complex ’dominant’ eigenvalues.
More precisely, choosing the shifting parameter s = η, we shall prove that one can choose a mode
n0 ≥ 1 such that the eigenvalues λ̂n0

and λ̂−n0
are a unique pair of purely imaginary eigenvalues

satisfying the transversality condition with respect to the bifurcation parameter γ while the other
eigenvalues have negative real part.

Lemma 3.7. Let k0 ∈ N\{0} be given and fix s = η0 with L/(4η0) ∈ N. Let us denote by λ̂n(γ) the
sequence of eigenvalues of Aη0,η0 + f ′(ue(γ)). Then there exist ε0 > 0 and γ0 > 0 such that

λ̂n0
(γ0) = λ̂−n0

(γ0),

Re(λ̂±n0(γ0)) = 0, Im(λ̂n0(γ0)) > 0,
dRe(λ̂n0

)(γ0)

dγ
6= 0,

and
σ (Aη0,η0 + f ′(ue(γ0))) ∩ iR =

{
λ̂n0

(γ0), λ̂−n0
(γ0)

}
,

with n0 = L
4η0

(−1 + 4k0) ∈ N\{0}. Moreover, we have

Re(λ̂n(γ0)) < 0, for any n ∈ Z\{±n0}.

Proof. As mentioned above we set s = η. Hence recalling (3.1), the eigenvalues of Aη,η + f ′(ue(γ))
take the following form, for any n ∈ Z,

Re(λ̂n(γ)) = −
(nπ
L

)2(
ε+ ue(γ)

sin(2nηπ/L)

2nηπ/L

)
− µ(b− µ)

b
,

Im(λ̂n(γ)) =
(nπ
L

)2 sin2(nηπ/L)

nηπ/L
ue(γ).

Note that one has
λ̂n(γ) = λ̂−n(γ), ∀n ∈ Z, γ > 0.

Let k0 ≥ 1 and η0 > 0 such that L(4η0)−1 ∈ N be given. Then using the same arguments as the ones
in the proof of Lemma 3.1 one can find ε0 > 0 and γ0 > 0 such that

Re(λ̂±n0(γ0)) = 0,
dRe(λ̂n0

)(γ0)

dγ
6= 0,

Re(λ̂n(γ0)) < 0, for any n ∈ Z\{±n0},
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with n0 = L
4η0

(−1 + 4k0), that is

2n0η0π

L
≡ b− µ

2µγ0ε0
= −π

2
+ 2k0π. (3.18)

To complete the proof of the lemma, it remains to check that Im(λ̂n0(γ0)) > 0. However simple
computations yield

Im(λ̂n0(γ0)) =
(n0π
L

)2 sin2(−π4 + k0π)

n0η0π/L
ue(γ0) =

(n0π
L

) 1

2η0
ue(γ0) > 0.

And, this complete the proof of the lemma.

The spectral configuration discussed in the above lemma will allow us to state the following Hopf
bifurcation result for the evolution problem

dw(t)

dt
= Aw(t) + F̃ (w(t), γ), (3.19)

wherein we have set, as in the previous subsection, w(t) = u(t)−ue(γ), the linear operator A and the
function F̃ are defined in (3.9) and (3.10) respectively.

In order to discuss our Hopf bifurcation theorem we first discuss the existence of a center manifold
reduction for the above problem. To that aim, we fix k0 ≥ 1 and η0 > 0 as in the previous lemma
and let ε0 > 0, γ0 > 0 and n0 ≥ 1 be the parameter provided by this lemma. Next we include the
parameter γ into the state space and we consider the the following problem

d

dt

(
w(t)
γ(t)

)
= L

(
w(t)
γ(t)

)
+R

(
w(t)
γ(t)

)
,

wherein we have set

L =

((
A+ ∂wF̃ (0, γ0)

)
0

0 0

)
∈ L

(
H2 × R, H0 × R

)
,

and

R

(
w
γ

)
=

(
F̃ (w, γ)− ∂wF̃ (0, γ0)w

0

)
.

The function R is defined and of the class C∞ from a neighbourhood V ⊂ H2 × R of (w, γ) = (0, γ0)

into H0 × R. Note also that R satisfies R

(
0
γ0

)
= 0 and DR

(
0
γ0

)
= 0.

Next, the spectral configuration described in Lemma 3.7 ensures that

σ(L) ∩ iR =
{

0, λ̂n0
(γ0), λ̂n0(γ0)

}
,

while σ(L) ∩ {z ∈ C : Re z > 0} = ∅.
Note that the center space Ec is generated by (en0 , 0), (e−n0 , 0) and (0, 1).
Moreover because of the resolvent estimate (2.7) and due to the spectral configuration described in
Lemma 3.7, there exist ω0 > 0 and M > 0 such that

∥∥∥(iω − L)
−1
∥∥∥
L(H0×R)

≤ M

|ω|
, for all ω ∈ R such that |ω| > ω0,

Now since H2 × R and H0 × R are both Hilbert spaces, Theorem 2.20 in [15] applies and ensures
the existence of smooth center manifold. Applying Hopf bifurcation theorem (see for instance [16]),
this center manifold reduction allows us to obtain the Hopf bifurcation result.

19



Theorem 3.8 (Hopf Bifurcation). Let k0 ≥ 1 and η0 > 0 be given such that L/(4η0) ∈ N. Let
ε0 > 0 and γ0 > 0 be the parameters provided by Lemma 3.7. There exist σ∗ > 0, two smooth functions
σ 7→ γ(σ) and σ 7→ ω(σ) defined on (0, σ∗) such that for all σ ∈ (0, σ∗) the equation

dw(t)

dt
= Aw(t) + F̃ (w(t), γ(σ)) , t ∈ R,

has a non trivial ω(σ)−time periodic solution w(t). Furthermore one has

γ(σ) = γ0 +O(σ2), ω(σ) =
2π

Im λ̂n0
(γ0)

+O(σ2) as σ → 0.

Remark 3.9. The stability of the bifurcated periodic solution is studied in Appendix 5.1 by using the
center manifold reduction and the study of the normal form. The stability of the Turing bifurcation
presented in the previous section can also be investigated by using similar computations.

Remark 3.10. Another proof for the existence of the Hopf Bifurcation in our case can be found in the
work by Crandall and Rabinowitz [9] by using the implicit function theorem. In fact, in our case the

sectorial operator Aη0,η0 + ∂wF̃ (0, γ0) satisfies σ
(
Aη0,η0 + ∂wF̃ (0, γ0)

)
∩ iR =

{
λ̂n0

(γ0), λ̂−n0
(γ0)

}
and the eigenvalues are simple. Moreover, the operator

(λ− (Aη0,η0 + ∂wF̃ (0, γ0)))−1 : H0 → H0

is compact for any λ in the resolvent set. Therefore, the hypothesis (HL), (Hf) and (Hβ) in [9] are
satisfied and Theorem 1.11 in this aforementioned work ensures the existence and uniqueness of the
Hopf bifurcation in a small neighbourhood of (0, γ0) ∈ H2−ν × R+.

We continue this section by numerical experiments for System (1.3) with the kernel (1.6). To that
aim, we fix the following parameter sets

b = 1.5, µ = 1.2, L = 2, η = η0 = s = 0.5. (3.20)

Note that one has L/(4η0) = 1 ∈ N.
We consider two situations, close to the Turing-Hopf bifurcation point described above, that cor-

respond to the parameters

First configuration: (ε, γ) = (0.0023, 4.8) ,

Second configuration: (ε, γ) = (0.00084, 8.4) .
(3.21)

With such choices the spectrum configuration reads as follows: λ̂±n0
are the only eigenvalues with

positive real part and all the other eigenvalues have negative real parts. Moreover Re (λ̂±n0) is close

to zero and Im(λ̂±n0) 6= 0. This holds true for n0 = 7 and n0 = 11 respectively for the two parameter
sets (ε, γ) mentioned above.

With the parameters described above and equipped with the same initial data as the one use in
Figure 2 (see (3.16)), the spatio-temporal evolution for the solutions of (1.3) is presented in Figure 4
for the two parameter configurations in (3.21).
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Figure 4: In this figure we fix the parameter values as in (3.20) and (3.21). We observe a spatio-
temporal evolution of the solutions corresponding in (a) (respectively in (b)) to the first configuration
(respectively the second configuration) of the parameters in (3.21).

These simulations show that the solutions takes the form of a periodic wave train solution. Heuris-
tically the first order approximation of the bifurcated solutions take the form

u(t, x) ≈ue + Re
(
a(γ)eiωten0

(x)
)

+ h.o.t, for some constant a(γ) ∈ C \ {0}

=ue + |a(γ)| cos
(
ωt+

n0π

L
x+ ϕ

)
+ h.o.t, (3.22)

where ω ≈ Im(λ̂n0) and ϕ ∈ R is a phase number while the amplitude |a(γ)| of the oscillating
solution depends on the bifurcation parameter γ. Moreover from the normal form reduction provided
in Appendix 5.1 we have |a(γ)| ∼ a∗

√
|γ − γ0| for some constant a∗ when 0 < γ − γ0 << 1 or

0 < γ0 − γ << 1 depending on the nature (supercritical or subcritical) of the Hopf bifurcation.
Therefore, the expression in (3.22) roughly explains the spatio-temporal pattern observed in Figure
4. Moreover the numerical comparison of the wave lengths of the solutions in Figure 4 and the above
expression are in accordance.

We continue this section by exploring an other type of kernel function ρ. And we show that
instabilities, and more precisely Turing-Hopf bifurcation, may also occur for some bi-modal kernel.
Here as an example, we consider two identical Gaussian functions, one shifted to the left and one
shifted to the right, namely

ρ2(x) =
1

2
(G(x+ s1) +G(x− s2)) , with G(x) := e−πx

2

,

and wherein s1 and s2 are two positive parameters. Here we restrict ourselves to a numerical explo-
ration of Problem (1.1)-(1.2) with such a kernel function. However similar analytical results as the
ones presented above can be obtained for this bi-modal example (see Remark 3.11 below). Note also
that such a choice of multi-modal kernel is biologically relevant when we consider the preferred sensing
radius of a certain type of cell.
When kernel ρ2 is considered, the Fourier transform of this kernel can be calculated explicitly and we
have

ρ̂2(ξ) =
1

2
e−πξ

2 [
e2iπs1ξ + e−2iπs2ξ

]
. (3.23)

Therefore, according to (2.10), the real part and imaginary part of the eigenvalues for the system (1.3)
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are given as follows

Re(λn) = −
(nπ
L

)2 [
ε+ ueRe

(
ρ̂2

( n
2L

))]
− µ(b− µ)

b
,

Im(λn) = −
(nπ
L

)2
ue Im

(
ρ̂2

( n
2L

))
, n ∈ Z.

(3.24)

In the following simulation, we fix parameters b, µ and L as in (3.20) while we take

(ε, γ) = (0.01, 0.2) , s1 = 0.4, s2 = 0.3. (3.25)

By choosing the above parameters one can check that when n = ±4, λn is the only pair of eigenvalues
which has positive real part and we plot the distribution of the eigenvalues on the complex plane in
Figure 5 (a). Using the same initial distribution in Figure 2, the numerical simulation of (1.3) with
kernel ρ2 is presented in Figure 5 (b).

Re
-3 -2 -1 0 1

Im

-0.5

-0.4

-0.3

-0.2

-0.1
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0.1

0.2

0.3

0.4

0.5
(a)

Figure 5: In this figure we fix the parameter values as in (3.21) and (3.25). In Figure (a) we plot
the eigenvalues of the linearized equation by (3.24) in the complex plane for n = −10,−9, .., 9, 10. By
choosing the parameters in configuration (3.25), there is only one pair of eigenvalues, namely λ±4,
with a positive real part (see the filled dots). We observe a corresponding spatio-temporal evolution of
the solutions in (b). The simulation shows the bi-modal kernels can also lead to instability.

Remark 3.11. If we take γ as a bifurcation parameter and choose appropriate parameters ε, s1
and s2, a similar spectral analysis as in Lemma 3.7 for the linearized equation with kernel ρ2 can be
performed by using the explicit formula in (3.23) and (3.24). And one may use similar arguments as
the ones developed for the proof of Theorem 3.8 to prove the existence of a Hopf bifurcation for the
bi-modal case.

4 Conclusion and Discussion

In this article we discussed some dynamical properties of Problem (1.3). Depending on the kernel
function ρ, we are able first to discuss the stability and instability of the unique homogeneous positive
steady state. A bifurcation analysis has been performed to understand emerging complex patterns
when the positive homogeneous steady state becomes unstable. With a symmetric step function kernel,
Turing bifurcation of equilibrium may occur. As a result we obtain the existence of a stable branch of
spatially heterogeneous steady states. More surprisingly when this symmetry is broken by shifting the
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step function, the homogeneous steady state may undergo what we have called Turing-Hopf bifurcation
yielding the existence of a branch of spatially heterogeneous and time periodic solutions.

It is also interesting to recognize the complexity raised by the nonlinear and nonlocal diffusion
compare to nonlinear but local diffusion equation. As we can see from our bifurcation analysis, when
ε goes to 0, rich dynamical behaviours emerge from the model (1.3). This is also true without vital
dynamic term, i.e. whenever f = 0.

The case of zero viscosity, i.e., ε = 0, is also of particular interest. From the spectral analysis of
the operator A with kernel ρη,s, we can expect that the frequencies of oscillating solutions will become
higher if the viscosity coefficient becomes small. This may be due to the increasing number of positive
eigenvalues in such case. Moreover, we point out other kernels with their Fourier transform changing
signs will present the similar complex dynamics as the one observed for the step function kernel when
ε << 1 is small enough. To illustrate this issue we consider the C∞ kernel

ρ](x) = c0e
1

x2−1χ(−1,1)(x), (4.1)

where the constant c0 is defined by c0 := 1/
∫ 1

−1 ρ](x)dx. We furthermore denote by ρη,](x) := 1
ηρ](

x
η )

the function ρ] with scaling parameter η > 0. However, unlike the step kernel, the Fourier coefficient
of ρη,] does not have an explicit form, here we give in Figure 6 a numerical illustration of the following
map

n 7−→ −
(nπ
L

)2
ρ̂
( n

2L

)
, n ∈ Z

for step function kernel ρ = ρη,0 and ρ = ρη,]. Note that ρ̂η
(
n
2L

)
= ρ̂

(
nη
2L

)
. These numerical

illustrations are performed with the fixed values L = 4 and η = 0.8. By the symmetry of Fourier
coefficients, here we plot these maps for n = 0, 1, 2, . . . , 50.

n
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-0.2

-0.1

0

0.1
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0.5

1
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Figure 6: In this figure we plot of n 7→ −
(
nπ
L

)2
ρ̂ (nη2L ) (with n = 0, 1, . . . , 50). The Figure (a) and

(b) correspond respecitvely to the smooth function ρ = ρη,] defined in (4.1) and to the step function
ρ = ρη,0 defined in (1.6). In both cases we fix L = 4 and η = 0.8. The blue dots corresponds to
the eigenvalues of the linear operator A whenver ε = 0. As we can see in (a), a smooth kernel can
also leads to an infinite number of positive eigenvalues. Also the Figure (b) should be compared to the
Figure 3 (a) and (d) in which ε > 0 plays an crucial role to get only one positive eigenvalue.

The existence of positive Fourier coefficients will result in the essential difference between nonlinear
diffusion and nonlocal diffusion. Notice when η is small, we have , at least formally, ∂x(ρη ∗ u(t, ·)) ≈
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∂xu(t, ·) so that (1.3) with f(u) = 0, with ε << 1 and η << 1 should be a good approximation of
porous medium equation

∂tu(t, x) = ∂x (u∂xu(t, x)) , x ∈ R, t > 0. (4.2)

To explore numerically the connexion between (1.3) with f(u) = 0 and (4.2) we consider the so-called
Barenblatt solution to equation (4.2) that is defined as

uB(t, x, C) = t−1/3 max(C − k|x|2t−2/3, 0), (4.3)

where C > 0 denotes any positive constant (see for instance [33]). In the numerical experiments below
we fix C = 0.1 and we fix the scaling parameter for the kernel function η = 0.8. In the sequel we
shall make use of the notation ρ0 and ρ] to denote ρη,0 and ρη,] respectively. To go further we also
introduce the viscosity threshold associated to the kernel ρ

ε0 := −u∗min
n∈N

{
ρ̂(
nη

2L
)
}
,

wherein we have set u∗ = 1
2L

∫ L
−L u0(x)dx, the total mass of u0 in [−L,L].

Next we select the initial distribution u0(x) := uB(T1, x, 0.1) for T1 = 3 and x ∈ [−4, 4]. The
simulation starts from time T1 to time T2 = 5, 10 and 50 respectively. With such an initial data one
has u∗ = 0.0258 while, we can obtain the threshold values for two kernels

ε0 =

{
0.0025 for ρ = ρ0,

0.0056 for ρ = ρ].
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Figure 7: Numerical simulations of (1.3) for the two kernels ρ] and ρ0 with initial data u0(x) :=
uB(3, x, 0.1) and without reaction term (i.e. f = 0). We plot the solutions at time T2 = 5, 10, 50
in each sub-figure and we compare the simulation at the final time T = 50 with Barenblatt solution
uB(50, x, 0.1) (red cuvres). Figures (a)-(c) on the top correspond to the solutions with kernel ρ] and
viscosity coefficient ε = 0.0015, 0.0025 and 0.0035 respectively; while figures (d)-(f) in the bottom
correspond to the kernel ρ0 and the viscosity ε = 0.0046, 0.0056 and 0.0066 respectively.
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Remark 4.1. The numerical experiments in Figure 7 are performed so that the space step ∆x is
chosen rather small in order to overcome some difficulties linked with the high concentration of the
kernel (due to the scaling parameter η). We choose ∆x ≤ 0.1η so that we set a mesh with more than
20 points in the interval [−η, η]. The numerical method is discussed in the appendix.

As we can see from Figure 7, when η and ε are small, the nonlocal model (1.3) with the above two
kernels does not provide a good approximation of the solution of the nonlinear diffusion (4.2). As we
can see from the Figure 7, when ε = ε0−10−3, the solutions with both kernels ρ] and ρ0 in Figure (a)
and (d) differ remarkably from the Barenblatt solution of the porous medium equation. While when
we set ε = ε0 + 10−3, the simulations (c) and (f) at time t = 50 are relatively good approximation of
Barenblatt solution.

5 Appendix

5.1 Reduced system

In this subsection, we give a brief calculation of the center manifold reduction as a supplement of
Theorem 3.8. Recall our equation reads as follows

d

dt

(
w(t)
γ(t)

)
= L

(
w(t)
γ(t)

)
+R

(
w(t)
γ(t)

)
,

wherein we have set

L =

((
A+ ∂wF̃ (0, γ0)

)
0

0 0

)
∈ L

(
H2 × R, H0 × R

)
,

and

R

(
w
γ

)
=

(
F̃ (w, γ)− ∂wF̃ (0, γ0)w

0

)
.

Recall also that F̃ and B are defined by

F̃ (w, γ) =
b− µ
γµ

(K ◦ w)
′′

+B(w,w) +

(
µ2

b+ γµw
− µ

)
w + w, B(w,w) =

d

dx

(
w
d

dx
K ◦ w

)
,

and we define
G(w, γ) = F̃ (w, γ)− ∂wF̃ (0, γ0)w.

Moreover, we also define Â = A + ∂wF̃ (0, γ0) and let us observe that Âen = λn(γ0)en for all n ∈ Z.
Recall that the framework of 3.8 implies that we have, for some n0 ≥ 1,

λ±n0(γ0) ∈ iR, Re(λn(γ0)) < 0, ∀n 6= ±n0.

To perform our center manifold reduction we will need the following computations:

• K ◦ en = cn(K)en for all n ∈ Z

• B(en, em) = −
(π
L

)2
cm(K)m(m+ n)em+n for all (n,m) ∈ Z2.

Define the center space Ec = span (e±n0
)×R and the stable space Es = span (e±n0

)
⊥×{0} where

span (e±n0
) denotes the vector space spanned by eigenfunctions e±n0

while span (e±n0
)
⊥

denotes its
orthogonal space for the L2(−L,L)−inner product. We denote by Ψ̃ : Ec → Es the local center
manifold and in the sequel we will make use of the following notation

Ψ̃(xc, γ) = (Ψ(xc, γ), 0) ∈ Es, for (xc, γ) ∈ Ec close to (0, γ0),
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and xc = x−e−n0
+ x+en0

. Since the center manifold is smooth (here C∞) we re-write it as follows:

Ψ(xc, γ) =
∑

n 6=±n0

Ψn(xc, γ)en =
∑

n 6=±n0

Pn(xc, γ)en +O
(

((‖xc‖+ |γ − γ0|)3
)

in H2,

where, for each n ∈ Z \ {±n0}, Pn(xc, γ) is homogeneous polynomial of degree 2 for the variables x−,
x+ and (γ − γ0). For notational simplicity we also denote by P±n0(xc, γ) the first order polynomials

P−n0
(xc, γ) = x− and Pn0

(xc, γ) = x+.

Note that since the center manifold is real valued, one has

x+ = x− and Ψ−n(xc, γ) = Ψn(xc, γ), ∀n 6= ±n0.

To compute the – center manifold – reduced system, let us introduce the center and stable projectors
Πc and Πs as follows:

Πcϕ =
∑

n=±n0

cn(ϕ)en and Πsϕ =
∑

n 6=±n0

cn(ϕ)en,

as well as the center and stable part of the linear operator Â, respectively denoted by Âc and Âs and
defined by

Âcϕ =
∑

n=±n0

cn(ϕ)λn(γ0)en and Âsϕ =
∑

n 6=±n0

λn(γ0)cn(ϕ)en.

Next the reduced system reads as
dxc(t)

dt
= Âcxc(t) + ΠcG (xc(t) + Ψ (xc(t), γ(t)) , γ(t)) ,

dγ(t)

dt
= 0,

(5.1)

and the center manifold satisfies the following equation in the neighbourhood of (xc, γ) = (0, , γ0):

∂xcΨ(xc, γ) [Acxc + ΠcG(xc + Ψ(xc, γ), γ)] = AsΨ(xc, γ) + ΠsG(xc + Ψ(xc, γ), γ). (5.2)

Our goal is to obtain a Taylor expansion up to order 3 of the above reduced system. To that
aim we shall first compute a Taylor expansion of ΠcG(xc + Ψ(xc, γ), γ) and ΠsG(xc + Ψ(xc, γ), γ)
respectively up to order 3 and 2. To do so, first note that for ‖w‖ small enough and γ close to γ0 one
has the series expansion

F̃ (w, γ) =
b− µ
γµ

(K ◦ w)
′′

+B(w,w) + w(1− µ) +
µ2

b

∞∑
p=0

γpµpwp+1

bp
,

and

∂wF̃ (0, γ0)w =
b− µ
γ0µ

(K ◦ w)
′′

+ w(1− µ) +
µ2

b
w.

As a consequence one has, for all w and |γ − γ0| small enough,

G(w, γ) =
b− µ
µ

γ0 − γ
γ0γ

(K ◦ w)
′′

+B(w,w) +
µ2

b

∞∑
p=1

γpµpwp+1

bp
.

Hence this leads us to the following order 3 Taylor expansion

G(w, γ) =
b− µ
γ0µ

(2γ0 − γ)(γ0 − γ)

γ20
(K ◦ w)

′′
+B(w,w) +

µ3γ0
b2

w2

+
µ3(γ − γ0)

b2
w2 +

µ4γ20
b3

w3 +O((|w|+ |γ − γ0|)4).
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Now choosing the following form for w

w = xc + Ψ(xc, γ) = x−e−n0 + x+en0 +
∑

n 6=±n0

Pn(xc, γ) +O
(

(‖xc‖+ |γ − γ0|)3
)

in H2,

yields

(K ◦ w)′′ =−
((n0π

L

)2
c−n0

(K)x−e−n0
+
(n0π
L

)2
cn0

(K)x+en0

)
−

∑
n 6=±n0

(nπ
L

)2
cn(K)Pn(xc, γ)en +O

(
(‖xc‖+ |γ − γ0|)3

)
in H0,

and

B(w,w) =
∑

m,n∈Z2

Pn(xc, γ)Pm(xc, γ)B(en, em)

=−
∑
m,n

Pn(xc, γ)Pm(xc, γ)
(π
L

)2
cm(K)m(m+ n)em+n +O

(
(‖xc‖+ |γ − γ0|)4

)
in H0,

Now, we calculate those terms of B(w,w) up to order 2, which are given by

order 2


−x2+

(π
L

)2
cn0

(K)2n20e2n0
, n = m = n0;

−x2−
(π
L

)2
c−n0(K)2n20e−2n0 , n = m = −n0;

0, n = n0,m = −n0; or n = −n0,m = n0.

For further normal form computation, we list all possible situations of order 3 of ΠcB(w,w), that the
components along the vectors en0 and e−n0 . They reads as follows

order 3



0, n = n0, m = 0;

−x+P−2n0(xc, γ)
(π
L

)2
c−2n0

(K)2n20e−n0
, n = n0, m = −2n0;

0, n = −n0, m = 0;

−x−P2n0
(xc, γ)

(π
L

)2
c2n0

(K)2n20en0
, n = −n0, m = 2n0;

−x+P0(xc, γ)
(π
L

)2
cn0

(K)n20en0
, n = 0, m = n0;

x+P−2n0(xc, γ)
(π
L

)2
cn0(K)n20e−n0 , n = −2n0, m = n0;

−x−P0(xc, γ)
(π
L

)2
c−n0(K)n20e−n0 , n = 0, m = −n0;

x−P2n0(xc, γ)
(π
L

)2
c−n0(K)n20en0 , n = 2n0, m = −n0;

Finally, we compute the term Πcw2 and Πcw3. To that aim, note that one has

w2 =

x−e−n0
+ x+en0

+
∑

n 6=±n0

Pn(xc, γ)en

2

=x2+e2n0
+ 2x+x−e0 + x2−e−2n0

+ (x−e−n0
+ x+en0

)
∑

n 6=±n0

Pn(xc, γ)en +O((‖xc‖+ |γ − γ0|)4).
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therefore

Πcw2 = (x+P0(xc, γ) + x−P2n0
(xc, γ)) en0

+(x+P−2n0
(xc, γ) + x−P0(xc, γ)) e−n0

+O((‖xc‖+|γ−γ0|)4).

Next, one has
w3 = (x−e−n0

+ x+en0
)3 +O((‖xc‖+ |γ − γ0|)4),

so that we get
Πcw3 = 3x2+x−en0

+ 3x+x
2
−e−n0

+O((‖xc‖+ |γ − γ0|)4).

Coupling the above computations allows us to compute a Taylor expansion up to order 3 for the
quantity ΠcG(xc + Ψ(xc, γ), γ) and more precisely we get

ΠcG(xc + Ψ(xc, γ), γ)

=
b− µ
γ0µ

(2γ0 − γ)(γ − γ0)

γ20

(n0π
L

)2
(c−n0(K)x−e−n0 + cn0(K)x+en0)

+
(π
L

)2 (
x−P2n0(xc, γ)c−n0(K)n20 − x−P2n0(xc, γ)c2n0(K)2n20 − x+P0(xc, γ)cn0(K)n20

)
en0

+
(π
L

)2 (
x+P−2n0

(xc, γ)cn0
(K)n20 − x+P−2n0

(xc, γ)c−2n0
(K)2n20 − x−P0(xc, γ)c−n0

(K)n20
)
e−n0

+
µ3γ0
b2

(x+P0(xc, γ) + x−P2n0
(xc, γ))en0

+
µ3γ0
b2

(x+P−2n0
(xc, γ) + x−P0(xc, γ))e−n0

+
µ4γ20
b3

(
3x2+x−en0 + 3x+x

2
−e−n0

)
+O((‖xc‖+ |γ − γ0|)4) in H0.

(5.3)
Similarly, we also obtain a Taylor expansion for the quantity ΠsG(xc + Ψ(xc, γ), γ) up to order 2 as
follows,

ΠsG(xc + Ψ(xc, γ), γ) =2
(n0π
L

)2 (
cn0(K)x2+e2n0 + c−n0(K)x2−e−2n0

)
+
µ3γ0
b2

(
x2+e2n0

+ 2x+x−e0 + x2−e−2n0

)
+O((‖xc‖+ |γ − γ0|)3).

We now plug the above Taylor expansion into (5.4) to identify the polynomials Pn needed to obtain
a Taylor expansion up to order 3 of the reduced system.

First note that the left-hand side of (5.2) can be rewritten as

∂xcΨ(xc, γ) [Acxc + ΠcG(xc + Ψ(xc, γ), γ)]

=∂xcΨ(xc, γ) [λn0
(γ0)x+en0

+ λ−n0
(γ0)x−e−n0

+ h.o.t. ≥ 2]

=λn0
(γ0)x+∂xcΨ(xc, γ)en0

+ λ−n0
(γ0)x−∂xcΨ(xc, γ)e−n0

+ h.o.t. ≥ 3

(5.4)

where h.o.t. ≥ 2 (resp. 3) means those terms with order greater than 2 (resp. 3). And similarly, the
right-hand side of (5.2) can be re-written as

AsΨ(xc, γ) + ΠsG(xc + Ψ(xc, γ), γ)

=
∑

n 6=±n0

λn(γ0)Pn(xc, γ)en − 2
(n0π
L

)2 (
cn0

(K)x2+e2n0
+ c−n0

(K)x2−e−2n0

)
+
µ3γ0
b2

(
x2+e2n0 + 2x+x−e0 + x2−e−2n0

)
+ h.o.t. ≥ 3

=
∑

n 6=±n0

λn(γ0)Pn(xc, γ)en + C0x+x−e0 + C2n0
x2+e2n0

+ C−2n0
x2−e−2n0

+ h.o.t. ≥ 3,

(5.5)
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wherein we have set

C0 = 2
µ3γ0
b2

, C2n0
= −2

(n0π
L

)2
cn0

(K) +
µ3γ0
b2

, C−2n0
= −2

(n0π
L

)2
c−n0

(K) +
µ3γ0
b2

. (5.6)

According to (5.3) we only need to compute those terms when n = 0,±2n0. Next since (5.4) and (5.5)
are equal, identifying the terms of order 2 yields

λn0
(γ0)x+

∂

∂x+
Pn(xc, γ) + λ−n0

(γ0)x−
∂

∂x−
Pn(xc, γ) = λn(γ0)Pn(xc, γ) +Qn(xc) for n = 0,±2n0,

where we have defined

Q0(xc) = C0x+x−, Q2n0
(xc) = C2n0

x2+, Q−2n0
(xc) = C−2n0

x2−.

Recalling that Pn are homogeneous polynomials of degree 2 with respect to the three variables x−,
x+ and (γ − γ0), obtains that

P0(xc, γ) = − C0

λ0(γ0)
x+x−,

P2n0
(xc, γ) = − C2n0

λ2n0
(γ0)

x2+,

P−2n0
(xc, γ) = − C−2n0

λ−2n0
(γ0)

x2−,

where the constants C0, C±2m0
are defined in (5.6). Finally substituting the above expression into

the Taylor expansion of ΠcG(xc + Ψ(xc, γ), γ) yields the following reduced system up to order 3,
dx+(t)

dt
= [iω + a(γ)]x+ + x−x

2
+β + h.o.t ≥ 4,

x−(t) = x+(t),
dγ(t)

dt
= 0.

Here we have set λn0(γ0) = iω,

a(γ) =
(n0π
L

)2 b− µ
γ0µ

cn0
(K)

(2γ0 − γ)(γ − γ0)

γ20
,

and

β =
3γ20µ

4

b3
+

2γ0µ
3
(
π2b2n20cn0

(K)− γ0µ3L2
)

b4L2λ0 (γ0)

+

(
2π2b2n20cn0

(K)− γ0µ3L2
) (
π2b2n20 (c−n0

(K)− 2c2n0
(K)) + γ0µ

3L2
)

b4L4λ2n0 (γ0)
.

The first equation in the above system turns out to be the Poincaré normal form. It allows us to
study the stability of the bifurcated periodic solution. To that aim observe that

Re(a(γ)) =
(n0π
L

)2
ε0

(2γ0 − γ)(γ − γ0)

γ20
,

so that Re(a(γ)) > 0 for γ > γ0 and negative for γ < γ0 but close to γ0. The stability of the bifurcating
period orbit is fully by the sign of the real part of the β. However we are not able to conclude about
this sign. To summarize the Hopf bifurcation at γ0 is:
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1. supercritical if Reβ < 0, namely the origin is stable for γ < γ0 and unstable for γ > γ0.
Moreover when γ > γ0 the system has a stable limit cycle. Here the circular limit cycle has a
radius proportional to

√
γ − γ0.

2. subcritical if Reβ > 0, namely the origin is stable for γ < γ0 and unstable when γ > γ0.
Moreover when γ < γ0 the system has an unstable limit cycle, with a radius proportional to√
γ0 − γ.

5.2 Numerical Scheme

The numerical method used is based on upwind scheme. We refer to [13, 19] for more results about
this subject. We briefly illustrate our numerical scheme in this section: the approximation of the
convolution term is as follows

(K ◦ u(t, ·))(x) =

∫
[−L,L]

u(t, y)K(x− y)dy ≈
∑
j

K(x− xj)u(t, xj)∆x.

In addition, we define

lni :=
∑
j

K(xi − xj)u(tn, xj)∆x, (5.7)

for i = 1, 2, ...,M, n = 0, 1, 2, ..., N . We use the numerical scheme as illustrated in [18] to deal with
the nonlocal convection term and the scheme reads as follows

un+1
i − uni

∆t
= ε

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+
Fn
i+ 1

2

− Fn
i− 1

2

∆x
, (5.8)

i = 1, 2, ...,M, n = 0, 1, 2, ..., N

where

Fni+ 1
2

=

{
gn
i+ 1

2

un+1
i , if gn

i+ 1
2

≥ 0

gn
i+ 1

2

un+1
i+1 , if gn

i+ 1
2

< 0,
i = 0, 1, 2, · · · ,M. (5.9)

with

gni+ 1
2

=
lni+1 − lni

∆x
, i = 0, 1, 2, · · · ,M.

By the periodic boundary condition, one has gn1
2

= gn
M+ 1

2

and un0 = unM , u
n
1 = unM+1, therefore,

FnM+ 1
2

= Fn1
2

=

{
gn1

2

un+1
0 , if gn1

2

≥ 0

gn1
2

un+1
1 , if gn1

2

< 0.
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