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Projectors on the Generalized Eigenspaces
for Neutral Functional Differential
Equations in Lp Spaces

Arnaud Ducrot, Zhihua Liu, and Pierre Magal

Abstract. We present the explicit formulas for the projectors on the generalized eigenspaces associated

with some eigenvalues for linear neutral functional differential equations (NFDE) in Lp spaces by us-

ing integrated semigroup theory. The analysis is based on the main result established elsewhere by the

authors and results by Magal and Ruan on non-densely defined Cauchy problem. We formulate the

NFDE as a non-densely defined Cauchy problem and obtain some spectral properties from which we

then derive explicit formulas for the projectors on the generalized eigenspaces associated with some

eigenvalues. Such explicit formulas are important in studying bifurcations in some semi-linear prob-

lems.

1 Introduction

In this paper we consider the linear neutral functional differential equation (NFDE)

in Lp spaces

(1.1)





d

dt
(x(t) − L1(xt )) = B(x(t) − L1(xt )) + L2(xt ),

t ≥ 0, x(0) = x̂ ∈ R
n, x0 = ϕ ∈ Lp((−r, 0), R

n),

with xt ∈ Lp((−r, 0), R
n) satisfying xt (θ) = x(t + θ) for almost every θ ∈ (−r, 0).

Here p ∈ [1, +∞), r ∈ [0, +∞), B ∈ Mn(R) is an n× n real matrix, and L j , j = 1, 2,

are bounded linear operators from Lp((−r, 0), R
n) into R

n given by

L j(ϕ) =

∫ 0

−r

η j(θ)ϕ(θ) dθ.

Here η j ∈ Lq((−r, 0), Mn(R)) with 1
p

+ 1
q

= 1 , j = 1, 2.

The aim of this work is to derive explicit formulas for the projectors on the gen-

eralized eigenspaces associated with some eigenvalues. This problem is of particular

importance in the bifurcation theory of corresponding semilinear problems. Indeed

these projectors are necessary in order to study the stability of bifurcating periodic
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solutions in the context of Hopf bifurcation, and especially when computing the nor-

mal form, see for instance Hale [8], Hale and Lunel [9], and the references therein.

This kind of NFDE in the space of continuous maps C([−r, 0], R
n) has been ex-

tensively considered (see, for example, Adimy and Ezzinbi [1]). Early work on delay

differential equations in Lp spaces using semigroup methods was due to Hale [7] and

Webb [14,15]. We refer to Wu [18], Diekmann et al. [4], and Batkai and Piazzera [2]

for more results and references on this topic.

Liu, Magal, and Ruan [10] proposed a general method to derive explicit formulas

for the projectors on the generalized eigenspaces associated with some eigenvalues

for linear functional differential equations (FDE) in the space of continuous maps:

(1.2)

{
dx(t)

dt
= Bx(t) + L̂ (xt ) ,∀t ≥ 0,

x0 = ϕ ∈ C ([−r, 0] , R
n) .

Their approach is based on a re-formulation of the problem in terms of an abstract

non-densely defined Cauchy problem and integrated semigroup theory. One of the

main difficulties of this approach is estimating the essential growth rate of some lin-

ear C0-semigroup. This problem is solved by using a bounded perturbation result

proved by Thieme [13] in the case of nondensely defined operators satisfying the

Hille–Yosida property.

In the framework of Lp spaces, we will use the same approach as in [10] by refor-

mulating problem (1.1) as an abstract non-densely defined Cauchy problem. Here

the operator does not satisfy the Hille–Yosida property. The estimate of the essential

spectrum uses an extension of Thieme’s result proved by the authors in [5].

Note that the reformulation of the problem as an abstract non-densely defined

Cauchy problem is presented in [11]. They more particularly show that the NFDE

(1.1) is a particular case of a general age-structured model. The corresponding non-

densely defined operator only satisfies the Hille–Yosida property for p = 1. Therefore

in order to consider the case p 6= 1 we will use the theory developed in [11] for age-

structured models in Lp.

The paper is organized as follows. In Section 2 we first demonstrate how to con-

sider the NFDE problem in Lp space as an abstract non-densely defined Cauchy prob-

lem and recall some relevant results in [6, 12, 16, 17]. Then we derive some results

on integrated solutions and spectral properties. Finally, in Section 3 we obtain the

main result of this article, an explicit formula for the projectors on the generalized

eigenspaces associated with some eigenvalues that extends the results in [10].

2 Preliminaries

Consider the neutral delay differential equation (1.1). First we transform this prob-

lem into a PDE problem. Set u(t) = xt for t ≥ 0 and we get

d

dt
[u(t, 0) − L1(u(t))] = B[u(t, 0) − L1(u(t))] + L2(u(t)), t ≥ 0.
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Let y(t) = u(t, 0) − L1(u(t)). We obtain that

dy(t)

dt
= By(t) + L2(u(t)), t ≥ 0 and u(t, 0) = L1(u(t)) + y(t).

Therefore, we deduce formally that u must satisfy a PDE

(2.1)

∂u

∂t
−

∂u

∂θ
= 0,∀θ ∈ (−r, 0),

u(t, 0) = L1(u(t)) + y(t),

dy(t)

dt
= By(t) + L2(u(t)),

y(0) = y0 = x̂ − L1(ϕ) ∈ R
n,

u(0, · ) = ϕ ∈ Lp((−r, 0), R
n).

Let X = R
n × Lp((−r, 0), R

n) × R
n endowed with the product norm

∥∥∥∥∥∥




z1

ϕ
z2




∥∥∥∥∥∥
= ‖z1‖Rn + ‖ϕ‖Lp((−r,0),Rn) + ‖z2‖Rn

and X0 = {0Rn} × Lp((−r, 0), R
n) × R

n. Set

v(t) =




0Rn

u(t)

y(t)


 .

We can consider (2.1) as an abstract non-densely defined Cauchy problem

(2.2)
dv(t)

dt
= Av(t) + Lv(t) + L̂v(t), t ≥ 0, v(0) =




0Rn

ϕ
y0


 ∈ D(A),

where A : D(A) ⊂ X → X is a linear operator defined by

A




0Rn

ϕ
y


 =



−ϕ(0)

ϕ ′

By




with D(A) := {0Rn} ×W 1,p((−r, 0), R
n) × R

n, and where L, L̂ : X0 → X are defined

by

L




0Rn

ϕ
y


 =




y

0

0


 and L̂




0Rn

ϕ
y


 =




L1(ϕ)

0

L2(ϕ)


 .

Note that D(A) = X0.
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Before proceeding, we shall introduce some notations and recall some results. Let

L : D(L) ⊂ X → X be a linear operator on a complex Banach space X. Denote by

ρ(L), N(L), and R(L) the resolvent set, null space, and range of L, respectively. The

spectrum of L is σ(L) = C\ρ(L). The point spectrum of L is the set

σP(L) := {λ ∈ C : N(λI − L) 6= {0}}.

The essential spectrum (in the sense of Browder [3]) of L is denoted by σess(L) which

is the set of λ ∈ σ(L) such that at least one of the following holds: (i) R(λI − L) is

not closed; (ii) λ is a limit point of σ(L); (iii) Nλ(L) :=
⋃∞

k=1 N((λI − L)k) is infinite

dimensional. Let Y be a subspace of X and LY : D(LY ) ⊂ Y → Y denote the part of L

on Y , which is defined by

LY x = Lx, ∀x ∈ D(LY ) := {x ∈ D(L) ∩ Y : Lx ∈ Y}.

Definition 2.1 Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear

C0-semigroup {TL(t)}t≥0 on a Banach space X. We define ω0(L) ∈ [−∞, +∞), the

growth bound of L, by

ω0(L) := lim
t→+∞

ln(‖TL(t)‖L(X))

t
.

The essential growth bound ω0,ess(L) ∈ [−∞, +∞) of L is defined by

ω0,ess(L) := lim
t→+∞

ln(‖TL(t)‖ess)

t
,

where ‖TL(t)‖ess is the essential norm of TL(t) defined by

‖TL(t)‖ess = κ(TL(t)BX(0, 1)).

Here BX(0, 1) = {x ∈ X : ‖x‖X ≤ 1}, and for each bounded set B ⊂ X,

κ(B) = inf{ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}

is the Kuratovsky measure of non-compactness.

In the following theorem, the existence of the projector was first proved by Webb

[16, 17] and the fact that there is a finite number of points of the non-essential spec-

trum was proved by Engel and Nagel [6].

Theorem 2.2 Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear

C0-semigroup {TL(t)}t≥0 on a Banach space X. Then

ω0(L) = max(ω0,ess(L), max
λ∈σ(L)\σess(L)

Re(λ)).

Assume in addition that ω0,ess(L) < ω0 (L). Let γ ∈ (ω0,ess(L), ω0(L)] be fixed. Then

the subset {λ ∈ σ(L) : Re(λ) ≥ γ} ⊂ σp(L) is nonempty, finite, and contains only

poles of the resolvent of L. Moreover, there exists a finite rank bounded linear operator of

projection Π : X → X satisfying the following properties:
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(i) Π(λI − L)−1
= (λI − L)−1

Π,∀λ ∈ ρ(L);

(ii) σ(LΠ(X)) = {λ ∈ σ(L) : Re(λ) ≥ γ};

(iii) σ(L(I−Π)(X)) = σ(L) \ σ(LΠ(X)).

In Theorem 2.2 the projector Π is the projection on the direct sum of the gener-

alized eigenspaces of L associated with all points λ ∈ σ(L) with Re(λ) ≥ γ. As a

consequence of Theorem 2.2 we have the following corollary.

Corollary 2.3 Let L : D(L) ⊂ X → X be the infinitesimal generator of a linear

C0-semigroup {TL(t)}t≥0 on a Banach space X. Assume that ω0,ess(L) < ω0(L). Then

{λ ∈ σ(L) : Re(λ) > ω0,ess(L)} ⊂ σP(L)

and each λ̂ ∈ {λ ∈ σ(L) : Re(λ) > ω0,ess(L)} is a pole of the resolvent of L. That is,

λ̂ is isolated in σ(L), and there exists an integer k0 ≥ 1 (the order of the pole) such that

the Laurent expansion of the resolvent takes the following form

(λI − L)−1
=

∞∑

n=−k0

(λ − λ̂)nB
bλ
n ,

where {B
bλ
n}, n ≥ −k0 are bounded linear operators on X and the above series converges

in the norm of operators whenever |λ − λ̂| is small enough.

The following result is due to Magal and Ruan [12, Lemma 2.1, Proposition 3.5].

Theorem 2.4 Let (X, ‖ · ‖) be a Banach space and L : D(L) ⊂ X → X be a lin-

ear operator. Assume that ρ(L) 6= ∅ and L0, the part of L in D(L), is the infinitesi-

mal generator of a linear C0-semigroup {TL0
(t)}t≥0 on the Banach space D(L). Then

σ(L) = σ(L0).

Let Π0 : D(L) → D(L) be a bounded linear operator of projection. Assume that

Π0(λI − L0)−1
= (λI − L0)−1

Π0, ∀λ > ω, ω ∈ R,

Π0(D(L)) ⊂ D(L0), and L0|Π0(D(L)) is bounded.

Then there exists a unique bounded linear operator of projection Π on X satisfying the

following properties:

(i) Π|D(L) = Π0.

(ii) Π (X) ⊂ D(L).

(iii) Π (λI − L)−1
= (λI − L)−1

Π,∀λ > ω.

Moreover, for each x ∈ X we have the following approximation formula:

Πx = lim
λ→+∞

Π0λ(λI − L)−1x.

Now we return to the Cauchy problem (2.2). We first have the following property.
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Lemma 2.5 The resolvent sets of A and A + L satisfy ρ(A) = ρ(A + L) = ρ(B). We

have the following explicit formulas for the resolvents of A and A + L :

(λI − A)−1




α
ϕ
y


 =




0Rn

ϕ̂
ŷ




⇐⇒

{
ϕ̂(θ) = eλθα +

∫ 0

θ
eλ(θ−l)ϕ(l)dl, ∀θ ∈ (−r, 0)

ŷ = (λI − B)−1 y,

(2.3)

(λI − (A + L))−1




α
ϕ
y


 =




0Rn

ϕ̂
ŷ




⇐⇒

{
ϕ̂(θ) = eλθ[(λI − B)−1 y + α] +

∫ 0

θ
eλ(θ−l)ϕ(l)dl, ∀θ ∈ (−r, 0)

ŷ = (λI − B)−1 y.

(2.4)

Proof We only prove the result for A+L. The proof for A is similar. Let us first prove

that ρ(A + L) ⊂ ρ(B). We only need to show that σ(B) ⊂ σ(A + L). Let λ ∈ σ(B).

Then there exists ŷ ∈ C
n \ {0} such that Bŷ = λ ŷ. If we consider ϕ̂(θ) = eλθ ŷ, we

have

(A + L)




0Rn

ϕ̂
ŷ


 =



−ϕ̂(0) + ŷ

ϕ̂ ′

Bŷ


 =




0Rn

λϕ̂
λ ŷ


 .

Thus λ ∈ σ(A + L). This implies that σ(B) ⊂ σ(A + L). On the other hand, if

λ ∈ ρ(B), for




α
ϕ
y


 ∈ X we must have




0Rn

ϕ̂
ŷ


 ∈ D(A) such that

(λI − (A + L))




0Rn

ϕ̂
ŷ


 =




α
ϕ
y


 ⇐⇒





ϕ̂(0) − ŷ = α

λϕ̂ − ϕ̂ ′
= ϕ

λ ŷ − Bŷ = y

⇐⇒

{
ϕ̂(θ̂) = eλbθ[(λI − B)−1 y + α] +

∫ 0
bθ

eλ(bθ−l)ϕ(l)dl, ∀θ̂ ∈ (−r, 0)

ŷ = (λI − B)−1 y.

Therefore, we obtain that λ ∈ ρ(A + L) and the formula in (2.4) holds.

Since B is a matrix on R
n, we have ω0(B) := maxλ∈σ(B) Re(λ) and the following

lemma.

Lemma 2.6 For each ωA > ω0(B), (ωA, +∞) ⊂ ρ(A) and there exists MA ≥ 1 such

that

(2.5) ‖(λI − A)−n‖L(X0) ≤
MA

(λ − ωA)n
, ∀n ≥ 1,∀λ > ωA.

Moreover, limλ→+∞(λI − A)−1x = 0, ∀x ∈ X.
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Proof Let ωA > ω0(B). From Lemma 2.5 we obtain that (ωA, +∞) ⊂ ρ(B) = ρ(A).

We can define the equivalent norm on R
n

|y| := sup
t≥0

e−ωAt‖eBt y‖, y ∈ R
n.

Then we have |eBt y| ≤ eωAt |y|, ∀t ≥ 0 and ‖y‖ ≤ |y| ≤ MA‖y‖, where

MA := sup
t≥0

‖e(B−ωAI)t‖Mn(R).

Moreover, for each λ > ωA, we have

|(λI − B)−1 y| =

∣∣∣
∫ +∞

0

e−λseBs y ds
∣∣∣ ≤

|y|

λ − ωA

.

We define | · | the equivalent norm on X by

∣∣∣∣∣∣




α
ϕ
y




∣∣∣∣∣∣
= |α| + ‖ϕ‖ωA

+ |y|,

where

‖ϕ‖ωA
:= |e−ωA·ϕ( · )|Lp =

(∫ 0

−r

|e−ωAθϕ(θ)|pdθ
) 1/p

.

Using (2.3) and the above results, we obtain that for




0

ϕ
y


 ∈ X0,

∣∣∣∣∣∣
(λI − A)−1




0

ϕ
y




∣∣∣∣∣∣
≤

∣∣∣ e−ωA·

∫ 0

·

eλ(·−l)ϕ(l) dl
∣∣∣

Lp
+ |(λI − B)−1 y|

≤ |e(λ−ωA)·|L1 |e−ωA·ϕ( · )|Lp +
1

λ − ωA

|y| ≤
1

λ − ωA

[
‖ϕ‖ωA

+ |y|
]
.

Therefore, (2.5) holds. The last part of the proof is trivial.

As an immediate consequence of the above lemma and by applying the results

proved in Magal and Ruan [11, Lemma 2.2, Proposition 2.5], we obtain the following

lemma.

Lemma 2.7 A0 the part of A in X0 is the infinitesimal generator of a strongly contin-

uous semigroup {TA0
(t)}t≥0 of bounded linear operators on X0, which is defined by

(2.6) TA0
(t)




0

ϕ
y


 =




0

T̂A0
(t)ϕ

eBt y


 ,
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where

T̂A0
(t)(ϕ)(θ) =

{
ϕ(t + θ) if t + θ ≤ 0,

0 if t + θ > 0.

Moreover, A generates an integrated semigroup {SA(t)}t≥0 on X, which is defined by

SA(t)




α
ϕ
y


 =




0

α1[−t,0]( · ) +
∫ t

0
T̂A0

(l)ϕdl∫ t

0
eBl ydl


 .

Proof See [11, Section 6] for more details.

We set X1 = R
n × {0Lp} × {0Rn}. Then we have X = X1 ⊕ X0.

By using the same argument as in the proof of Theorem 6.6 in [11] we obtain the

following result.

Lemma 2.8 For each τ > 0, each h1 ∈ Lp((0, τ ), X1), and each h2 ∈ L1((0, τ ), X0),

there exists a unique integrated solution of the Cauchy problem

dv(t)

dt
= Av(t) + h(t), t ∈ [0, τ ], h = h1 + h2, and v(0) = v0 :=




0Rn

ϕ
y0


 ,

which is given by v(t) = TA0
(t)v0 + d/dt(SA ∗ h)(t), ∀t ∈ [0, τ ], and we also have the

following estimate for each t ∈ [0, τ ] ,

‖v(t)‖ ≤ MAeωAt‖v0‖ +
(∫ t

0

‖h1(s)‖pds
) 1/p

+ MA

∫ t

0

eωA(t−s)‖h2(s)‖ ds.

Furthermore,

v(t) =




0

u(t)

y(t)




with

(
u(t)

y(t)

)
=

(
T̂A0

(t)ϕ
eBt y0

)
+

(
h1(t + .)1[−t,0]( · ) +

∫ t

0
T̂A0

(t − s)h21(s) ds∫ t

0
eB(t−s)h22(s) ds

)
.

Here h2(t) = (0, h21(t), h22(t)).

By using the same argument as in the proof of Theorem 6.6 in [11], we also note

that if h ∈ C1([0, τ ], X), then

∥∥∥
d

dt
(SA ∗ h)(t)

∥∥∥ =

∥∥∥
d

dt
(SA ∗ Ph)(t) +

d

dt
(SA ∗ (I − P)h)(t)

∥∥∥

≤
(∫ t

0

‖Ph(s)‖
p

ds
) 1/p

+ MA

∫ t

0

eωA(t−s) ‖(I − P)h(s)‖ ds,
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for all t ∈ [0, τ ], where P : X → X is defined by

Px =




α
0

0


 , ∀x =




α
ϕ
y


 ∈ X.

Let

Γ(t, h) =

(∫ t

0

‖Ph(s)‖pds
) 1/p

+ MA

∫ t

0

eωA(t−s)‖(I − P)h(s)‖ds, ∀t ∈ [0, τ ].

We obtain that

Γ(t, h) =

(∫ t

0

‖Ph(s)‖p ds
) 1/p

+ MA

∫ t

0

eωA(t−s)‖(I − P)h(s)‖ ds

≤ t1/p sup
s∈[0,t]

‖Ph(s)‖ + MA

(∫ t

0

eqωA(t−s) ds
) 1/q(∫ t

0

‖(I − P)h(s)‖p ds
) 1/p

≤ t1/p‖P‖ sup
s∈[0,t]

‖h(s)‖ + MA

(∫ t

0

eqωA(t−s)ds
) 1/q

t1/p‖I − P‖ sup
s∈[0,t]

‖h(s)‖

≤ δ(t) sup
s∈[0,t]

‖h(s)‖, ∀t ∈ [0, τ ],

where 1/p + 1/q = 1 and δ(t) = t1/p‖P‖ + t1/pMA(
∫ t

0
eqωA(t−s) ds)1/q ‖I − P‖ sat-

isfying limt→0+ δ(t) = 0. Hence, we get ‖L + L̂‖L(X0,X)δ(t) < 1 for t small enough.

Therefore, by using the perturbation result proved in [11, Theorem 3.1] we know that

A+L+L̂ statisfies the same properties as A. In particular, (A+L+L̂)0 is the infinitesimal

generator of a strongly continuous semigroup {T(A+L+bL)0
(t)}t≥0 of bounded linear

operators on X0.

From the definition of A + L + L̂ in (2.2) and the fact that

D(A) := {0Rn} ×W 1,p((−r, 0), R
n) × R

n,

D(A) = {0Rn} × Lp((−r, 0), R
n) × R

n,

we know that

D((A + L + L̂)0)

=

{


0Rn

ϕ
y


 ∈ {0Rn} ×W 1,p((−r, 0), R

n) × R
n

∣∣∣∣ −ϕ(0) + y + L1(ϕ) = 0

}
.

Lemma 2.9 The point spectrum of (A + L + L̂)0 is the set

σP((A + L + L̂)0) = {λ ∈ C : det(∆(λ)) = 0},
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where

∆(λ) = (λI − B)[I − L1(eλ.I)] − L2(eλ.I)

= (λI − B)
[

I −

∫ 0

−r

eλθη1(θ) dθ
]
−

∫ 0

−r

eλθη2(θ) dθ.

(2.7)

Proof Let λ ∈ C. Then λ ∈ σP((A + L + L̂)0) if and only if there exist ϕ ∈
W 1,p((−r, 0), C

n) \ {0} and y ∈ C
n such that

ϕ ′(θ) = λϕ(θ),∀θ ∈ (−r, 0),

By + L2(ϕ) = λy and ϕ(0) = y + L1(ϕ).

Hence we obtain that

ϕ(θ) = eλθϕ(0), λy − By − L2(eλ.ϕ(0)) = 0, and y = ϕ(0) − L1(eλ.ϕ(0)).

Therefore,

ϕ 6= 0 ⇐⇒ ϕ (0) 6= 0 and (λI − B)
[
ϕ(0) − L1(eλ.ϕ(0))

]
− L2

(
eλ.ϕ(0)

)
= 0.

The proof is complete.

From the discussion in this section and the results we recalled above, we obtain

the following proposition.

Proposition 2.10 (A + L + L̂)0 is the infinitesimal generator of a strongly continuous

semigroup {T(A+L+bL)0
(t)}t≥0 of bounded linear operators on X0. Moreover,

ω0,ess((A + L + L̂)0) = ω0,ess(A0) = −∞,

ω0((A + L + L̂)0) = max
λ∈σP((A+L+bL)0)

Re(λ),

σ(A + L + L̂) = σ((A + L + L̂)0) = σP((A + L + L̂)0)

= {λ ∈ C : det(∆(λ)) = 0},

and each λ0 ∈ σ(A + L + L̂) is a pole of (λI − (A + L + L̂))−1. For each γ ∈ R, the subset

{λ ∈ σ((A + L + L̂)0) : Re(λ) ≥ γ} is either empty or finite.

Proof We only need to prove that ω0,ess((A+L+L̂)0) = ω0,ess(A0) = −∞. From (2.6)

it is easy to know that for t > r, TA0
(t) is compact. Hence ω0,ess(A0) = −∞. Since

for each t > 0 (L + L̂)TA0
(t) is compact, the result follows by applying Theorem 1.2

in [5].
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3 Projectors on the Eigenspaces

Let λ0 ∈ σ(A + L + L̂). From Proposition 2.10 we already know that λ0 is a pole of

(λI−(A+L+L̂))−1of finite order k0 ≥ 1. This means that λ0 is isolated in σ(A+L+L̂)

and the Laurent expansion of the resolvent around λ0 takes the following form:

(λI − (A + L + L̂))−1
=

+∞∑

n=−k0

(λ − λ0)n Bλ0
n .

The bounded linear operator Bλ0

−1 is the projector on the generalized eigenspace of

(A + L + L̂) associated with λ0. The goal of this section is to provide a method to

compute Bλ0

−1. We remark that

(λ − λ0)k0 (λI − (A + L + L̂))−1
=

+∞∑

m=0

(λ − λ0)mBλ0

m−k0
.

So we have the following approximation formula

Bλ0

−1 = lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

(
(λ − λ0)k0 (λI − (A + L + L̂))−1

)
.

In order to give an explicit formula for Bλ0

−1, we need the following results.

Lemma 3.1 For each λ ∈ ρ(A + L + L̂), we have the following explicit formula for the

resolvent of A + L + L̂,

(λI−(A + L + L̂))−1




α
ϕ
y


 =




0Rn

ϕ̂
ŷ




⇐⇒





ϕ̂ (θ) = eλθ
Φλ +

∫ 0

θ
eλ(θ−l)ϕ(l) dl,

ŷ = Φλ − L1(eλ·
Φλ) − L1(

∫ 0

·
eλ(·−l)ϕ(l) dl) − α,

where Φλ is defined by

(3.1) Φλ = ∆(λ)−1

[
(λI − B)

(
L1

(∫ 0

·

eλ(·−l)ϕ (l) dl
)

+ α
)

+ L2

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ y

]

with ∆(λ) defined in (2.7).
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Proof Let λ ∈ ρ(A + L + L̂) and γ > 0 large enough such that Re (λ) > ω0 (B) − γ.
So we obtain that λ ∈ ρ(B − γI). Consider the linear operators Aγ : D(A) ⊂ X → X

and Lγ : X0 → X defined respectively by

Aγ




0Rn

ϕ
y


 =



−ϕ(0) + y

ϕ ′

(B − γI)y


 ,∀




0Rn

ϕ
y


 ∈ D(A)

and

Lγ







0Rn

ϕ
y





 =




L1(ϕ)

0

L2(ϕ) + γy


 ,∀




0Rn

ϕ
y


 ∈ X0.

From Lemma 2.5, we know that λ ∈ ρ(Aγ) and

(λI − Aγ)−1




α
ϕ
y


 =




0Rn

ϕ̂
ŷ




⇐⇒

{
ϕ̂(θ) = eλθ[((λ + γ) I − B)−1 y + α] +

∫ 0

θ
eλ(θ−l)ϕ (l) dl,

ŷ = [(λ + γ) I − B]−1 y.

(3.2)

Moreover, the operator [λI− (Aγ + Lγ)] is invertible if and only if I − Lγ(λI − Aγ)−1

is invertible, and

(3.3) (λI − (Aγ + Lγ))−1
= (λI − Aγ)−1[I − Lγ(λI − Aγ)−1]−1.

We also know that

[I − Lγ(λI − Aγ)−1]




α̃
ϕ̃
ỹ


 =




α
ϕ
y




is equivalent to

ϕ̃ = ϕ,(3.4)

α̃ − L1(eλ·α̃) − L1(eλ·yλ) = L1

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ α,(3.5)

and, noting that ỹ − γ[(λ + γ)I − B]−1 ỹ = (λI − B)yλ,

(3.6) −L2(eλ·α̃) − L2(eλ·yλ) + (λI − B)yλ = L2

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ y,

where yλ = (λ + γ)I − B)−1 ỹ. By computing (λI − B)× (3.5) + (3.6), we get

(λI − B)[α̃ − L1(eλ.α̃)] − L2(eλ.α̃) + (λI − B)[yλ − L1(eλ.yλ)] − L2(eλ.yλ)

= (λI − B)
(

L1

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ α
)

+ L2

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ y,
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i.e.,

∆(λ)(α̃ + yλ) = (λI − B)
(

L1

(∫ 0

·

eλ(·−l)ϕ(l)dl
)

+ α
)

+ L2

(∫ 0

·

eλ(·−l)ϕ(l) dl
)

+ y.

We know from (3.5) that

α̃ − L1(eλ·(α̃ + yλ)) = L1

(∫ 0

·

eλ(·−l)ϕ(l) dl
)

+ α.

Therefore we deduce that I − Lγ(λI − Aγ)−1 is invertible if and only if ∆(λ) is in-

vertible. Moreover,

[I − Lγ(λI − Aγ)−1]−1




α
ϕ
y


 =




α̃
ϕ̃
ỹ




is equivalent to

(3.7) ϕ̃ = ϕ,

(3.8) α̃ = L1(eλ·
Φλ) + L1

(∫ 0

·

eλ(·−l)ϕ(l) dl
)

+ α

and

(3.9) ỹ =
(

(λ + γ)I − B
)

[Φλ − α̃],

where Φλ is defined by (3.1). Note that A + L + L̂ = Aγ + Lγ . By using (3.2), (3.3),

(3.7), (3.8), and (3.9), we obtain that

(λI − (A + L + L̂))−1




(α
ϕ
y


 = (λI − (Aγ + Lγ))−1




α
ϕ
y


 =




0Rn

ϕ̂
ŷ




⇐⇒





ϕ̂(θ) = eλθ
Φλ +

∫ 0

θ

eλ(θ−l)ϕ(l) dl,

ŷ = Φλ − L1(eλ·
Φλ) − L1

(∫ 0

·

eλ(·−l)ϕ(l)dl
)
− α,

where Φλ is defined by (3.1).

The map λ → ∆(λ) from C into Mn(C) is differentiable, and

∆
(1)(λ) :=

d∆(λ)

dλ
= I −

∫ 0

−r

(eλθ + λθeλθ)η1(θ)dθ

+ B

∫ 0

−r

θeλθη1(θ)dθ −

∫ 0

−r

θeλθη2(θ)dθ.
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So the map λ → ∆(λ) is analytic and

∆
(n)(λ) :=

dn
∆(λ)

dλn
= −

∫ 0

−r

(nθn−1eλθ + λθneλθ)η1(θ)dθ

+ B

∫ 0

−r

θneλθη1(θ)dθ −

∫ 0

−r

θneλθη2(θ)dθ, n ≥ 2.

We know that the inverse function ψ : L → L−1 of a linear operator L ∈ Isom(X)

is differentiable, and Dψ(L)L̂ = −L−1 ◦ L̂ ◦ L−1. Applying this result, we deduce

that λ → ∆(λ)−1 from ρ(A + L + L̂) into Mn(C) is differentiable, and d
dλ∆(λ)−1

=

−∆(λ)−1
(

d
dλ∆(λ)

)
∆(λ)−1. Therefore, we obtain that the map λ → ∆(λ)−1 is

analytic and has Laurent expansion around λ0

(3.10) ∆(λ)−1
=

+∞∑

n=−bk0

(λ − λ0)n
∆n.

From the following lemma we know that k̂0 = k0.

Lemma 3.2 Let λ0 ∈ σ(A + L + L̂). Then the following statements are equivalent:

(i) λ0 is a pole of order k0 of (λI − (A + L + L̂))−1.

(ii) λ0 is a pole of order k0 of ∆(λ)−1.

(iii) limλ→λ0
(λ − λ0)k0∆(λ)−1 6= 0 and limλ→λ0

(λ − λ0)k0+1
∆(λ)−1

= 0.

Proof The proof follows from the explicit formula of the resolvent of A + L + L̂

obtained in Lemma 3.1.

Lemma 3.3 The matrices ∆−1, . . . ,∆−k0
in (3.10) satisfy

∆k0
(λ0)




∆−1

∆−2

...

∆−k0+1

∆−k0




=




0
...

0




and
(
∆−k0

∆−k0+1 · · · ∆−2 ∆−1

)
∆k0

(λ0) =
(
0 · · · 0

)
, where

∆k0 (λ0) =

0

B

B

B

B

B

B

B

B

B

@

∆(λ0) ∆
(1)(λ0) ∆

(2)(λ0)/2! · · · ∆
(k0−1)(λ0)/(k0 − 1)!

0 ∆(λ0) ∆
(1)(λ0) · · · ∆

(k0−2)(λ0)/(k0 − 2)!
...

. . .
. . .

. . .
. . .

...

∆
(1)(λ0) ∆

(2)(λ0)/2!

∆(λ0) ∆
(1)(λ0)

0 0 0 · · · 0 ∆(λ0)

1

C

C

C

C

C

C

C

C

C

A

.
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Proof We have

(λ − λ0)k0 I = ∆(λ)
( +∞∑

n=0

(λ − λ0)n
∆n−k0

)
=

( +∞∑

n=0

(λ − λ0)n
∆n−k0

)
∆(λ).

Hence,

(λ − λ0)k0 I =

( +∞∑

n=0

(λ − λ0)n ∆
(n)(λ0)

n!

)( +∞∑

n=0

(λ − λ0)n
∆n−k0

)

=

+∞∑

n=0

(λ − λ0)n

n∑

k=0

∆
(n−k)(λ0)

(n − k)!
∆k−k0

and

(λ − λ0)k0 I =

+∞∑

n=0

(λ − λ0)n

n∑

k=0

∆k−k0

∆
(n−k)(λ0)

(n − k)!
.

By the uniqueness of Taylor’s expansion for analytic maps, we obtain that for n ∈
{0, . . . , k0 − 1},

0 =

n∑

k=0

∆k−k0

∆
(n−k)(λ0)

(n − k)!
=

n∑

k=0

∆
(n−k)(λ0)

(n − k)!
∆k−k0

.

Therefore, the result follows.

Now we look for an explicit formula for the projector Bλ0

−1 on the generalized

eigenspace associated with λ0. Set

Ψ1(λ)




α
ϕ
y


 := (λI − B)

(
L1

(∫ 0

·

eλ( ·−l)ϕ(l) dl
)

+ α
)

+ L2

(∫ 0

·

eλ( ·−l)ϕ(l) dl
)

+ y,

Ψ2(λ)(ϕ)(θ) :=

∫ 0

θ

eλ(θ−l)ϕ(l) dl,

and

Ψ3(λ)




α
ϕ
y


 := L1

(∫ 0

·

eλ( ·−l)ϕ(l) dl
)

+ α.
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Then all maps are analytic and

(λI − (A + L + L̂))−1




α
ϕ
y




=




0Rn

eλ ·
∆(λ)−1

Ψ1(λ)




α
ϕ
y


 + Ψ2(λ)(ϕ)( · )

(I − L1(eλ · I))


∆(λ)−1

Ψ1(λ)




α
ϕ
y





 − Ψ3(λ)




α
ϕ
y







.

(3.11)

We observe that the only singularity in (3.11) is ∆(λ)−1. Since Ψ1, Ψ2, and Ψ3 are

analytic, we have for j = 1, 2, 3 that

(3.12) Ψ j(λ) =

+∞∑

n=0

(λ − λ0)n

n!
L j

n(λ0),

where |λ − λ0| is small enough and L
j
n( · ) :=

dn
Ψ j ( · )

dλn ,∀n ≥ 0,∀ j = 1, 2, 3. Hence

we get

lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1
[(λ − λ0)k0Ψi(λ)]

= lim
λ→λ0

1

(k0 − 1)!

+∞∑

n=0

(n + k0)!

(n + 1)!

(λ − λ0)n+1

n!
Li

n(λ0) = 0, i = 2, 3.

From (3.10) and (3.12) we obtain

lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1
[(λ − λ0)k0∆(λ)−1

Ψ1(λ)]

= lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

[( +∞∑

n=−k0

(λ − λ0)n+k0∆n

)( +∞∑

n=0

(λ − λ0)n

n!
L1

n(λ0)
)]

= lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

[( +∞∑

n=0

(λ − λ0)n
∆n−k0

)( +∞∑

n=0

(λ − λ0)n

n!
L1

n(λ0)
)]

= lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

[ +∞∑

n=0

n∑

j=0

(λ − λ0)n− j
∆n− j−k0

(λ − λ0) j

j!
L1

j (λ0)
]
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= lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

[ +∞∑

n=0

(λ − λ0)n

n∑

j=0

∆n− j−k0

1

j!
L1

j (λ0)
]

=

k0−1∑

j=0

1

j!
∆−1− jL

1
j (λ0)

and

lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1
[eλθ(λ − λ0)k0∆(λ)−1

Ψ1(λ)]

= lim
λ→λ0

1

(k0 − 1)!

dk0−1

dλk0−1

[
eλθ

( +∞∑

n=0

(λ − λ0)n

n∑

j=0

∆n− j−k0

1

j!
L1

j (λ0)
)]

=

k0−1∑

i=0

1

i!
θieλ0θ

k0−1−i∑

j=0

1

j!
∆−1− j−iL

1
j (λ0).

From the above results we can obtain the explicit formula for the projector Bλ0

−1

on the generalized eigenspace associated with λ0, which is given in the following

proposition.

Proposition 3.4 Each λ0 ∈ σ(A + L + L̂) is a pole of (λI − (A + L + L̂))−1 of order

k0 ≥ 1. Moreover, k0 is the only integer such that there exists ∆−k0
∈ Mn(R) with

∆−k0
6= 0, such that

∆−k0
= lim

λ→λ0

(λ − λ0)k0∆(λ)−1.

Furthermore, the projector Bλ0

−1 on the generalized eigenspace of (A + L + L̂) associated

with λ0 is defined by the following formula

Bλ0

−1




α
ϕ
y


 =




0Rn

ϕ̂

∑k0−1
j=0

1

j!
∆−1− jL

1
j (λ0)




α
ϕ
y


 − L1(ϕ̂)




,

where

ϕ̂(θ) =

k0−1∑

i=0

θieλ0θ
1

i!

k0−1−i∑

j=0

1

j!
∆−1− j−iL

1
j (λ0)




α
ϕ
y


 ,

∆− j = lim
λ→λ0

1

(k0 − j)!

dk0− j

dλk0− j

(
(λ − λ0)k0∆(λ)−1

)
, j = 1, . . . , k0,

L1
0(λ)




α
ϕ
y


 = (λI − B)

(
L1

(∫ 0

·

eλ( ·−l)ϕ(l)dl
)

+ α
)

+ L2

(∫ 0

·

eλ( ·−l)ϕ(l)dl
)

+ y,

and
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L1
j (λ)




α
ϕ
y


 =

d j

dλ j


L1

0(λ)




α
ϕ
y







= (λI − B)L1

(∫ 0

·

( · − l) jeλ(·−l)ϕ(l) dl
)

+ j
d j−1

dλ j−1

[
L1

(∫ 0

·

eλ( ·−l)ϕ(l) dl
)

+ α
]

+ L2

(∫ 0

.

( · − l) jeλ( ·−l)ϕ(l) dl
)

, j ≥ 1.

Here

di

dλi

[
L1

(∫ 0

·

eλ(·−l)ϕ(l) dl
)

+ α
]

= L1

(∫ 0

·

( · − l)ieλ( ·−l)ϕ(l) dl
)

, i ≥ 1.

In studying Hopf bifurcation it is usually necessary to consider the projector for a

simple eigenvalue. In the following we consider the case when λ0 is a simple eigen-

value of (A + L + L̂). That is, λ0 is a pole of order 1 of the resolvent of (A + L + L̂) and

the dimension of the eigenspace of (A + L + L̂) associated with the eigenvalue λ0 is 1.

We know that λ0 is a pole of order 1 of the resolvent of (A + L + L̂) if and only if

there exists ∆−1 6= 0, such that ∆−1 = limλ→λ0 (λ − λ0) ∆ (λ)−1. From Lemma 3.3,

we have ∆−1∆(λ0) = ∆(λ0)∆−1 = 0. From the proof of Lemma 2.9, it can be

checked that λ0 is simple if and only if dim[N(∆(λ0))] = 1. In that case, there exist

Vλ0
,Wλ0

∈ C
n \ {0} such that

(3.13) W T
λ0

∆(λ0) = 0 and ∆(λ0)Vλ0
= 0.

Hence, we can always assume that (replacing Vλ0
W T

λ0
by δVλ0

W T
λ0

for some δ 6= 0 if

necessary) ∆−1 = Vλ0
W T

λ0
. We can see that Bλ0

−1Bλ0

−1 = Bλ0

−1 if and only if

∆−1 = ∆−1

[
I − L1(eλ0·) + (λ0I − B)L1

(∫ 0

.

eλ0. dl
)

+ L2

(∫ 0

.

eλ0. dl
)]

∆−1.

Therefore, we obtain the following corollary.

Corollary 3.5 λ0 ∈ σ(A + L + L̂) is a simple eigenvalue of (A + L + L̂) if and only if

lim
λ→λ0

(λ − λ0)2
∆(λ)−1

= 0 and dim[N(∆(λ0))] = 1.

Moreover, the projector on the eigenspace associated with λ0 is

Bλ0

−1




α
ϕ
y


 =




0Rn

eλ0·∆−1L1
0(λ0)




α
ϕ
y




∆−1L1
0(λ0)




α
ϕ
y


 − L1


eλ0·∆−1L1

0(λ0)




α
ϕ
y










,
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where

L1
0(λ)




α
ϕ
y


 = (λI − B)

(
L1

(∫ 0

·

eλ( ·−l)ϕ(l)dl
)

+ α
)

+ L2

(∫ 0

·

eλ(·−l)ϕ(l) dl
)

+ y

and ∆−1 = Vλ0
W T

λ0
in which Vλ0

,Wλ0
∈ C

n \{0} are two vectors satisfying (3.13) and

∆−1 = ∆−1

[
I − L1

(
eλ0·

)
+ (λ0I − B)L1

(∫ 0

.

eλ0. dl
)

+ L2

(∫ 0

.

eλ0. dl
)]

∆−1.
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