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Abstract

We consider a semi-linear elliptic system in a strip arising in combustion theory. The model describes
the propagation of two-dimensional near-equidiffusional flames. We prove the existence of travelling
wave solutions for high activation energy.
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1. Introduction

In this paper we study the existence of a travelling wave solution for the system

6u_

3 Au+ f(u, y)v, (1.1)
v
= AAv — f(u, y)v, 1.2)

set in the infinite domai® = {(x, y) € R x (0, 1)}.
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This system stems from the theory of combustion. It describes the propagation of a
premixed flame in the infinite tub@ in the framework of the classical thermo-diffusive
model, see Williamg16,12,13,17] Here, the mixture is assumed to be at rest and we
consider a one-step reactiéh— P. The unknowns are the normalized temperatuaad
the concentration of the reactantThe termf (1, y)v corresponds to the chemical reaction
and depends on a small parametéhat is the inverse of the activation energy. The limit
¢ — 0 (high activation energy asymptotics) is of great physical interest. Formal analytic
methods based on the small parametérad to some classical free boundary problems
in combustion theory that are constantly used,[46e-18,13]for instance. Finally1 > 0
denotes the inverse of the Lewis number.

The travelling wave solutiong(x + ct, y), v(x + ct, y) of (1.1) and (1.2) satisfy the
equations

—Au—{—ca—uzf(u,y)v in Q (1.3)
Ox
v :
—AAv—}—ca— =—f(u,y)v inQ (1.4)
X

and the following boundary conditions (which are classical in combustion theory):

a—uza—vzo onI'=R x {0, 1}, (1.5)
dy Oy

u(—o0,y) =0, v(—o0,y)=1 forye (0,1, (1.6)
u(+oo,y)=1, wv(+oo,y)=0 forye (0, 1. .7

The constant, the wave velocity, is unknown and should be found together with the func-
tionsu andv as a solution of (1.3)—(1.7). Multi-dimensional solutions correspond to curved
front propagating in the tub@. Such fronts are evidenced experimentally, analytically and
numerically in particular when the one-dimensional planar flame becomes unstable, see
[12,13,16,17]

For 4 = 1, the above system reduces to a scalar equédtiea 1 — u). This equation
has been extensively studied from a mathematical point of view: existence, uniqueness
and qualitative properties of multi-dimensional solutions are investiga@4r6,14](see
also the references therein.) The asymptotic linit- O is studied if2]. The arguments
heavily rely on the maximum principle and monotonicity properties (with respeqtdb
the temperature that do not hold anymore fog 1.

Travelling wave solutions for the system (= 1) and their singular limits were only
previously considered in the one-dimensional setting (planar flamegp,44¢8,15] Let
us also mention the work of Langlois and Mar{d0,9] that deals with the parabolic system
(1.1)—(2.2) forA # 1. Existence results in the cade# 1 were also discussed ff].

In this paper we investigate two-dimensional travelling wave solutionstfg¢ 1. In
particular, we aim to show the existence of solutions of problem (1.3)—(1.7) that are relevant
in the limite — 0 (high activation energy asymptotics.) In that context we will assume that
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f = f. takes the form
1 -1
Je(u,y) = =z ¥ (u{_) 1, y), (1.8)

wherey = (s) is positive, increasing and decays sufficiently fast at —oo. We do
not assume any growth conditionsat= +o0o. Note that the Arrhenius term, arising in the
theory of combustion, is bounded by its upper bound depends exponentiatlyoit
is usually modelled by (1.8) witl(s) = €' (see[16,13]for instance). Also the function
¥ : R x (0,1) — [0, 1] is increasing with respect toand vanishes fat < 0 (existence of
an ignition temperature.)
The models in the physical literature require the Lewis number to depend on the parameter
¢, that is4 = A,, and to satisfy the so-called near equidiffusional assumption

A, —1=0() (1.9)

for a convenient value of (see[16,13])). Our main objective in this paper is to investigate
problem (1.3)—(1.7) withy = f; given by (1.8) and1 = A, satisfying (1.9).

Let us now describe our main results and the contents of the paper. The first step in our
study consists in studying (1.3) and (1.4) for sofixed boundedhonlinear termf. The
following hypotheses orf will be imposed:

feL®@ncQ), (1.10)
e (0,1, f(s,y)=0 if s<0 and f(s,y)>0 ifs>0. (1.11)

We first consider some problem analogous to (1.3)—(1.7) posed on the bounded rectangle
R, = (—a, a) x (0, 1) with a > 0. This allows the reduction to a fixed point formulation.
Then the usual Leray—Schauder degree gives the existence of a sélgtion, c¢,) in the
bounded domaiR, (Section 2).

Taking the limita — +o0 requires some estimates an,, v,, ¢,) that are independent
of a. They are derived in Section 3. The crucial step consists in obtaining a positive lower
bound of the velocity,. For that purpose an essential tool consists in introducing the
functionsH =u +v —1,G =u + Av — 1 as well as the averaged quantities with respect
to they variable.

Then, Section 4 deals with the limit procedure> +o0. For anyA > 0, we derive the
existence of a tripletu, v, ¢) satisfying Egs. (1.3) and (1.4) together with (1.5) and (1.6).
Also, atx = 400, we show thati (400, y) =1 — v(+o00, y) =u™, whereut e {0, 1}.

We also prove that™ = 1 if A is sufficiently close to one. This is our first existence result
for (1.3)—(1.7) but the condition oA is far too restrictive for high activation energy (see
Remark 41).

Section 5 is concerned with travelling waves solutions in the context of large activation
energy asymptotics, that is under assumptions (1.8) and (1.9). We derive existence provided
thate is small enough and (1.9) holds with> ;51. As earlier mentioned if9,10], the study
of near-equidiffusional flames is tightly related to precise upper bounds for the temperature
of the formu(x, y) <1+ &. In order to study (1.3)—(1.7), we start by truncatifigx, y)
for u>1+ &. The corresponding problem (1.3)—(1.7) involves a bounded nonlinearity and
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we first investigate that problem (Theorem 5.1). Next, estimaté{gdf, g, allow us to

prove the existence of travelling waves solutions for the initial problem (Theorem 5.2).
Our methods apply to more general situations: travelling waves solutions in higher space

dimensions, complex chemistry, problems including sgrdependence in the convective

term such asa(y) or ¢ + a(y). These questions will be studied in a subsequent paper.

2. A problem in a bounded rectangle

Let f be a positive, continuous function satisfying (1.10) and (1.11). In this section we
investigate a problem analogous to (1.3)—(1.7) posed in a bounded domain. More precisely,
for a > 0, we consider the following bounded rectangles:

R,=(—a,a) x(0,1), R, =(—a,0) x(0,1).

We introduce the problem: find, v : R, — R andc € R such that

0
—Au—i—c—u:f(u,y)v, (2.1)
Ox
ov
—AAv+c¢c—=—f(u, y)v (2.2)
Ox
together with the conditions:
a—uza—vzo onl', =(—a,a) x {0, 1}, (2.3)
dy Oy
—uy(—a,y) +cu(—a,y)=0, u(a,y)=1, (2.4)
—Avy(—a,y) +cv(—a,y)=c, wv(a,y)=0, (2.5)
max u(x,y)=0, (2.6)
(x,y)ERg
c>0. (2.7)

Conditions (2.3)—(2.5) are boundary conditions. Condition (2.6) was first introdu¢af in
It allows to take care of the translation invariance in problem (1.3)—(1.7) and to avoid trivial
solutions when later considering the limit> +oo.

We will derive the following existence result.

Proposition 2.1. Under assumptionél.10)and (1.11),let A > 0 be given. Thenfor all
a > 0, problem(2.1)—(2.7)possesses a soluti@n,, v,, ¢;) in C1(R,) x C1(R,) x R* . In
addition u, andv, satisfy

U, >0 and 0<v,<1.

The proof of this proposition is based on a topological degree argument. As usual, the
argument relies on a priori estimates on the solutions of (2.1)—(2.7) that we first derive.



A. Ducrot, M. Marion / Nonlinear Analysis 61 (2005) 1105-1134 1109

Lemma 2.1. Let(u, v, ¢) be a solution 0f2.1)—(2.7).Then the functions u andsatisfy
(u,v) € W2P(Ry) Vp € [1, +00),

u>0 and 0<v<l inR,. (2.8)

Proof. Since the functionf takes positive values, the maximum principle applies to the
unknownv and it easily follows that & v <1. Consequently, we havg(u, y)v>0. Ap-
plying again the maximum principle we see that0. Finally, sincef (u, y)v belong

to L®(R,), some classical elliptic estimates yield thaand v are in W27 (R,) for all
p=1. O

Next, we derive some estimates on the velocitlet us set

M= sup  f(s.). (2.9)
yé(>0(,)l)

Lemma 2.2. There exists some constaki} depending only on M) anda > 0 such that
O0<c<K,.

Furthermore the choice oK, can be made independentaf 1.

Proof. Let us first show that > 0. Assume that = 0. Then by taking the average with
respect toy of Eq. (2.1) foru we see that the function

1
uo(x) =/0 u(x,y)dy

satisfies
- ug 2 O!
up(—a) =0 and ug(a) =1.

It easily follows thatug>1 on[—a, a], that contradicts (2.6). Therefore, we have 0.
Let us now find an upper bound fer We consider a&'*-function 6, satisfying

—0] +c0y=M1,>0 on(—a,a),
—01(=a) + c01(—a) =0,
01(a) =1,
whereM is given by (2.9). Thanks to the maximum principle we easily see that
ux, y)<01(x) Vv (x,y) € Rq.
In particular,u (0, y) <01(0), Vy € (0, 1), and in view of (2.6)
0<01(0).
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Now, a simple computation gives
@ M
01(0) = M/ xe Ydx e Le M+ -
0 C

Combining these inequalities we conclude that

¢ < max E log 2,,/2—M . (2.10)
a 0 0

Note that the right-hand side of this last inequality can be majorized by a constant indepen-
dentofa>1. O

Proof of Proposition 2.1. Itis convenient to formulate the equations as a fixed point prob-
lem. We setE = C1(R,) x C1(R,) x R and define the following mapping : E — E:

T(u,v,c)= (U, V,c+0—maxU),
Ry

whereU andV are given by the resolution of

—AU + ¢ a—U = f(u, y)v, (2.11)
Ox

—AAV +¢ Ga_V =—f(u, y)v (2.12)

X
together with the following conditions:

6—U=O, a—V=O onl,, (2.13)

Oy Oy

—Ux(—a,y)+cU(—a,y)=0, Uf(a,y) =1, (2.14)

—AVy(=a,y) +cV(-a,y)=c, V(a,y)=0. (2.15)

Then, problem (2.1)—(2.7) is equivalent to finding a fixed point for the mapping
We note that the mappin§j : £ — E is a compact operator. Hence, for any open and
bounded sefS ¢ E such thatT has no fixed point oS, the Leray—Schauder degree,
d(Idg — T, S, 0) is well defined. Thanks to the preceding lemmas and classical elliptic
estimates, foralt > 0, we can find a constakyi > 0 (depending on a) such that(if, v, c¢) €
E is a fixed point ofT, then|(u, v, ¢)||g < k4, Where|| || g is the norm orE defined by:

I, v.OllE = lullcagg,, + Ivllerg,) + lel.

Therefore let us consider

S={,v,c) € E||(u,v,0)g <ka}.

Then,d(Idg — T, S, 0) is well defined. In order to compute this number, we use the
homotopy invariance. Far € [0, 1], we consider the mappiriy : E — E given by

T (u,v,c) = (U, V,e+0— maxU) ,
Ry
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whereU andV satisfy

—AU—}—ca—U:rf(u,y)v,
Ox

ov
—AAV + ¢ — = —1f(u, y)v
Ox
together with the boundary conditions (2.13)—(2.15). Then far all0, 1], 7 is a compact
operator inE. Furthermore, the estimates obtained for the fixed poins affe also valid

for the fixed points off;, for 0<t< 1. Therefore, we conclude thét/y — T, does not
vanish onoS and the homotopy invariance of the topological degree provides that

d(Idgp —T,8,00=d(Idg —T1,S,00=d(Idg — To, S, 0).
Now To(u, v, ¢) is independent of andv and can be explicitly written as
To(u, v, c) = (12, v,c+0— maxﬁ)
Ry
with
i(x) =00 fx) =1— /Do),

Finally in order to computé(Idg — To, S, 0), we consider the following homotopy: for
s €[0,1], & : E — E is given by

Dy(u,v,c)=(u—si,v—sv, 0 —i0)).
Thenldr — To = @1 and, for alls, @, is a compact perturbation of the identity. Therefore,
d(Idg — Ty, S,0) =d (Do, S, 0).

We have®q(u, v, ¢) = (u, v, 0 — e~ ). This yields that/(®g, S, 0) = 1 since the function
¢ — 0 — e ““lisincreasing. This computation concludes the proof of Proposition Z_1L.

3. Estimates independent of the bounded rectangle

In this section, we derive estimates for the solutiep, v,, ¢,) of (2.1)—(2.7) that are
independent of > 1.

3.1. Preliminary remarks

In the sequel of the paper, it will be very useful to consider the functions
H,=u,+v,—1 and G, =u, + Av, — 1. (3.1)
Note thatH, satisfies

0H,
—AH, + ¢, a—x“ = (A - DAy, (3.2)
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v

O0H, Ovg
- (—a,y) +caHy(—a, y) =(1-1) (—=a, y), (3.3)
Ox Ox
H,(a,y)=0, (3.4)
together with homogeneous Neumann condition§ atwhile G, is a solution of
_AGa + Ca aGa = (A — Dea %1 (35)
Ox Ox
oG,
~ (—=a,y)+ciGa(—a, y) = (A —Dcyva(—a, y), (3.6)
Ga(av y)zov (37)

supplemented with homogeneous Neumann conditiothg .aiVe also introduce the func-
tions that are averaged quantities with respegt to

1

1
ua,o(X)Z/O uq(x, y)dy, va,o(X)Z/o va(x, y) dy, (3.8)

1 1
hao(x) = /O H,(x,y)dy, 8a,0(x) = /O Gq(x, y)dy. (3.9)
The following monotonicity properties hold:

Lemma 3.1. We have
g 020 and v, (<0 on[-a,al, (3.10)

8,050 if A>1and g,,>0if A<1. (3.11)

Proof. In the proof, as often below, we omit to write down the dependence with respect to
aof the different quantities. Let us check thgt< 0. We take the average with respecyto
of Eq. (2.2). Sincef (u, y)v >0, this provides

—+ % vp<0
and by integrating fronx to a
vp(x) € DY Lyl (a)e /D, (3.12)

Now, vg >0 and, by (2.5)yo(a) =0. Thereforeyy(a) <0 and (3.12) gives, < 0. The proof
of the other inequality in (3.10) is similar.
Let us now derive (3.11). Taking the averages of (3.5)—(3.7), we have that

—g0 +cgo= (A — Dy, (3.13)
—go(—a) + cgo(—a) = (A — D)cvo(—a), (3.14)
go(a) =0. (3.15)
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Note thatgy(a) = 0. Indeed by integrating Eq. (3.13) fromu to a and using (3.14), we
see that
—g0(@) + cgola) — (A = Dcvo(—a) = (A = De(vo(a) — vo(—a))

that re-writesg;(a) = 0 sincego(a) = vo(a) = 0.
Assume now thatl > 1 (the other case is similar). Then, singe<0, (3.13) yields

—g0 +cgp<0
and by integrating fronx to a:
go(x) €7 <gpla)e™™ =0,
which is (3.11). O

3.2. First estimates independent of a

Let us recall that Lemma 2.2 provides the existence of a constadependent of > 1
such that

ca<¢ Va>1.

The following lemma provides various estimatesgrandv,. For later use, it is important
to emphasize the dependence of the different estimates with respgct to

Lemma 3.2. The following estimates hald

[c
Vvallp2r,) < Za, (3.16)

C
IVuallp2r,) <@+ 14 —=1)),/ Za (3.17)

// Sfug, y)va dx dy <cq, (3.18)
Ry

1 [Ca
”Ava“Lz(Ru) < Z <V Mcg + ¢4 Z) . (3.19)

Proof. Let us first derive (3.16). We multiply Eq. (2.2) byand we integrate oR,. Using
the Green'’s formula and the positivity of we have

c

1
> / v%(—a, y) dy<0.
0

1d
A/ |Vv|2dxdy+/1/ _v(—a,y)v(—a,y)dy—
R, 0 6x
Now thanks to the flux condition (2.5) and Lemma 2.1, we can write
1
A/ Vol dx dygc/ v(—a, y)dy<c,
a 0

that provides (3.16).



1114 A. Ducrot, M. Marion / Nonlinear Analysis 61 (2005) 1105-1134

In order to prove the estimate foywe use the functiohl given by (3.1). More precisely,
we aim to show the following estimate:

IVH 12(r,) <14 = LIVVI L2,

<4 — 1|\/§. (3.20)

In order to derive this inequality we multiply Eq. (3.2) biyand we integrate oR,. This
gives

2 1 aH C 1 2
// IVH| dxdy—i—/ —— (-a,y)H(—a,y)dy — —/ H%(—a,y)dy
R, 0 Ox 2 0

1
=(1—A)/ O ) H (=, y)dy + (1— A) // VuVH dx dy.
o Ox R

Hence,

// |VH|2dxdy<(1—A)// VuVH dx dy,
R, Ra

that provides (3.20) thanks to the Cauchy—Schwarz inequality.
Finally, writing

Vu=VH — Vv,
(3.16) and (3.20) give (3.17). Next, by integrating (2.2)Ryn we find that
ff f(u, yyvdx dy = c(vo(—a) — vo(a)) + A(vg(a) — vo(—a)).

Sinceuyg is decreasing, using also the boundary condition (2.5), we see that

// fu, y)vdxdy =c + Avy(a).
Rq
Finally, Eqg. (2.2) yields

X L2(Ry)

whereM is given by (2.9). Combining (3.18), (3.21) and (3.16) provides (3.19) and concludes
the proof of lemma 3.2. [J

AllAv|l 2k, <€ + VM fu, y)vlpig,) (3.21)

Next, the crucial step consists in obtaining some lower bound,for
3.3. An estimate from below for the velocity

Recalling the average functidn, o andg,. o given by (3.9), we introduce the decompo-
sitions

Hay(x,y) =hao(x) + Hy(x,y) Ga(x,y) = ga0(x) + Galx, y). (3.22)
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We first give various estimates &f o, H, andG,. Again it will be important to emphasize
the dependence of these estimates with respegt to

Lemma 3.3. The functionz, o is positive ifA4 > 1 and negative ifA < 1; moreover we
have

|4 —1]
”ha,OHLl(—g’a) g c 1 (3.23)
a
|4 —1]
lha0llL2(—a,0) < ﬁ, (3.24)
a
a0l Lo (~a.a) <14 — 1. (3.25)
Furthermore the following estimates holds
~ C
I Hallp2r,y <14 =11/ Za (3.26)
1Gall2r,) <14 — 1l—. (3.27)
k) NEY

Proof. Let us first check the estimates fay. Taking the average of (3.2)—(3.4), we see that
ho satisfies

—h§ + chy = (A — g,
—hg(=a) + cho(—a) = (A = Dvy(—a),
ho(a) =0.

It follows thathg is given by
ho(x) = (A — 1) / vp (e dr. (3.28)
X

Consequently, sincey<0, the functionhg is positive if 4> 1 and negative i1 < 1.
Next, bounds (3.23) and (3.24) follow from formula (3.28) and Young s inequality for the
convolution product. Indeed we have

170l L2 (—g,a) <14 = U (W01 (—a.a) * (€ T <0l 1R
<A = Ullvol—a.a) L2y 1€ T <oll 1)
which yields (3.23) in view of the monotony of. Also for bound (3.24), we write
170l L2(—g,a) <14 = U1 (W1 (—a.a) * (€ T <)l 2
<14 = U lvplcaam 2@ 1€ 1 <oll L1 w)
and we obtain (3.24) thanks to (3.17). Finally, for & bound, (3.28) implies that

a
Vx € (—a,a), |ho(x)|<|A— 1|/ lvg(1) €~ dr,
X
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Now, sinceug is decreasingy,(x)| = —vy(x) and the above inequality gives
a
oI <14 =11 [ ~vgnrar
X

which yields (3.25) since Q vo < 1.
We aim now to derive estimate (3.26). For that purposer fod, let us consider

1
hn(x) = / H (x, y) coSmny) dy,
0

1
v, (x) = / v(x, y) cognny) dy,
0

1
B = [ Autr.y) costmny) dy. (3.29)
0
Then, we have:
B o0
WA 200y =D 1hallZ2 g (3.30)
n=1

2

We aim to estimate the quantitieHs&,,HLz(_a

functionh,, satisfies
{ —h!" + chl, 4 m?n%h, = (A — 1),

2 for n>1. Clearly, in view of (3.2), the

—hy(=a) + chy(=a) = (A = D, (=a),
hn(a) =0.
Multiplying this equation by:, and integrating ori—a, a), we obtain that

a

a a
nZnZ/ h? dx +/ (h')2dx — [/ ha)", + g[hﬁ]‘ia =UA-1 | h,o,dx.

In view of the boundary conditions, this expression reduces to

a a

nZnZ/ h? dx + (h!)2dx + % h?(—a)
—dad —dad

a

= (A~ D) (~ahy(~a) + (A =1 [ hue,dr. (3.31)

—a

Also, in (3.31),¢, is given by (3.29) and we see that

1
¢, (x) = /o Av(x, y) cognny) dy = @, (x) + nnw,(x), (3.32)

where

1w 1w .
(Pn(x)=/ a—(x,y) cognny) dy, wn(x)=/ — (x, y) sin(nny) dy.
0 Ox o Oy
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Combining decomposition (3.32) and identity (3.31), we easily derive that

n?n f h2dx + [ (h))%dx + %hﬁ(—a)
—da

—a

a a
=A-1 (—/ h;qondx—i—nn/ hnwndx>.

Therefore, thanks to the Cauchy—Schwarz inequality
W22 <IA = Ul@yll 2Nyl 2 + nll gl 2@l L2).
Now the following inequalities hold:
l@ullz<IIVVll2,  N@al2<IVVllzz, Nyl 2<IVH] 2.

Using also (3.16) and (3.20), we infer from (3.3) that
_Sa__
An2n?’

Consequently, in view of (3.30), we conclude that

Wl 4 <614 = 17

2Ca
e
The proof of (3.27) is similar and is omitted ]

1Hal7 2, <14 = 1]

We now derive some estimates of the normgiodndG in L®(R,).

Lemma 3.4. The following estimates holds

I Hall oo (Ry) < Poo(A, ca M), (3.33)
”Ha”LOO(Ra) g |A - 1| + @OO(A’ Ca, M)! (334)
luallroe(ry) <1414 = 1] + Poo(A, ca, M), (3.35)

where M is thel.*® bound of the nonlinearity given i§2.9) and

Goo(A, c, M) =k|A — 1|\/§\/Iog <1+ <1+ %)c—l—«/MA) (3.36)

and k is some absolute constant. Furthermdiere is some constant N depending on M
0 and A such that

1Galle(r,) <N /ea. (3.37)

Proof. Bound (3.33) follows from some local estimates f#ff-norm together with the
Brezis—Gallouet inequality7]. More precisely, we consider the domah = (x, x +1) x
(0,1) for x € (—a, a — 1). Due to (3.20), the functioi/, satisfies

2¢,

Il Hall g1p,) <14 — 1] -
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Then thanks to Brezis—Gallouet inequality, there exists a conktamtependent ok €
(—a,a — 1) such that

1/2
[Ca 2 I Hallp20,) [ 4

H 00 <k|4A-1 log IR .

| HullLo(o,) <Kkl | ( ( A1 -

Clearly, in view of (3.19), we have

C
A||AU||L2(QX)<C(M) Za + Mca. (338)
Now, the functionH satisfies:

- 0H
—AH + ¢ — = (A — 1)(Av — v).
Ox
Therefore, forx € (—a, a — 1), thanks to (3.20), (3.38), we see that

- 0H
IAH |l 20,y <c

— A —1)||Av —v]
o +1 AV — vgllr2¢0,)

L2(Qy)

<|A—1|<<1+%) ;Z M)@ (3.39)

/ Hdxdy=0
Ox

Now, there is some constaktiepending only on the diameter ¢f; such that
1H 20,y <kIAHIl 20, (3.40)
Then, thanks to (3.39) and (3.40), we obtain the following bound:

while

| Hyll oo (R, < Poo(A, car M).

Finally, thanks to decomposition (3.22) and bound (3.25), we easily obtain bound (3.34).
The proof of theL°>°-bound (3.37) for the functioty is similar and is omitted. [J

We can now find a lower bound for the velocity that is independent of the rectangle.

Proposition 3.1. There exist > 0 andag > 1 such that for alla > ag

Cq>C. (3.41)
Proof. The argument relies on upper and lower bounds of the quantity
/ f(ug, y)vau;’O dx dy,
Rq

whereu, o is given (3.8). Note that sinae, g is increasing, this quantity is positive.
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The upper bound is easily obtained. Indeed thanks to Cauchy—Schwarz inequality, (3.18)
and (3.17) we have

/ Su, y)vub dx dy <[ f (u, )’)U”LZ(Ra) ||“6||L2(Ra)
R(L

<@+4- 1|)\/¥Ca- (3.42)

For the lower bound, we first note that definition (3.1) and (3.22) provide the following
decomposition:

G- AH

w=uot (3.43)

Consequently, in view of bounds (3.33), (3.37) and Lemma 2.2, we can find some constant
K; independent of > 1 such that

u>ug — Ki/cq.

Therefore sinceg is increasing, we see that

[ swswiptrdy> [ [ fuo kave yupdsdy.
R, R,

Next, we introduce some appropriate decompositianAf this point we need to distinguish
the casest < 1 andA > 1. Let us first assumd < 1. We write
1 - . - - H-G
— H— — 1— wher = . 44
v vo—i—l_A( G)=ho+ ug+V, ereV 14 (3.44)

Using this decomposition, (3.44) yields that
/ . fu, y)vugdx dy > / . f(uo — K1y/cq, )(1 — ug)ug dx dy
+ //R f(uo — K1y/cq, y)houg dx dy
+ / i f(uo — K14/cq, y)Vug dx dy. (3.45)

We aim to estimate the different terms in the right-hand side of (3.45). For the first term,
the positivity of f together with (2.6) guarantee that

/ . f o — K1y/ca, y)(1 — uo)ugdx dy
‘ 1 1
=f / £(s — K1/cq, y)(1 — 5) ds dy
0 ug(—a)

1 1
>/ / F(s — Ki/ea, (L — 5)ds dy = I (ca). (3.46)
0 0
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Also the last term is majorized by, c, wherey; is some constant. Indeed in view of
(3.26), (3.27) and (3.17), we have

‘ / /R fuo — K1/ca, y)Vugdx dy| <MVl 2er, lugll 2k, <t1car  (3.47)

wherey; is a constant depending o, A, 0.

A similar property does not hold for the second term but siicel, we havéeip >0 (see
Lemma 3.1) and this term is positive. Combining the above estimates, we infer from (3.45)
that

// fu, yyvugdx dy >1(cq) — pyca-
Ra

Now this lower bound together with (3.42) enable us to say that

M
1ea) S+ 14 = 1)/ = e+ pca. (3.48)

But, thanks to Lebesgue’s theorem, the functign) satisfies

1 1
lim I(c):/ / f(s,y)(L—s)dsdy>0.
c—0 0 0

Consequently, inequality (3.48) yields the existence of some constanidag > 1 satis-
fying (3.41).

In the casel > 1, we use a decomposition of the functiodifferent from (3.44). Indeed
we now write
H-G
1-4°
Dueto (3.11), we can easily see that the functigis positive. Hence, computations similar
to the ones above yield (3.41) in that case. The proof of Proposition 3.1 is complete.

1 1
U=2(G+1—M)=Z(80+1—u0)+

3.4. Other useful estimates for the velocity

Before investigating the limit — +o0, we derive some further estimates for the velocity
that will be very important in the sequel.

Proposition 3.2. Leta > 1. For /A > 1 the following inequality holds

202 2
m _c50 c 2 Cur/Ca
— < LA+ M|A =1 A 3.49
A 2 + A + Ml | JrA ( )
while for 4 < 1, we have
202 2 ’
c40 A'e
m< “2 +7c§+|A—1|M ¢

1
+(1—A)/ F(2— A+ ®oo(A, cay M), y) dy. (3.50)
0
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Here, M is given by(2.9), ®,, by (3.36),4" =1+ |4 — 1],
=[] rema-sda (3.51)
0,12
and

F(s,y) = /0 £t y) dr. (3.52)

Remark 3.1. For A4 > 1, Proposition 3.2 provides a different proof of (3.41) thanks to
(3.49). However thisis not true fot < 1. Also, even forl > 1, the techniques of Proposition
3.2 would not provide (3.41) for more general chemistry (for example an angsaction:

nR — P with n > 1) while the proof of Proposition 3.1 can be extended to that case.

Proof. Leta > 1. Let us first consider the cage> 1. By multiplying Eq. (2.1) byou,, /0x
and integrating oveRr,, we obtain

_/ uq(—a, )’)Zd)’-i-ca//
R(l

Here, due to (2.6), we haug(—a, y) < 6. Also, the second term in the left-hand side of
(3.53) can be estimated thanks to (3.17). For the right-hand side, recalling (3.1) and (3.22)
we introduce the decomposition

(3.53)

d dy>/ f(uuvy)vu

1 .1
=@ +G)+ A (3.54)

Combining these remarks we infer from (3.53)

202 (2
> A“ —+—// f(u, y)gouy dx dy
+ Z//Ra f(u, y)Gu, dx dy. (3.55)
Next, estimates (3.27) and (3.17) yield
‘ / /R S V)G dx dy‘ <M||G||L2<Ra)||ux||Lz<Ra)<M|A—1|A’%j“- (3.56)

Also an integration by parts provides

1
/ J(u, y)gouy dx dy=/0[F(u, y)gol?, dy— // F(u, y)godxdy,  (3.57)
R, Ry
whereF is defined by (3.52). Sinag(—a, y) <0 andgp(a) = 0, the first term in the right-

hand side of (3.57) vanishes while the second one is positive sineé implies g, <0
(see (3.11)). Therefore

fR f . y)gou, >0. (3.58)
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Combining (3.58), (3.56) and (3.55) enables us to say that
202 2
ci0° s o , CarfCa _ M
<A M|A - 1A >—.
o Ty A A MASUAT

That is (3.49).
Let us now assumd < 1. Instead of (3.54), we consider the decomposition

v=ho+H+1—u.

Therefore, as above, we infer from (3.53) that

202 2 ~
C“2 + CZH A%>m +/R f(u, y)hou, dx dy ~|—fR f(u, y)Hu, dxdy. (3.59)
Then, thanks to (3.26) and (3.17)
- - Ca
fu, y)Huy, dx d}" <M H|lp2r ) lluxll g,y <MA'|A = 1] 1 (3.60)
Rq

Also,
1
/ f(u, y)hou, dx dy = /O [F(u, y)ho]*, dy — // F(u, y)hgdx dy
Ra Rq
=0+ // F(u, y)((A — 1)vy — cho) dx dy.
Rll
Then, agyg is decreasing, we see that
/ fu, y)hou, dx dy >c, // F(u, y)hodx dy.
R, Rq

Thanks to the positivity of the functiofi and theL-bound for the functiorkg (3.23), we
derive

1
/ f(u,y)houxdxdy>—cu/0 F(lluloos ) 1ol 1 dy
Ry
1
>_(1-A) / FQ—A4Bc(A, co, M), ) dy.  (3.61)
0

Gathering (3.59)—(3.61) lead us to estimate (3.5Q).

4. Problem in the cylinder

In this section, we investigate the limit— +oo of the solutions of (2.1)- (2.7) iR,,.
We first prove the following result that holds for arty> 0.

Theorem 4.1. Assume thatl.10)and(1.11)hold. Let4 > 0 be given. Then there exists an
increasing sequende, ),y Withlim,_, o a, =-+o0 such that the solutiot,, , v, . ¢4,)
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of (2.1)-(2.7)in R,, given by Propositior2.1 converges for the topology aﬁ‘&)c(f?) X
CL.(Q) x Rto (u, v, ) satisfying

—Au—i—ca—u:f(u,y)v in Q, (4.1)
Ox
ov .
—AAv + ¢ P —f(u, y)v in Q, (4.2)
X

Ou Ov
M r 4.
3y = 3y 0 onr, (4.3)

max u(x,y)=0. (4.4)
(x,y)eQ™

In addition,

lim wu(x,y)=0, lim wv(x,y) =1, (4.5)
X—>—0Q X—>—00

im u(x,y)=ut, lim v(x,y)=1-u", whereut € {0, 1}, (4.6)
xX—>—+00 X—>+00

0<c<,/27M. 4.7)

The convergences {@.5)and(4.6) hold uniformly with respect to € [0, 1].

Proof. Let us take a solutiofu,, v,, ¢,) of (2.1)—(2.7). In view of Lemma 2.2, (2.10) and
(3.1), foralarge enough we have

[2M
c<e < o0 (4.8)

Moreover, since & v, <1, f(u,, y)v, is bounded inL>°(£2) whereas in view of (3.35),
uy is bounded inL>(Q). It easily follows that:, andv, are boundedv?? (R ) for all p,
1< p <+oo0andA > 0, independently adisufficiently large. As a consequence, there exists
an increasing sequenag with lim,,_, ; o a, = +o0 such that(u,,, v,, , c4,) CONverges to
(u, v, ¢) in the topology ofCL (Q) x CL.(Q) x R. Next, it is easily seen that, v, ¢)
satisfy (4.1)—(4.4) while (4.7) follows from (4.8).

There remains to investigate the limitsxat +co0. The behavior at-oco follows easily
from some exponential estimates for the functiarsdv.

Lemma 4.1. For all (x, y) € R_ x (0, 1), the following properties hotd

u(x,y)<0e™, 4.9
1—v(x, y) <elc/Dx, (4.10)
In particular,

lim wu(x,y)=0, lim v(x,y) =1,
X——00 X——00

where the limits are uniform with respectyoe [0, 1].
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Proof. Let (x,y) € R_ x (0, 1). Then forn large enough, we have, y) € R, . Dueto
condition (2.6) and assumption (1.14), satisfy

0 .
—Au—i—c—u:O inR,,

Ox
u =0 on(—a,, 0) x {0, 1},
Oy
M(O, y)<01

—ux(—an, y) + cu(an, y) =0.
Therefore the maximum principle yields
Ug, (x,y) < O™,
Similarly, we easily see that we have
1— v, (x,y) <e(can//1)x_

Taking the limitn — +o0 yields the expected inequalities]

We now aim to investigate the behavionat +o00. The arguments are mainly classical
and close to the ones [B]. Let (z,,) be sequence of positive numbers going to infinity as
m — +o00. We define the sequences of functierysandv,, as follows:

L_lm(x7Y):u(x+tm7)’) ’_)m(xvY):v(x+tm»Y)-
Then, as in3], it is easily seen that the sequenégsandv,, are relatively compact in
cL((0, 1.
Next, let us consider two sub-sequence&mf) and(v,,) still denoted byi,,) and(v,,)

that converge irc1([0, 1]%) towards some functiorlsandk. Taking the limitm — +o0,
we find that

lim // |H(x+tm,y)|2dxdy=// Il +k — 12 dx dy.
m—+00 (0,1)2 (0’1)2

We can suppose (up to the extraction of some sub-sequences) that, + 1. Hence,
the Fatou lemma together with estimates (3.24) and (3.26) provide

“+00
+oo>// |u+v—1|2dxdy>Z// |H (x +1,, y)|?dx dy.
Q 1 (0,1)2

Therefore, we necessarily have

Il +k —12dxdy =0.
0.1)2
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A similar argument yields that the functiohandk are constant functions. Indeed, we can
write

+00
+oo>/f |Vu|? dx dy > Z /f |Vii |2 dx dy
Q po1 Y JOD?

and

+00
+oo>// VolPdredy> Y f/ V5, 1% dx dy.
Q e} (0,12

Therefore the convergence @f, and,, in C1([0, 1]%) provides that the functiorlsandk
are constant and satisfy- k — 1= 0.

To conclude, we have to show that the constant fundtaes not depend on the chosen
sequencér,,),,. Before giving an explicit expression forwe need the following lemma.

Lemma 4.2. The function u satisfies

lim |Vu(x,y)|=0, (4.11)
x—+o0
where the convergence is uniform with respect to (0, 1).

The proof is similar to arguments [B8] and is omitted.

Now let (z,,) be a sub-sequence @f,) such that the sequencgs, andv,, converge
in C1([0, 1] towards the constantsand 1— /, respectively. Integrating Eq. (4.1) over
Ty, = (—ty,, tn,) % (0, 1), we obtain

Iny,

1
C(tnk)_c(_tnk):f /o f(u, y)vdxdy

tnk

with
1 du 1
C(z)=—/ a—(z,y)derc/ u(z, y)dy.
o Ox 0
Using (4.9) and (4.11) and lettiiggo to+oco, we derive

l:l- // f(u, y)vdxdy. (4.12)
cJJo

The quantity in the right-hand side of (4.12) does not depend on the sequgnaed we
will denote it byu™.
At this point we have obtained the following convergence results:

lim u(x,y)=ut, lim v(x,y)=1—u".
X—>+00 X—> 400

There remains to show that™ e {0, 1}. We easily see that™ satisfies

f@t, »Q-ut)=0
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so thatu™ e [0, 0] U {1}. Next, the averaged functions

1 1
uo(x)=/0 u(x,y)dy, vo(x)=/O v(x, y)dy,

satisfyug(—o0) =1—vg(—00) =0 andug(+o0) =1—vg(4+00) =uT. Sinceuq is increasing
(recall (3.10)) and:o(0) > 0, necessarily we haue™ > 0. Now suppose that™ €]0, 0].
Then there existX € R such that

Vx>X, Vyel[0,1], u(x,y)<0.

Recalling property (1.11) of the ignition temperaturg,satisfies—Avg + cvy = 0 on
(X, +00). Hence,vg is constant or(X, +o0). Applying the maximum principle, it easily
follows thatvg is constant oriR which is impossible sinceg(+o00) <1 = vg(—00). The
proof of Theorem 4.1 is now complete[]

Theorem 4.1 provides a solutiqm, v, ¢) of (4.1)—(4.7) obtained as the limit of the
solution(u,, v,, ¢,) oOf the problem in the bounded rectanditg. Since the convergences
of u, andv, are not uniform orf2, estimates om, andv, do not readily yield estimates
onu andv. Nevertheless, some further information @n v, ¢) can be obtained. We now
state some results ai, v, ¢) that will be important in the sequel. First taking the limit
a — +o0in (3.34), we see thall = u + v — 1 satisfies

IH Lo <14 -1 <1+ k\/g\/log (1+ <1+ %) c+ «/MA)) . (4.13)

Also we can take the limié — +o0 in the results of Proposition 3.2. We obtain that, for
A >1,csatisfies

202 2
e A A — &L (4.14)
A2 T4 N
while, for 4 < 1, we have
202 2 /
C 6 /1 2 AC
<— A—1M —
ms— + T + | 1
1
+G—M/,FQ—A+®MAQMLw®, (4.15)
0

where®, is given by (3.36) ané by (3.52).
Let us now derive an upper bound fom the strip that improves (4.7).

Lemma 4.3. The following estimate holds

1
3<§HﬂmJthm- (4.16)
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Proof. Estimate (4.16) follows from the comparison of the functionith # defined by

S .

—Ze”‘ if x<O0,
0(x) = CS S

-+ =X if x>0,

C C

wheresS = || f (u, )vll (). INdeedi satisfies
—i" +ci' =810, 6(—00)=0, di(+00)=+00,

so that the maximum principle yields that ii. We conclude the proof of Lemma 4.3 by
expressing thal <u(0). [

Let us conclude this section by showing that the solution of (4.1)—(4.7) satisfies, y)
= 1if A is sufficiently close to one. This property guarantees that, c) is a solution of
(1.3)—(1.7).

Theorem 4.2. Assume thaf1.10)and (1.11) hold. There exist® > 0 such that if4 >0
satisfieg /1 — 1| < ¢, then the triplet(u, v, ¢) given by Theorem.1is a solution of problem
(1.3)-(1.7)

Proof. The proof is based on inequalities (4.14) f6r- 1 and (4.15) ford < 1. We will
only consider the case¢ > 1. The other case is similar.

We argue by contradiction. Let us suppose th@too, y) = u™ = 0. Then, by (4.6),
v(400, y) =1 — 0. Applying the maximum principle to, we easily see that

1-0<v<l.
Consequentlyy = H + 1 — v satisfies
lullpoo@) <O+ I1H || L0
and, thanks to (4.13)
lullpoo@) <O+ (A = 1) + Poo(A, ¢, M). (4.17)

But, in view of (3.36),9 is an increasing function with respectdoTherefore, bound
(4.7) combined with (4.17) enable us to say that

lull oo (@) < OHA—D)+Poo (A)  With  Doo (M) =D <A,,/27M,M>. (4.18)

Estimate (4.18) allows us to obtain an improved upper boura ©hanks to (4.16) we find
that

1 -
A< sup fO+ (A —1) + Doo(A), y) = E(A).
0 ye(0,1)
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Next, we combine this estimate with (4.14) and obtain that

e(A)34
VA

We can now conclude the proof of Theorem 4.2. Indeed, sjiiéey) = 0, we have

~ 2 ~
m < c(A)0O n c(A)

A% £ MiA—1A
1 > 1 + M| |

(4.19)

lim ¢(A)=0.
/1I—>1€( )

Consequently, the right-hand side of (4.19) goes to zerd as> 1 whereasn >0 is
independent ofl. It follows that (4.19) can not hold true fot sufficiently close to 1 and
necessarily, for such, u(+oo, y) = 1. Theorem 4.2 is proved.l]

Remark 4.1. The Arrhenius term arising in combustion theory is given by

(0= 2 ex (3—”_1 )
fu—282 P el+yu—-1)"

wheree is the inverse of the reduced activation energy and]0, 1] is a heat release
parameter. We see that = (1/2¢?) exp(1/ye) so that the constait provided by Theorem

4.2, depends of throughe? exp(—1/7¢). Such a dependence is irrelevant fog 1. The

aim of the following section is to obtain improved estimates that do not assume any bound

onf.

5. Travelling waves for high activation energy

In this section we assume thatand A depend on a parameter 0 and we seff = f;,
A = A,. We consider the problem

—Au—l—cg—u:fg(u,y)v in Q=R x (0, 1), (5.1)
X
ov .
—AgAv—f—ca— =—fe(u,y)v InQ (5.2)
X

together with the following boundary conditions:

a—uza—vzo onl'=R x {0, 1}, (5.3)
dy Oy

u(—o0,y) =0, v(—o0,y)=1 forye (0,1), (5.4)
u(+oo,y) =1, wv(+o0,y)=0 forye (0,1). (5.5)

We assume that the functiofy takes the form

1 -1
Sfe(u, y) = =z v <MT> 7(u, y), (5.6)
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wherey : R — R™ is locally Lipschitz continuous oR and satisfies

:z// increasing andy(s) = o (%) whens — —oo, 5.7)
f?oo Y(s)ds >0
while 7 : R x (0, 1) — Ris Lipschitz continuous and such that
{ 30 € (0, Dy(s,y)=0if s <0 and O< y(s, y) <1if s> 0, (5.8)
s — x(s, y) is increasing for all y € (0, 1).

As already mentioned, the high activation energy asymptotics, i.e. theelimit0, is
a major tool in combustion theory. When the Lewis number differs from ohe#£ 1),
the first step in the asymptotics methods used by physicists consists in assuming a suitable
(heuristic) bound on the temperature of the form

ulx,t)<14 0(e).

Note that such a bound was rigorously deriveld 9] for the parabolic problem (1.1)—(1.2).
In order to study problem (5.1)—(5.5), we first truncgiefor large values oti. More
precisely, we introducéf;) given by

fe(s,y) if s<l+e,

fel+ey) ifs>l+e (5.9)

fb'(ss )’) = {
Then the first step of our study consists in investigating problem (5.1)—(5.5)wiéplaced
by f: (Theorem 5.1). Next, we show how existence results for this problem allows to obtain
results for the initial problem (5.1)—(5.5) (Theorem 5.2).

For all ¢ > 0, the functionf; satisfies (1.10) and (1.11). Therefore Theorem 4.1 applies
and provides the existence of a solution of (4.1)—(4.7)Ace A, and f = f,. Let us
denote by(u,, vg, ¢;) this solution. The limits at = 4+oc0 are such that;(+o0o0, y) =1 —
ve(+00, y) = u;. We aim to show that;” = 1 under appropriate assumptions.¢pand
for ¢ sufficiently small.

Theorem 5.1. Assume thgs.7)and(5.8)hold. Assume furthermore thdt satisfies either
1—le2< Ay <1withra> 1, 0r 1< A, <1+ [t with r; > , wherel; and !/, denote
positive constants independent:ofhen for ¢ sufficiently smalle < &g, we have

L .
w = lim wug(x,y) =1
€ X—>+00 L( y)

In particular, (ug, vg, ) is a solution of(5.1)—(5.5)with f, replaced byf;.

Proof. The definition of ;, together with expression (5.6) fgf, yield the existence of a
constanK independent of such that

~ K
I folloe < 5. (5.10)
&
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Note that f; is not uniformly bounded with respect to Therefore, we need to carefully
keep track of the dependence with respect td the various estimates. We first note that
estimate (4.7) of the velocity provides

cggg,/z—K. (5.11)
e 0

Let us assume that
1< A, <1+ e for somery > 3. (5.12)

This assumption guarantees a convenient upper bound for the entiiadpy. + v, — 1.
Indeed recall estimate (4.13) féf,. There,A = A, ¢c = ¢, andM = M, = supf,. Using
(5.10) and (5.11), we infer from (4.13) that

Kk [2K\Y4 Je
| Holl e <14¢ — 1 (1+ﬁ(7> llog <1+ ?>> (5.13)

wherel, = /(2K /0)(1 + A;l) + VKA. Now, due to assumption (5.12), we can find
&1 > 0 such that for alt < &1 we have

k(2K \Y* e 1-0
L [N B — < —.
A, 1|(1+ 8A8(9> Iog<1+8> <

Therefore bound (5.13) yields
1-06
| Hell Lo (@) < — for e <e1. (5.14)

Next, we argue by contradiction to prove that = 1 for sufficiently smalle. Assume
thatu = 0. Thenv,(+o0, y) = 1 — 0 and the maximum principle provides
1—-0<v:<1. (5.15)

Therefore, combining (5.14) and (5.15), we see that H, + 1 — v, satisfies

1+0
||u£||L°C(Q)\T- (5.16)

Now, due to (5.6)—(5.8), the functian — f.(s, y) is increasing. Consequently, since
0< %<1, (5.16) enables us to say that

- 1 0—-1
Sup_ fs(“e(x»y)’J’)Ue(xay)gg_zlp< )

(x,»)eQ 2t

Then, we majorize the velocity thanks to (4.16) and we obtain

1/1 /0-1
<= = ,
N 0w< 2¢ )
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In view of assumption (5.7) o, we conclude
ce=o0(®) ase— 0. (5.17)

We now use inequality (4.14) that reads here
22 2 3/2
c50 A c
mg<*7A8+c§71 + 14, - 1|A;K8;—ﬁ. (5.18)

Dueto (5.17), the right-hand side of (5.18) goes to @,-as 0. On the other hand, given
by (3.51) with f = f; satisfies

0 1
lim m, =/ (=) (s) ds/ x(1, y)dy >0.
00 0

e—0 —

Consequently inequality (5.18) cannot hold true for sufficiently smaiid, for sucls, we
haveu,(+o0, y) = 1.
Let us now consider the other case, that is

1—-102<A, <1 for somery > 1. (5.19)
Sincer; > 1/2, computations similar to the ones above guarantee that

1-0
| Hell Lo (@) < —5 for & < ey.

Next, we again argue by contradiction and assufhe- 0. As above, we see that= 0(?)
ase¢ — 0. We now use (4.15) instead of (4.14). We see that

202 f2 KA, 1
me< S 4 SR A - 1T -y /0 Fl+7,ndy,  (5.20)
& 4 &

where we have set
K
Ye=1—A; + P (/187C87 8_2)

As above, as; > % the first three terms in the right-hand side of (5.20) go to zero-as0.
For the last term, sinceQy <1, we have

15 (t—1 1 [e-bre
Fa(S,Y)SS—Z/O v (T) dr = ;/ ¥ (u) du.

—1/¢

Consequently, the last term in (5.20) is majorized as follows:

1 1— A, [7e/%
1— Ay / Fol+7, »)dy< W) du. (5.21)
0 & —1/¢

Sincer > 1, we easily see that /e goes to 0 ag — 0 and we have

1- A,
&

— 0.



1132 A. Ducrot, M. Marion / Nonlinear Analysis 61 (2005) 1105-1134

Therefore quantity (5.21) goes to zeraas 0 and as above we conclude that (5.20) cannot
hold for sufficiently smalk. This completes the proof of Theorem 5.1.]

Theorem 5.1 allows us to derive the following existence result for problem (5.1)—(5.5)
with f;.
Theorem 5.2. Assume thaf5.7)and(5.8) hold. Assume furthermore that
|4; — 1|<le’ fory> 3, 1>0. (5.22)

Then for sufficiently smalk, there exists a solutiofu,, v, c¢,) of (5.1)—(5.5).

Proof. Let ¢ >0 be small enough so that problem (1.3)—(1.7) forand |4, — 1| <[¢’
possesses a solution given by Theorem 5.1. The proof consists in deriving an estimate of the
velocity involving theL°°-bound of the functiorf/;, and then by expressing this estimate

in (4.13) to obtain a suitable bound for the temperature.

We first note that
- K p
felug, y)ve < 2 | Hell oo (@) + . for (x,y) € Q, (5.23)
where
K=y(1) and B= sup |[s[{(s).

s€(—00,0)

Indeed in order to derive this estimate, we distinguish the redions), u:(x, y) <1+ ¢}
and{(x, y), uz(x, y) > 1+ ¢}. In {u, <1+ ¢}, we write that

ug—1

~ 1
Jelue, y)ve = 6_2 W < ) x(ug, Y)(Hg + 1 —uyg)

which provides

ug — 1

~ 1 1
Jelug, y)ve < % IHellize@) + = W (

1 1
<ID ey + © supsypis)
& & s<0

) a- ua)ﬂu,;él

thatis (5.23) infu, <1+ &}. Next, in{u,>1+ ¢}, we have

Felug, y)v, = fzw(l)x(ug, Ve (5.24)
But

ve<e+vSug+v,—1=H,
so that (5.24) yields

felue, y)vggg 1 Hell Lo @)

which implies (5.23) in that region.
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Note that by combining (5.23) and (4.16), we obtain the following bound of the velocity:
1/K p
c2< 9 <.9_2 | Hell Lo @) + z) . (5.25)

We now aim to derive an estimate pfi,|| .~ thanks to (4.13). We first majorize the
logarithmic term in (4.13) thanks to (5.11). We obtain the existence of some constant still
denoted by such that, for sufficiently smad, we have

KA, 1
log <1+ A+ A7 e+, F;) <k log~.

Therefore (4.13) provides

1
| Hell oo ) < | 4e — 1] 4+ k|A; — 1| /csy/10g . (5.26)

Next, we make use of (5.25) and infer from (5.26) that, for small enaugh

Oe

We can now conclude the proof of Theorem 5.2. Inequality (5.27) together with assump-
tion (5.22) guarantees the existence®$ 0 such that

17 K ﬁ 1/4
| Hell Lo (@) <1 A4e — 1 + k|4, — 1],/log E[@ | Hellpoo () + —} : (5.27)

| Hellpoo @) <& Ve<ep.

Sinceu, = H; + 1 — v;, we obtain the following upper bound ag:
Ve<eo, luellp=@<1l+e.

Now, recalling definition (5.9) off,, we see that
Felus (e, 3), ) = falus(x, ¥), )

so that(u,, v, ¢;) is a solution of (5.1)—(5.5). The proof of Theorem 5.2 is complete.
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