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Abstract

This work is mainly motivated by the study of periodic wave train
solutions for the so-called Gurtin-McCamy equation. To that aim we con-
struct a smooth center manifold for a rather general class of abstract sec-
ond order semi-linear differential equations involving non-densely defined
operators. We revisit results on commutative sums of linear operators
using the integrated semigroup theory. These results are used to refor-
mulate the notion of the weak solutions of the problem. We also derive a
suitable fixed point formulation for the graph of the local center manifold
that allows us to conclude to the existence and smoothness of such a local
invariant manifold. Then we derive a Hopf bifurcation theorem for second
order semi-linear equations. This result is applied to study the existence
of periodic wave trains for the Gurtin-McCamy problem, that is for a class
of non-local age structured equations with diffusion.
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1 Introduction

In this work we are concerned with the existence of periodic wave train solutions
for the following age-structured equation with diffusion(∂t + ∂a −∆z)u(t, a, z) = −µu(t, a, z), t ∈ R, a > 0 and z ∈ RN ,

u(t, 0, z) = f

(∫ ∞
0

β(a)u(t, a, z)da

)
, t ∈ R, z ∈ RN .

(1.1)

Here ∆z denotes the Laplace operator for the variable z ∈ RN , for some given in-
teger N ≥ 1. This equation is refereed as the Gurtin-McCamy equation and was
introduced in its nonlinear form in [35, 36] to study the interactions between
age and spatial motion in the spatio-temporal evolution of biological popula-
tions. Such questions were already addressed in the early 50’s by Skellman in
[70] using a related linear model.

During the last decades there has been considerable interest in this problem.
Indeed various biological applications, included population invasions, can be
handled by using such models. The mathematical analysis of this problem and
related equations has given rise to a huge literature. In addition to the works
quoted above, and without being exhaustive, one can mention the works of
Chipot [12], Di Blasio [23], Kubo and Langlais [47], Langlais [48] and Walker
[82]. One also refers to the following monographs and book chapters [1, 7, 19,
43, 85] and the references cited therein.

Similarly to delay differential equations, in the spatially homogeneous case
and under suitable circumstances, Problem (1.1) may undergo Hopf bifurcation
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leading to the existence of – spatially homogeneous – periodic orbits. Such
results have been obtained by Magal and Ruan in [54] (see also the references
therein). In this aforementioned work the authors construct a smooth center
manifold for a rather general class of abstract Cauchy problems that allows them
to obtain finite dimensional ODE reduction of the problem and to derive Hopf
bifurcation results.

However, as far as spatially heterogeneous solutions are concerned, the in-
terplay between temporal oscillations and spatial motion remains largely open.
This is more particularly true when the spatial domain is unbounded as the
situation we consider in this work. Indeed, posed in the whole space, (1.1) may
admit propagating pattern solutions such as travelling wave solutions. We refer
for instance to the work of Fang and Zhao in [31] where the authors derived
existence results for travelling wave solutions for monostable integral equations.
Under suitable assumptions on the nonlinear function f these results can be
applied to (1.1) to ensure the existence of travelling wave solutions.

In the slightly different context of delay differential equations, the coupling
between temporal oscillations and spatial diffusion may lead to the existence
of wave train solutions. The existence of such solutions have been proved for
some specific examples of reaction-diffusion with time delay. For instance, by
coupling the results of Hasik and Trofimcuk [38] and Ducrot and Nadin [27]
proves that periodic wave train solutions do exist for the so-called Hutchinson
equation (if the delay is large enough). In that case, the existence of periodic
wave trains does not follow from a local bifurcation analysis but they arise as the
limit behaviour of travelling wave solutions of invasion. More specifically these
propagating periodic patterns describe the state of the population behind the
front of invasion. The proof is based on a phase plane analysis that makes use of
the specific structure of these second order delay differential equations. Such an
oscillating behaviour was already observed by So, Wu and Zou [71] (see also the
references therein) for other monsotable reaction-diffusion equations with time
delay. We also refer to Duehring and Huang [29] who proved the existence of
periodic wave train solutions with large wave speed for some non-local reaction-
diffusion equations by using singular perturbation analysis.

In the context of the Gurtin-McCamy equation, namely (1.1), we expect that
the temporal oscillations generated by the age-structured part would interact
with the spatial diffusion to lead to the existence of periodic wave train solutions.
Here recall that a couple (γ, U ≡ U(x, a)) is said to be a periodic wave train
profile with speed γ ∈ R if the function U is periodic with respect to its variable
x ∈ R, namely there exists a period T > 0 such that U(T + ·, ·) = U(·, ·), and
such that for each direction e ∈ SN−1 the function u(t, a, z) := U(z · e + γt, a)
is an entire solution of (1.1). In other words, the profile (γ, U) is a periodic –
in x – solution of the following second order problem∂

2
xU(x, a)− γ∂xU(x, a)− ∂aU(x, a)− µU(x, a) = 0, x ∈ R, a > 0,

U(x, 0) = f

(∫ ∞
0

β(a)U(x, a)da

)
.

(1.2)

In this work we shall prove the existence of wave train solutions for (1.1) (or
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periodic profiles for (1.2)) by developing bifurcation techniques for the above
problem. As it will be discussed in Section 8 below, Problem (1.2) can be
rewritten as a second order abstract semilinear problem of the form

ε
d2u(x)

dx2
− γ du(x)

dx
+Au(x) + F (u(x)) = 0, for x ∈ R, (1.3)

where ε ≥ 0 and γ ∈ R are two given constants, A : D(A) ⊂ X → X is a weak
Hille-Yosida linear operator (see Assumption 2.1 below) acting on a real Banach
space (X, ‖.‖) while F : D(A) → X is a given smooth nonlinear map. Because
of the (weak) Hille-Yosida assumption for the linear operator A, Problem (1.3)
is not hyperbolic but shares similarities with vector valued elliptic equations.
As mentioned above, Problem (1.3) contains (1.2) as a special case (see Section
8 for more details). In that case the corresponding operator A turns out to
be a non-densely defined Hille-Yosida linear operator. However, Problem (1.3)
consists in a more general class of equations. As an other example, one may also
think at semi-linear elliptic equation on infinite straight cylinder of the form

ε∂2xu(x, y)− γ∂xu(x, y) + ∆yu(x, y) + F (u(x, y)) = 0 for (x, y) ∈ R× Ω,

with ε > 0 and wherein Ω denotes a bounded smooth domain. When supple-
mented by appropriate boundary conditions on R × ∂Ω, such as homogeneous
Dirichlet, Neumann or Robin conditions, this equation enters the general frame-
work of (1.3). To illustrate this, assume for instance that it is equipped with the
homogeneous Neumann boundary conditions. Then, when posed in the space of
continuous functions on Ω for instance, this elliptic problem becomes a special
case of (1.3) with the densely defined linear operator A : D(A) ⊂ C(Ω)→ C(Ω)
given by (see Stewart [72, 73])

Aϕ := ∆yϕ, ∀ϕ ∈ D(A),

with the domain

D(A) :=

ϕ ∈ ⋂
1≤p<∞

W 2,p(Ω) : ∆ϕ ∈ C(Ω) and ~n · ∇ϕ = 0 on ∂Ω

 .

Here ~n(y) denotes the outward unit normal vector to the boundary at y ∈ ∂Ω.
As already mentioned, in this work, we shall develop bifurcation methods

to study the existence of periodic solutions for Problem (1.2). We shall more
generally focus on the class of second order equations of the form (1.3). Our aim
is to construct a smooth center manifold for Problem (1.3) and use it to prove the
existence of periodic solutions emanating from Hopf bifurcation, before coming
back to the special case of Problem (1.2).

The first main question addressed is how to solve an abstract second order
equation of the form

d2u(x)

dx2
− γ du(x)

dx
+Au(x) = f(x), with x ∈ R.
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The usual approach to solve such a problem is to re-write the system as a first
order evolution equation involving the fractional power Aθ of A. We refer to
[8, 30, 63, 65] and the references therein for more results on this subject. This
kind of technic requires A to be sectorial. Here we will not assume A to be
sectorial. Instead we will use some ideas developed by Da Prato and Grisvard
[21] and Thieme [75] to study the commutative sum of linear operators. When
A is non-densely defined, we will combine these ideas with integrated semigroup
theory to extend the existing results.

Now by using the state space decomposition associated to the spectral prop-
erties of the weak Hille-Yosida operator A (see [54] whenever A is non-densely
defined), we can re-write the problem into a more tractable formulation that
consists in an ordinary differential equation coupled with a Banach valued ad-
vanced and retarded difference equation of the form

du(x)

dx
= F1(u(x), v(x))

v(x) = F2 (u(x+ .), v(x+ .))
, x ∈ R,

wherein F2 is a Banach valued integral operator with some nice properties. This
re-formulation will be finally used to develop Lyapunov-Perron like arguments
to complete the construction of a smooth local center manifold. Finally a finite
dimensional reduction will be performed to derive a Hopf bifurcation theorem
for Problem (1.3).

Let us furthermore mention that the existence of a smooth center manifold
for Problem (1.3) has been obtained in [54] for the special case ε = 0. Here our
approach allows us to cover both cases ε = 0 and ε > 0. And as a consequence,
we retrieve some of the results obtained in [54] for first order problems. We
expect that the methodology developed in this work may be extended to study
higher order differential equations.

The classical center manifold theory was first established by Pliss [64] and
Kelley [45] and was further developed by Carr [9], Sijbrand [69], Vanderbauwhede
[79], etc. The finite dimensional center manifold theorem roughly states the dy-
namical behaviour in the neighbourhood of a nonhyperbolic equilibrium reduces
to the one of an ODE on the lower dimensional invariant center manifold. This
center manifold around such a nonhyperbolic equilibrium is tangent to the gen-
eralized eigenspace associated to the corresponding eigenvalues with zero real
parts. The center manifold theory has significant applications in studying prob-
lems in dynamical systems, such as bifurcation, stability, perturbation, and so
on. It has in particular been used to study various applied problems arising for
instance in biology, engineering, physics.

The classical center manifold theory around a nonhyperbolic equilibrium has
been extended for various types of invariant sets. One may refer to Chow and
Lu [16] for center manifolds for an invariant torus, to Fenichel [33] for invariant
set of equilibria, to Homburg [42] and Sandstede [66] for homoclinic orbits, to
Chow and Yi [17] for skew-product flows, to Hirsch et al. [41] for pieces of
trajectories. We also refer to Chow et al. [13, 14] where center manifolds for
smooth invariant manifolds and compact invariant sets are considered.
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Recently, great attention has been paid to the study of center manifolds in
infinite dimensional systems. The center manifold theory has been developed
for various infinite dimensional systems such as partial differential equations
(Bates and Jones [5], Da Prato and Lunardi [22], Henry [40]), semiflows in
Banach spaces (Bates et al. [6], Chow and Lu [15], Gallay [34], Scarpellini
[67], Vanderbauwhede [78], Vanderbauwhede and van Gils [80]), delay differ-
ential equations (Hale [37], Diekmann and van Gils [24, 25], Diekmann et al.
[26], Walther [83]), infinite dimensional nonautonomous differential equations
(Mielke [57, 58], Chicone and Latushkin [11]), partial functional differential
equations (Lin et al. [49], Faria et al. [32], Minh and Wu [60], Wu [86]), etc.
Several additional difficulties have to be overcome when dealing with infinite
dimensional systems. Indeed these problems usually do not have some of the
nice properties the finite dimensional systems have. For example, the initial
value problem may be ill posed, the solutions may not be extended backward in
time, the solutions may not be smooth enough, the domain of operators may not
be dense in the state space, etc. Here let us emphasis that the center manifold
reduction of the infinite dimensional systems plays a very important role in their
mathematical analysis since it allows us to study ODE on the finite dimensional
center manifolds. Vanderbauwhede and Iooss in [81] described some minimal
conditions which allow to generalize the approach of Vanderbauwhede [79] to
the case of infinite dimensional systems.

The case of semi-linear second order differential equations seems to be scarcely
studied. Construction of suitable manifolds and finite dimensional reduction
have been obtained in some particular cases, including a large class of elliptic
equations. We refer to the work Kirchgässner [46] based on Green functions.
We also refer to Mielke [57], to Chapter 4 in [20] and the references therein.
Note that such a method has allowed these authors to construct bounded solu-
tions for some elliptic problems, including wave train solutions and spiral waves
(see also [68]). We also refer to the notion of essential manifold, that roughly
speaking corresponds to the set of all bounded orbits, that has been developed
by Mielke [59] for elliptic equations posed on infinite cylinders. However such
manifolds are in general non-smooth. This does not allow the application of
Crandall-Rabinowitz Hopf bifurcation theorem (see [18]).

Here let us observe that aforementioned works do not apply to perform a
finite dimensional reduction for Problem (1.1). In that spirit we also refer the
reader to the work of Chen, Matano and Véron in [10] and to the book chapter
of Matano [56]. In these works, the authors observed that the solutions of some
semi-linear elliptic equations can be reformulated as the entire solutions of a
suitable semiflow coming from the resolution of a pseudo-differential equation of
parabolic type and involving suitable fractional powers of the Laplace operator.
The study of the solutions of the elliptic problem is then handled using infinite
dimensional dynamical system tools, such as invariant manifolds theory. Here
again let us observe that such a factorisation argument does not apply to (1.3)
when the linear operator A is neither sectorial nor almost sectorial (see [28]) as
in the case of Problem (1.1).

This paper is organized as follows: Section 2 is devoted to the statements of
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the main results obtained in this work. Section 3 recalls some known notions
and results on integrated semigroups. Section 4 is concerned with the theory
of commutative sums of operators in weighted spaces while section 5 provides
applications of these theoretical results to first and second order Banach valued
differential operators. Section 6 deals with the construction and smoothness of
a local center manifold for (1.3) around some nonhyperbolic equilibrium point.
Finally Section 7 provides a Hopf bifurcation theorem that is followed by Section
8, which is concerned with an application of these results to study the existence
of periodic wave trains for the Gurtin-McCamy equation, namely (1.1).

2 Main results

The goal of this article is to obtain a center manifold theorem for the (exponen-
tially bounded) weak solutions of (1.3). In order to deal with (1.2), the linear
operator A is not assumed to be densely defined, this means that, in general,
one has

D(A) 6= X.

Throughout this article, the linear operator A will satisfy the following set of
assumptions.

Assumption 2.1 (Weak Hille-Yosida property) Let A : D(A) ⊂ X → X
be a linear operator on a Banach space (X, ‖.‖). We assume that there exist two
constants ωA ∈ R and MA ≥ 1 such that the following properties hold true:

(a) (ωA,+∞) ⊂ ρ (A) , where ρ (A) is the resolvent set of A;

(b) lim
λ→+∞

(λI −A)
−1
x = 0,∀x ∈ X;

(c) For each λ > ωA and each n ≥ 1 the following resolvent estimate∥∥∥(λI −A)
−n
∥∥∥
L(D(A))

≤ MA

(λ− ωA)
n .

We will need further assumptions on the linear operator A that are related
to the first order abstract Cauchy problem

du(t)

dt
= Au(t) + f(t), for t ∈ [0, τ ] , u(0) = 0, (2.1)

where f : [0, τ ]→ X is a continuous function.
Before going to our assumptions, we recall the following notion of a weak

(or mild) solution for Problem (2.1).

Definition 2.2 We will say that a function u ∈ C
(

[0, τ ] , D(A)
)

such that

u(0) = 0 is a weak solution of the Cauchy problem (2.1) if for each λ ∈ ρ (A),
the resolvent set of A, one has

(λI −A)
−1
u(.) ∈ C1 ([0, τ ] , X) ,
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and
d

dt

[
(λI −A)

−1
u(t)

]
= −u(t) + (λI −A)

−1
[f(t) + λu(t)] .

Using the above definition we will assume that (2.1) satisfies the following
properties.

Assumption 2.3 (First order solvability) Let τ > 0 be fixed. We assume
that there exists a map δ : [0, τ ]→ [0,+∞) such that

lim
t→0

δ (t) = 0,

and such that for each continuous function f : [0, τ ] → X, there exists uf ∈
C
(

[0, τ ] , D(A)
)

a weak solution of the Cauchy problem (2.1) satisfying the

following estimate

‖uf (t)‖ ≤ δ (t) sup
s∈[0,t]

‖f(s)‖ ,∀t ∈ [0, τ ] .

We now turn to Problem (1.3) and define a notion of a weak solution for
such a second order semi-linear equation. To that aim let us first introduce for
each interval I ⊂ R, each Banach space (Y, ‖.‖) and each weight η ∈ R, the
weighted space BC0

η (I, Y ) defined by

BC0
η (I, Y ) =

{
ϕ ∈ C (I, Y ) : sup

x∈I
e−η|x|‖ϕ(x)‖ <∞

}
. (2.2)

It becomes a Banach space when endowed with the norm

‖ϕ‖0,η := sup
x∈I

e−η|x|‖ϕ(x)‖.

We also define for each integer k ≥ 1 the space BCkη (I, Y ) by

BCkη (I, Y ) =

{
ϕ ∈ Ck (I, Y ) :

dlϕ

dxl
∈ BC0

η (I, Y ) , l = 0, .., k

}
. (2.3)

These spaces is a Banach space endowed with the usual weighted uniform norm

‖ϕ‖k,η =

k∑
m=0

∥∥∥∥dmϕ

dxm

∥∥∥∥
0,η

.

Using these notations, we propose the following notions of solutions for (1.3).

Definition 2.4 (Weak and classical solution of (1.3)) Let η > 0 be given.
We define different types of solutions for (1.3).
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(i) We will say that u ∈ BC0
η

(
R, D(A)

)
is a weak solution of (1.3) if for

each λ ∈ ρ (A) , we have

(λI −A)
−1
u ∈ BC2

η

(
R, D(A)

)
and

u =

(
d2

dx2
− γ d

dx

)[
(λI −A)

−1
u
]

+ (λI −A)
−1

[F (u) + λu] .

(ii) We will say that u ∈ BC0
η

(
R, D(A)

)
is a classical solution of (1.3) if

u ∈ BC2
η

(
R, D(A)

)
u(x) ∈ D(A), ∀x ∈ R and x 7→ Au(x) ∈ BC0

η (R, X)

and

0 =

(
d2

dx2
− γ d

dx

)
u(x) +Au(x) + F (u(x)),∀x ∈ R.

Before stating our main center manifold theorem and related bifurcation
results one need to introduce more notation. Let us introduce X0 := D(A) and
let A0 : D(A0) ⊂ X0 → X0 denotes the part of A in D(A), namely

D(A0) := {x ∈ D(A) : Ax ∈ X0} and A0x = Ax, ∀x ∈ D(A0).

Note that Assumption 2.1 implies that A0 is the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators on X0, denoted by
{TA0

(t)}t≥0, and we will assume that

Assumption 2.5 We assume that the essential growth rate of A0

ω0,ess (A0) = lim
t→+∞

ln (‖TA0
(t)‖ess)
t

< 0.

Remark 2.6 In the above assumption, ‖L‖ess denotes the essential norm of a
bounded linear operator L on the Banach space X0. Recall that it is defined by

‖L‖ess = κ (L (BX0
(0, 1))) ,

wherein BX0 (0, 1) = {x ∈ X0 : ‖x‖X ≤ 1} is the ball of radius 1 in X0 and while
κ(B) denotes the Kuratowski’s measure of non-compactness of B, a bounded
subset of X0, defined by

κ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε} .
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Next we set
σcu (A) := {λ ∈ σ (A) : Re (λ) ≥ 0} ,

and
σs (A) := {λ ∈ σ (A) : Re (λ) < 0} .

Now, recalling Assumption 2.1, 2.3 and the above Assumption 2.5 and using
the results of Magal and Ruan [54, Proposition 3.5 p.13], we obtain that there
exists a uniquely determined finite rank bounded linear projector Πcu ∈ L (X)
satisfying the following set of properties:

(a) Πcu (λI −A)
−1

= (λI −A)
−1

Πcu,∀λ ∈ ρ (A) ;

(b) Acu ∈ L (Xcu) the part of A in Xcu satisfies σ (Acu) = σcu (A).

(c) As ∈ L (Xs) the part of A in Xs satisfies σ (As) = σs (A).

Therefore this leads us to the following splitting of the state spaces X0 and X

X0 = Xcu ⊕X0s and X = Xcu ⊕Xs,

wherein we have set Πs := I −Πcu and

X0s := Πs (X0) ⊂ X0 and Xs := Πs (X) .

Next let us denote by P the parabola of the complex plane

P =
{
ω2 + γωi; ω ∈ R

}
,

and let us set
σP (A) := σ (A) ∩ P = σcu (A) ∩ P.

We denote by ΠP ∈ L (X) the projector on the generalized eigenspace of A
associated to the set of eigenvalues σP . Set

XP := ΠP (Xcu) = ΠP (X) , and XQ := (I − PP) (Xcu) , (2.4)

so that
Xcu = XP ⊕XQ.

Finally define AP : XP → XP the part of A in XP by

AP = A on XP .

As usual, to speak about a center manifold, one needs to assume that the
”center” space is not empty. In our context of second order differential equations
this assumption reads as follows.

Assumption 2.7 We assume that

σP(A) 6= ∅.
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Remark 2.8 Note that up to change the parameter γ in (2.4), the above as-
sumption is satisfied as soon as

σcu(A)
⋂

[{0} ∪ {λ ∈ C : Re (λ) > 0 and Im (λ) 6= 0}] 6= ∅.

Indeed let λ∗ ∈ σcu (A) be given such that either

λ∗ = 0 or, Re (λ∗) 6= 0 and Im (λ∗) 6= 0.

Then one can find γ > 0 such that σP (A) 6= ∅. Indeed, since A is a linear
operator on a real Banach space, one deduces that

λ ∈ σcu (A)⇔ λ ∈ σcu (A) .

If λ∗ = 0 we fix ω = 0 and λ∗ ∈ σP(A). Otherwise we can assume that

Re (λ∗) > 0 and Im (λ∗) > 0,

and setting

ω =
√

Re (λ∗) and γ =
Im (λ∗)

ω
,

one obtains that σP(A) 6= ∅.

Keeping in mind the above notation, we are now able to state our first main
result. It is concerned with the existence of a global Lipschitz continuous center
manifold for Problem (1.3).

Theorem 2.9 (Existence of a global center manifold) Let Assumptions 2.1,
2.3, 2.5 and 2.7 be satisfied. Let η > 0 be given small enough. Assume that
F : X0 → X is a Lipschitz continuous function such that F (0) = 0. Then, there
exists some constant κ > 0 small enough such that if

‖F‖Lip(X0,X) ≤ κ,

then there exists a unique map Ψ ∈ Lip (XP ×XP , XQ ⊕X0s) with

Ψ(0) = 0,

satisfying the following properties:

(i) If vc : R → XP is an entire solution of the reduced ordinary differential
equation, for all x ∈ R,

v′′c (x)− γv′c(x) +APvc(x) + ΠPF [vc(x) + Ψ (vc(x), v′c(x))] = 0, (2.5)

then vc ∈ BC2
η (R, XP) and the function u : R→ X0 defined by

u(x) := vc(x) + Ψ (vc(x), v′c(x)) ,

is a weak solution of (1.3) on R.
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(ii) If u ∈ BCη (R, X0) is a weak solution of (1.3), then the function vc : R→
XP defined by

vc = ΠPu,

is a solution of the reduced equation (2.5).

The idea of the proof of this result is based on a suitable splitting of problem
(1.3). Formally, when u is a solution of (1.3) then we set us(x) = Πsu(x) and
ucu(x) = Πcuu(x) and, projecting (1.3) respectively on Xs and Xcu yields{

u′′s (x)− γu′s(x) +Asus(x) + ΠsF (us(x) + ucu(x)) = 0, x ∈ R,
u′′cu(x)− γu′cu(x) +Acuucu(x) + ΠcuF (us(x) + ucu(x)) = 0, x ∈ R.

Still from a formal point of view, we invert the operator
(

d2

dx2 − γ d
dx +As

)
and

reformulate the solutions of the above system of equations as the following finite
dimensional ordinary differential equation coupled with a neutral equation, that
is, for x ∈ Rus(x) = −

(
d2

dx2 − γ d
dx +As

)−1
[ΠsF (us(.) + ucu(.))] (x),

u′′cu(x)− γu′cu(x) +Acuucu(x) + ΠcuF (us(x) + ucu(x)) = 0.
(2.6)

Then we shall use this formulation to derivable a suitable fixed point problem
for the graph of the center manifold to finally conclude to the proof of the

above theorem. The invertibility of the operator
(

d2

dx2 − γ d
dx +As

)
will be

fully justified in Proposition 5.8 by using suitable weighted spaces of functions.
Basically we shall give a precise sense of the above formal transformation by
making use of suitable weighted spaces, commutative sums of linear operators
and the definition of weak solutions.

Thus, based on the above global center manifold result, by using a truncation
argument for the nonlinear function F , we obtain the following local theorem.

Theorem 2.10 (Existence and smoothness of a local center manifold)
Let Assumptions 2.1, 2.3, 2.5 and 2.7 be satisfied. Let η > 0 be small enough.
Assume that F : X0 → X is a k-time continuously differentiable map for some
k ≥ 1 such that

F (0) = 0 and DF (0) = 0.

Then there exist a map Ψ ∈ Ck (XP ×XP , XQ ⊕X0s) and Ω, a bounded neigh-
bourhood of 0 in X0, such that

Ψ(0) = 0 and DΨ(0) = 0,

and such that the following properties hold:

(i) If vc : R→ XP is a solution of the reduced equation

0 = v′′c (x)− γv′c(x) +APvc(x) + ΠPF (vc(x) + Ψ (vc(x), v′c(x))), (2.7)
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then
vc ∈ BC2

η (R, XP) .

Moreover if
vc(x) + Ψ (vc(x), v′c(x)) ∈ Ω,∀x ∈ R,

then
u(x) = vc(x) + Ψ (vc(x), v′c(x))

is a classical solution of (1.3) on R.

(ii) If u ∈ BC2
η (R, X0) is a weak solution of (1.3) such that

u(x) ∈ Ω,∀x ∈ R,

then
vc = ΠPu

is a solution of the reduced equation (2.7).

We now consider system (1.3) depending on some parameter µ ∈ R. To be
more precise we consider the following second order equation

0 =
d2u(x)

dx2
− γ du(x)

dx
+Au(x) + F (µ, u(x)), for x ∈ R, (2.8)

where
u ∈ BC0

η

(
R, D(A)

)
and µ ∈ R.

Here F : R ×D(A) → X is a k-time continuously differentiable map for some
k ≥ 1. Next our Hopf bifurcation theorem reads as follows.

Theorem 2.11 (Hopf bifurcation theorem) Let Assumptions 2.1, 2.3 and
2.5 be satisfied. Assume that F : R × D(A) → X is of the class Ck for some
k ≥ 4 and satisfies

(a) F (µ, 0) = 0 for all µ ∈ R and ∂uF (0, 0) = 0.

(b) For each µ in some neighbourhood of µ = 0, there exists a pair of con-
jugated simple eigenvalues of (A+ ∂uF (µ, 0))cu, denoted by λ(1)(µ) and

λ(1)(µ), such that

λ(1)(0) = ω2
0 + iγω0 for some ω0 > 0,

and

σ (A0) ∩ P =
{
λ(1)(0), λ(1)(0)

}
with P = {ξ2 + iγξ; ξ ∈ R}. (2.9)

We furthermore assume that the map µ 7→ λ(1)(µ) is continuously differ-
entiable and satisfies

Re

[
1

γ − 2iω0

dλ(1)(0)

dµ

]
6= 0. (2.10)
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Then, there exist a constant η∗ > 0 and two Ck−1 maps, η 7→ µ(η) from (0, η∗)
into R and η 7→ ω(η) from (0, η∗) into R, such that for each η ∈ (0, η∗) there
exists a non-trivial ω(η)−periodic function uη ∈ C(R, X0) , which is a weak
solution of (2.8) with the parameter value µ = µ(η). Moreover for η = 0

µ(0) = 0 and u0 = 0. (2.11)

Remark 2.12 As a consequence of the two-dimensional reduction used to prove
the above Hopf bifurcation theorem, another type of entire solution do exist.
More precisely, for each parameter µ(η) we can find either 1) a solution con-
necting the equilibrium 0 at x = −∞ to the periodic orbit uη at x = +∞ or
2) a solution connecting the periodic orbit uη to the equilibrium 0 respectively
at x = −∞ and x = +∞. The distinction between these two situations relies
on the stability analysis of the stationary equilibrium, that is by distinguishing
between sub and super critical Hopf bifurcation. One can also observe that such
solutions will approach – forward or backward – from 0 by spiralling around the
trivial equilibrium. To decide which case occurs, one would need to extend the
normal form theory recently developed by Liu, Magal and Ruan in [51].

We now deal with the persistence of non-degenerate Hopf bifurcation for Prob-
lem (2.8) for large speed γ >> 1. Observe that if u is a solution of (2.8) for some
γ 6= 0 then the function v(x) := u (γx) satisfies the problem

0 =
1

γ2
d2v(x)

dx2
− dv(x)

dx
+Av(x) + F (µ, v(x)), for x ∈ R. (2.12)

For |γ| >> 1 large enough, the above equation becomes a singular perturbation
of the following first order evolution equation

dv(x)

dx
= Av(x) + F (µ, v(x)). (2.13)

Our next result will show that non-degenerate Hopf bifurcation for (2.13) per-
sists for (2.12) when γ is large enough. Our detailed result reads as follows.

Theorem 2.13 (Persistence of Hopf bifurcation) Let Assumption 2.1, 2.3
and 2.5 be satisfied. Assume that F : R × D(A) → X is of the class Ck for
some k ≥ 4 and satisfies

(a) F (µ, 0) = 0 for all µ ∈ R and ∂uF (0, 0) = 0.

(b) for each µ in some neighbourhood of µ = 0, there exists a pair of conjugated

simple eigenvalues of (A+ ∂uF (µ, 0))0, denoted by λ(1)(µ) and λ(1)(µ),
such that

λ(1)(0) = iω0 for some ω0 > 0,

and
σ (A0) ∩ iR =

{
λ(1)(0), λ(1)(0)

}
.
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We furthermore assume that the map µ → λ(1)(µ) is continuously differ-
entiable and satisfies

Re
dλ(1)(0)

dµ
> 0 respectively < 0.

Then, there exist δ > 0 and a map γ ≡ γ(µ) defined from (0, δ) (resp. on (−δ, 0))
into (0,∞) such that for each µ0 ∈ (0, δ) (respectively for each µ0 ∈ (−δ, 0), if
we fix γ = γ(µ0), then the system (2.12) has a Hopf bifurcation around µ0 (in
other words the conclusion of Theorem 2.11 holds true).

This result is finally applied to investigate the existence of periodic wave
trains with large wave speed γ for system (1.1). Here recall that a wave train
profile with speed γ is an entire solution of (1.1) of the form u(t, z, a) = U(x, a)
with x = z−γt and where the function U is periodic with respect to the variable
x ∈ R, namely there exists a period T > 0 such that for all x ∈ R and a > 0
one has U(x+ T, a) = U(x, a). This leads us to the following problem: find an
x−periodic profile U ≡ U(x, a) and a speed γ ∈ R solution of the problem{

∂aU(x, a) = ∂2xU(x, a)− γ∂xU(x, a)− µU(x, a), x ∈ R, a > 0,

U(x, 0) = αf
(∫∞

0
β(a)U(x, a)da

)
,

(2.14)

where µ > 0 is a given and fixed parameter while α > 0 is a parameter that will
be used as a bifurcation parameter. We also assume that the function f takes
the form of the so-called Ricker nonlinearity. This assumption reads as follows.

Assumption 2.14 The function f is assumed to be of Ricker’s type, that is

f(u) = ue−u.

The function β is assumed to be a delayed Γ−distribution, namely

β(a) =

{
0 if a ∈ (0, τ),

δ(a− τ)ne−ζ(a−τ) if a ≥ τ ,

for some integer n ≥ 1 while τ ≥ 0, ζ > 0 and δ > 0 are given constants such
that the following normalisation condition holds true∫ ∞

0

β(a)e−µada = 1.

Before stating our bifurcation result, let us first observe that for each α > 1,
the function

Uα(a) = lnαe−µa, ∀a > 0,

is an x−independent solution of (2.14). Then our main result reads as follows.
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Theorem 2.15 (Existence of periodic wave train solutions) Let Assump-
tion 2.14 be satisfied. Then there exist α∗ > 1, γ∗ > 0 large enough and η∗ > 0
such that for each γ ∈ (γ∗,∞), there exists αγ ∈ (α∗ − η∗, α∗ + η∗) such that
system (2.14) with γ ∈ (γ∗,∞) undergoes a Hopf bifurcation at α = αγ around
the x−independent solution Uαγ and the bifurcated solution is a periodic wave
train of (1.1) with speed γ.

3 Integrated semigroups

In this section we recall some results about integrated semigroups that will be
used in the following. We refer to Arendt [2, 3], Neubrander [61], Kellermann
and Hieber [44], Thieme [74, 76], and Arendt et al. [4] for more detailed results
on the subject. We also refer to Magal and Ruan [52, 53, 54, 55] for some of the
results recalled below.

Let (X, ‖.‖) be a real Banach space. Let A : D(A) ⊂ X → X be a linear
operator satisfying 2.1. Let us set X0 := D(A) and let A0 denotes the part of
A in X0, which is a linear operator on X0 defined by

A0x = Ax, ∀x ∈ D(A0) := {y ∈ D(A) : Ay ∈ X0} .

First recall that due to Lemma 2.1 in Magal and Ruan [52] we know that

D(A0) = X0.

By Hille-Yosida theorem (see Pazy [62], Theorem 5.3 on p.20) and Magal and
Ruan [54, Lemma 2.4] we obtain

Lemma 3.1 Assumption 2.1 is satisfied if and only if ρ(A) 6= ∅, A0 is the
infinitesimal generator of a linear C0-semigroup {TA0

(t)}t≥0 on X0, and

‖TA0
(t)‖ ≤MAe

ωAt,∀t ≥ 0.

We now recall the definition of an integrated semigroup.

Definition 3.2 Let (X, ‖.‖) be a Banach space. A family of bounded linear
operators {S(t)}t≥0 on X is called an integrated semigroup if it satisfies

(i) S(0) = 0.

(ii) The map t→ S(t)x is continuous on [0,+∞) for each x ∈ X.

(iii) S(t) satisfies

S(s)S(t) =

∫ s

0

(S(r + t)− S(r)) dr, ∀t, s ≥ 0. (3.1)
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An integrated semigroup {S(t)}t≥0 is said to be non-degenerate if S(t)x =
0, ∀t ≥ 0, then x = 0. According to Thieme [74], a linear operator A : D(A) ⊂
X → X is the generator of a non-degenerate integrated semigroup {S(t)}t≥0
on X if and only if

x ∈ D(A), y = Ax⇔ S(t)x− tx =

∫ t

0

S(s)yds, ∀t ≥ 0. (3.2)

From [74, Lemma 2.5], we know that if A generates {SA(t)}t≥0 , then for each
x ∈ X and t ≥ 0,∫ t

0

SA(s)xds ∈ D(A) and SA(t)x = A

∫ t

0

SA(s)xds+ tx.

An integrated semigroup {S(t)}t≥0 is said to be exponentially bounded if there

exist two constants, M̂ > 0 and ω̂ > 0, such that

‖S(t)‖L(X) ≤ M̂eω̂t,∀t ≥ 0.

When we restrict ourselves to the class of non-degenerate exponentially bounded
integrated semigroups, Thieme’s notion of generator is equivalent the one intro-
duced by Arendt in [3].
Then the following result is well known in the context of integrated semigroups.

Proposition 3.3 Let Assumption 2.1 be satisfied. Then A generates a uniquely
determined non-degenerate exponentially bounded integrated semigroup {SA(t)}t≥0 .
Moreover, for each x ∈ X, each t ≥ 0, and each µ > ωA, SA(t)x is given by

SA(t)x = (µI −A0)

∫ t

0

TA0(s) (µI −A)
−1
xds, (3.3)

or equivalently

SA(t)x = µ

∫ t

0

TA0
(s) (µI −A)

−1
xds+ [I − TA0

(t)] (µI −A)
−1
x.

Furthermore, the map t 7→ SA(t)x is continuously differentiable if and only if
x ∈ X0 and

dSA(t)x

dt
= TA0(t)x, ∀t ≥ 0, ∀x ∈ X0.

From now on we define for each τ > 0

(SA ∗ f) (t) =

∫ t

0

SA(t− s)f(s)ds,∀t ∈ [0, τ ] ,

whenever f ∈ L1 ((0, τ) , X) .
We now consider the first order non-homogeneous Cauchy problem

du(t)

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x ∈ X0, (3.4)
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and assume that f belongs to some appropriate subspace of L1 ((0, τ) , X) . In
order to deal with the solutions of the above problem, let us recall the following
definition.

Definition 3.4 Let τ > 0 be given and let f ∈ L1 ((0, τ) , X) be given. A
continuous map u ∈ C ([0, τ ] , X) is called a weak solution of (3.4) if∫ t

0

u(s)ds ∈ D(A), ∀t ∈ [0, τ ]

and

u(t) = x+A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, ∀t ∈ [0, τ ] .

Remark 3.5 It is clear that u is a weak solution of (3.4) if and only if ∀λ ∈
ρ (A) ,

(λI −A)
−1
u(t) ∈ C1 ([0, τ ] , X)

and

d

dt

[
(λI −A)

−1
u(t)

]
= −u(t) + (λI −A)

−1
[f(t) + λu(t)] , ∀t ∈ [0, τ ] .

This shows that Definition 3.4 corresponds to the notion of a solution introduced
in Definition 2.2 above.

Now in order to deal with the solvability of Equation (3.4), let us denote by

(SA � f) (t) =
d

dt
(SA ∗ f) (t),

whenever the convolution map t 7→ (SA ∗ f) (t) is continuously differentiable.
We will say that {SA(t)}t≥0 has a bounded semi-variation on [0, t] if

V∞(SA, 0, t) := sup
{∥∥∥∥∥

n∑
i=1

(
SA(ti)− SA(ti−1)

)
xi

∥∥∥∥∥} < +∞,

where the supremum is taken over all partitions 0 = t0 < .. < tn = t of the
interval [0, t] and over any (x1, .., xn) ∈ Xn with ‖xi‖X ≤ 1, ∀i = 1, .., n.

We now deal with assumption 2.3 and we give an equivalent formulation in
term of bounded semi-variation.

Theorem 3.6 Let Assumption 2.1 be satisfied. Then Assumption 2.3 is satis-
fied if and only if {SA(t)}t≥0 has a bounded semi-variation on [0, τ ] and

lim
t→0

V∞(SA, 0, t) = 0.

Moreover for any such a function δ : [0, τ ] → [0,+∞) arising in Assumption
2.3 one has

V∞(SA, 0, t) ≤ δ (t) ,∀t ∈ [0, τ ] .
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We refer to Magal and Ruan [52] and Ducrot et al. [28] for verifying As-
sumption 2.3 for age-structured models and parabolic equations as well. Note
now that since we have

SA(τ + h) = SA(τ) + TA0(τ)SA(h),∀h ≥ 0,

by using Assumption 2.3, one deduces that t → SA(t) has a bounded semi-
variation on [0, 2τ ] . Now using induction arguments, we deduce that t→ SA(t)
has a bounded semi-variation on [0, τ ] for each τ ≥ 0.

Next, Assumption 2.1 and 2.3 lead us to the following solvability result.

Theorem 3.7 Let Assumptions 2.1 and 2.3 be satisfied. Then for each τ > 0,
t → SA(t) has a bounded semi-variation on [0, τ ] . Moreover, for each f ∈
C ([0, τ ] , X) , the map t 7→ (SA ∗ f) (t) is continuously differentiable, (SA ∗ f) (t) ∈
D(A),∀t ∈ [0, τ ] , and u(t) = (SA � f) (t) satisfies

u(t) = A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, ∀t ∈ [0, τ ] ,

and
‖u(t)‖ ≤ V∞(SA, 0, t) sup

s∈[0,t]
‖f(s)‖ , ∀t ∈ [0, τ ] .

Furthermore, for each λ ∈ (ω,+∞) , we have

(λI −A)
−1

(SA � f) (t) =

∫ t

0

TA0
(t− s) (λI −A)

−1
f(s)ds. (3.5)

As a corollary of the above result we obtain:

Corollary 3.8 Let Assumptions 2.1 and 2.3 be satisfied. Then for each x ∈ X0

and each f ∈ C ([0, τ ] , X0), the first order Cauchy problem (3.4) has a unique
weak solution u ∈ C ([0, τ ] , X0) given by

u(t) = TA0
(t)x+ (SA � f) (t), ∀t ∈ [0, τ ] .

Moreover, we have

‖u(t)‖ ≤MAe
ωt ‖x‖+ V∞(SA, 0, t) sup

s∈[0,t]
‖f(s)‖ , ∀t ∈ [0, τ ] .

In the following we will also make use of the following proposition for which
we refer to [53, see Proposition 2.14]. We refer to the next section and also to
Magal and Ruan [53, 54] for interesting applications of this result.

Proposition 3.9 Let Assumptions 2.1 and 2.3 be satisfied. Then the following
estimate holds true

‖(SA � f) (t)‖ ≤ C (τ, γ) sup
s∈[0,t]

eγ(t−s) ‖f(s)‖ , ∀t ≥ 0
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for γ ∈ (ωA,+∞) , f ∈ C (R+, X) and τ > 0, while the constant C (τ, γ) is
explicitly given by

C (τ, γ) :=
2MAV

∞(SA, 0, τ) max (1, e−γτ )

1− e(ωA−γ)τ
.

We continue this section by some preparatory lemma that will be used in
the next section to study the solvability of the sum of two commuting linear
operators. For that purpose recall that ω0 (A0), the growth bound of the
C0−semigroup {TA0(t)}t≥0 is defined by

ω0 (A0) := lim
t→+∞

ln
(
‖TA0

(t)‖L(X)

)
t

∈ [−∞,+∞) .

For the remaining of this section in addition to Assumption 2.1 and 2.3 we
furthermore assume that

ω0 (A0) < 0. (3.6)

Then the proof of the following lemma is similar to the proof of Lemma 4.6 p.
24 in Magal and Ruan [54].

Lemma 3.10 Under the above mentioned assumptions and recalling the defi-
nition of the Banach spaces in (2.2) the following properties hold true:

(i) Let η ∈ (0,−ω0 (A0)) be given. Then for each f ∈ BC0
η ([0,+∞) , X) the

following limit exists in X0

lim
t→+∞

(SA � f(t− .)) (t) exists.

(ii) For each constant β ∈ (0,−ω0 (A0)) , there exists some constant C =
C (β) > 0, such that for each η ∈ [0, β] the linear operator KA : BC0

η (R+, X)→
X0 defined by

KA(f) := lim
t→+∞

(SA � f(t− .)) (t)

is bounded and we have a uniform evaluation

‖KA‖L(BC0
η(R+,X),X0) ≤ C (β) .

Remark 3.11 If f ∈ BC0
η ([0,+∞) , X0) one has

KA(f) = lim
t→+∞

(SA � f(t− .)) (t) = lim
t→+∞

∫ t

0

TA0
(t− s)f(t− s)ds,

so that KA(f) can be rewritten as

KA(f) =

∫ +∞

0

TA0
(l)f(l)dl.
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Lemma 3.12 Under the same assumptions as in Lemma 3.10, let η > 0 and
f ∈ BC1

−η ([0,+∞) , X) be given. Then the following hold true

KA(f) ∈ D(A), and AKA(f) + KA(f ′) + f(0) = 0.

Proof. Let γ ∈ (0,−ω0(A)) be given. Applying Proposition 3.9 with any con-
stant function f(t) ≡ x for x ∈ X and noticing that in such a case one has

(SA � f) (t) = SA(t)x,

then there exists some constant C > 0 such that

‖SA(t)x‖ = ‖(SA � f) (t)‖ ≤ C sup
s∈[0,t]

e−γ(t−s) ‖x‖ , ∀t ≥ 0.

Thus
‖SA(t)x‖ ≤ C ‖x‖ .

Now let f ∈ BC1
−η ([0,+∞) , X) be given. Then we have

‖SA(t)f(t)‖ ≤ C ‖f(t)‖ = Ce−ηt ‖f‖0,−η → 0 as t→ +∞.

On the one hand note that since f ∈ BC1
−η ([0,+∞) , X), we have

(SA � f) (t) = SA(t)f(0) + (SA ∗ f ′) (t) = SA(t)f(0) +

∫ t

0

(SA � f ′) (s)ds.

Thus this yields

(SA � f(t− .)) (t) = SA(t)f(t)− (SA ∗ f ′(t− .)) (t)

= SA(t)f(t)−
∫ t

0

SA(t− s)f ′(t− s)ds

= SA(t)f(t)−
∫ t

0

(SA � f ′(t− .)) (s)ds,

hence, we get

KA(f) = − lim
t→+∞

∫ t

0

(SA � f ′(t− .)) (s)ds.

On the other hand note that the function t 7→ (SA � f ′(t− .)) (t) satisfies the
equation

(SA � f ′(t− .)) (t) = A

∫ t

0

(SA � f ′(t− .)) (s)ds+

∫ t

0

f ′(t− s)ds

= A

∫ t

0

(SA � f ′(t− .)) (s)ds+

∫ t

0

f ′(s)ds

= A

∫ t

0

(SA � f ′(t− .)) (s)ds+ f(t)− f(0).
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Thus, one gets

(−A)
−1

[(SA � f ′(t− .)) (t) + f(0)− f(t)] = −
∫ t

0

(SA � f ′(t− .)) (s)ds.

Taking the limit t→∞ ensures that

(−A)
−1

[KA(f ′) + f(0)] = KA(f),

and the result follows.
We complete this section by the following lemma.

Lemma 3.13 Under the same assumptions of Lemma 3.10 and let η ∈ (0,−ω0 (A0)).
One has for each f ∈ BC0

η ([0,+∞) , X)

KA(f) := KA+δI(e
−δ.f),∀δ < −ω0 (A0) .

Proof. Let λ ∈ ρ (A) be given. Let f ∈ BC0
η ([0,+∞) , X) be given and let us

fix δ < −ω0 (A0). Then one has

(λI −A)
−1

(SA � f(t− .)) (t) =

∫ t

0

TA0(t− s) (λI −A)
−1
f(t− s)ds

=

∫ t

0

TA0(l) (λI −A)
−1
f(l)dl

=

∫ t

0

TA0+δI(l) (λI −A)
−1
e−δlf(l)dl,

hence, one obtains

(λI −A)
−1

(SA � f(t− .)) (t) = (λI −A)
−1
(
SA+δI � e−δ(t−.)f(t− .)

)
(t), ∀t ≥ 0.

This yields

(SA � f(t− .)) (t) =
(
SA+δI � e−δ(t−.)f(t− .)

)
(t), ∀t ≥ 0,

and the result follows by using Lemma 3.10 and letting t→∞.

4 Sum of commutating operators and applica-
tions

In this section we reconsider the problem of the closability and the invertibility of
the sum of two commuting linear operators. Such results have been investigated
in the context of densely defined linear operators by Da Prato and Grisvard
[21]. More recently this problem has also been considered by Thieme [75, 76] by
using integrated semigroups for non-densely defined linear operators. Basically
the problem is concerned with the solvability of the equation

− [A+B]x = y, (4.1)
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wherein A : D(A) ⊂ X → X is non-densely defined satisfying Assumptions
2.1 and 2.3 and, B : D (B) ⊂ X → X is the infinitesimal generator of a C0-
semigroup of linear operators on X and, where A and B commute. The goal
of this section is prove that A + B is closable, and to derive some conditions
ensuring that this closure A+B is invertible. In this section, we reconsider this
question by using a slightly different approach compared to the one developed
by Thieme [75, 76]. This approach will allow us to clarify the notion of a weak
solution for the problem (1.3) (see Definition 2.4).

Throughout this section we will assume that the following hypothesis are
satisfied.

Assumption 4.1 Let A : D(A) ⊂ X → X be a linear operator satisfying
Assumptions 2.1 and 2.3 and let B : D(B) ⊂ X → X be the infinitesimal
generator of a strongly continuous semigroup {TB(t)}t≥0 on X. We assume in
addition that

(i) The linear operators A and B commute in the sense that one has

(λI −A)
−1

(µI −B)
−1

= (µI −B)
−1

(λI −A)
−1
,∀λ, µ ∈ ρ (A) ∩ ρ (B) .

(ii) The linear operator A0 has a negative growth rate, namely

ω0 (A0) < 0. (4.2)

Then our first lemma reads as follows.

Lemma 4.2 Let Assumption 4.1 be satisfied. Let η ∈ [0,−ω0 (A0)) be given.
Then for each f ∈ BC0

η ([0,+∞) , D(B)) we have

KA(f) ∈ D(B),

and the following commutativity property holds

KA(Bf) = BKA(f).

Here, when dealing with the space BC0
η ([0,+∞) , D(B)), D(B) is endowed with

the graph norm.

Proof. Let λ ∈ ρ (B) be given. Then one has

(λI −B)
−1 KA(Bf) = (λI −B)

−1
lim
t→∞

(SA �Bf(t− .)) (t)

= lim
t→∞

(
SA �B (λI −B)

−1
f(t− .)

)
(t)

= B (λI −B)
−1 KA(f).

Next since B (λI −B)
−1

= −I + λ (λI −B)
−1
, this implies that

KA(f) ∈ D(B),

and the result follows.
In order to simplify the presentation we consider the case where the closure

of A+B will be invertible, this means that we make the following assumption.
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Assumption 4.3 We assume that ω0(B) < −ω0(A0).

Under Assumption 4.3, using 3.10 we define the linear operator R(A+B) ∈
L (X) by

R(A+B)x := KA(TB(.)x),∀x ∈ X.

Then by using Lemma 3.10-(ii) we obtain the following estimate

Proposition 4.4 (Uniform estimate) Let Assumptions 4.1 and 4.3 be sat-
isfied. Let β ∈ (ω0(B),−ω0(A0)) be given. Then there exists some constant
C = C (β) > 0, such that for each η ∈ (ω0(B), β] the linear operator R(A+B)

satisfies the following estimate∥∥R(A+B)x
∥∥
X
≤ C (β) ‖TB(.)x‖0,η , ∀x ∈ X.

We now derive some regularity lemma for the linear operator R(A+B).

Lemma 4.5 Let Assumptions 4.1 and 4.3 be satisfied. Then the following reg-
ularity holds true

R(A+B)D(B) ⊂ D(A) and R(A+B)D(B) ⊂ D (B) ,

and
− (A+B)R(A+B)x = x, ∀x ∈ D(B).

Proof. Let x ∈ D(B) be given. Let us fix δ ∈ (ω0(B),−ω0(A0)). Then by using
Lemma 3.13, we obtain

R(A+B)x = KA+δI (TB−δI(.)x) ,∀x ∈ X.

Therefore applying Lemma 3.12 to KA+δI(f) with f(t) = TB−δI(.)x, we deduce
that

KA+δI (TB−δI(.)x) ∈ D(A),

and

(A+ δI)KA+δI (TB−δI(.)x) + KA+δI ((B − δI)TB−δI(.)x) + x = 0.

Now by using Lemma 4.2 we have

KA+δI (TB−δI(.)x) ∈ D(B)

and
KA+δI ((B − δI)TB−δI(.)x) = (B − δI)KA+δI (TB−δI(.)x) ,

and the result follows.
We now come back to equation (4.1) and define a suitable notion of solution

for this problem. The definition below is mainly motivated by the following
arguments. Let y ∈ X be given and fixed. Let λ ∈ ρ (A) and µ ∈ ρ (B) be given
and let us set

x = R(A+B)y.
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Then one has

(µ−B)
−1

(λ−A)
−1
x = R(A+B) (µ−B)

−1
(λ−A)

−1
y.

By using Lemma 4.5, and since (µ−B)
−1

(λ−A)
−1
y ∈ D(B), we deduce that

(µ−B)
−1

(λ−A)
−1
y = − (A+B)R(A+B) (µ−B)

−1
(λ−A)

−1
y

= − (A+B) (µ−B)
−1

(λ−A)
−1
x,

therefore

(µ−B)
−1

(λ−A)
−1
y = − (A+B) (µ−B)

−1
(λ−A)

−1
x.

This leads us to the following relation[
(µ−B)

−1
+ (λ−A)

−1
]
x = (µ−B)

−1
(λ−A)

−1
[y + (λ+ µ)x] .

The above computations motivate the introduction of the following definition.

Definition 4.6 (Weak and Classical solutions) Let y ∈ X be given. We
will say that x ∈ X is a weak solution of the problem

− [A+B]x = y, (4.3)

if x and y satisfy the following equality[
(µ−B)

−1
+ (λ−A)

−1
]
x = (µ−B)

−1
(λ−A)

−1
[y + (λ+ µ)x] (4.4)

for some λ ∈ ρ (A) and µ ∈ ρ (B) .
We will say that x is a classical solution of (4.3) if

x ∈ D(A) ∩D(B) and − [A+B]x = y.

Now let λ ∈ ρ (A) and µ ∈ ρ (B) be given. Define

G :=
{

(x, y) ∈ X ×X :
[
(µ−B)

−1
+ (λ−A)

−1
]
x = (µ−B)

−1
(λ−A)

−1
[y + (λ+ µ)x]

}
.

The first main result of this section is the following lemma.

Lemma 4.7 Let Assumptions 4.1 and 4.3 be satisfied. The following properties
hold true:

(i) G =
{

(x, y) ∈ X ×X : x = R(A+B)y
}

;

(ii) G is independent of λ in ρ (A) and µ in ρ (B);

(iii) G is the graph of a linear operator −L : D (L) ⊂ X → X which is invert-
ible and such that

(−L)
−1

= R(A+B).
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Proof. Proof of (i): By defining the notion of weak solutions, we have already
proved that

G ⊃
{

(x, y) ∈ X ×X : x = R(A+B)y
}
.

The converse inclusion uses the same arguments and (i) follows.

Proof of (ii): Let λ̂ ∈ ρ (A) and µ̂ ∈ ρ (B) be given. Then one has[
(µ−B)

−1
+ (λ−A)

−1
]
x = (µ−B)

−1
(λ−A)

−1
[y + (λ+ µ)x] .

The latter identity is equivalent to[
(µ−B)

−1
+ (λ−A)

−1
]

(µ̂−B)
−1
(
λ̂−A

)−1
x

= (µ−B)
−1

(λ−A)
−1

(µ̂−B)
−1
(
λ̂−A

)−1
[y + (λ+ µ)x] .

Hence applying (µ−B) and (λ−A) on both sides, we deduce that this last
equation is also equivalent to

− [A+B] (µ̂−B)
−1
(
λ̂−A

)−1
x = (µ̂−B)

−1
(
λ̂−A

)−1
y.

Therefore by adding
(
µ̂+ λ̂

)
(µ̂−B)

−1
(
λ̂−A

)−1
x, we deduce the equiva-

lence together with[
λ̂I −B + µ̂−A

]
(µ̂−B)

−1
(
λ̂−A

)−1
x = (µ̂−B)

−1
(
λ̂−A

)−1 [
y +

(
λ̂+ µ̂

)
x
]
,

which is also equivalent to[(
λ̂−A

)−1
+ (µ̂−B)

−1
]
x = (µ̂−B)

−1
(
λ̂−A

)−1 [
y +

(
λ̂+ µ̂

)
x
]
.

The independence of G with respect to λ in ρ (A) and µ in ρ (B) follows.
Proof of (iii): It is clear that G is a closed subspace. Moreover, if (x, y) ∈ G
and (x, ŷ) ∈ G then

0 = (µ̂−B)
−1
(
λ̂−A

)−1
(y − ŷ)

which implies that
y = ŷ.

Therefore G is the graph of the closed linear operator denoted by −L : D(L) ⊂
X → X and by using (i) we deduce that (iii) holds true.

We summarizes the results of this section in the following theorem.

Theorem 4.8 (Existence and uniqueness of the weak solution) Let As-
sumptions 4.1 and 4.3 be satisfied. For each y ∈ X there exists a unique weak
solution x of (4.1) given by

x = R(A+B)y.
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Proof. The existence of the weak solution follows from Lemma 4.7. It remains
to prove its uniqueness. Let δ ∈ (ω0(B),−ω0(A0)) be given. Then (4.4) with
λ = −δ and µ = δ re-writes as[

(δ −B)
−1

+ (−δ −A)
−1
]
x = (δ −B)

−1
(−δ −A)

−1
y. (4.5)

To prove the uniqueness, let us assume that there exists x ∈ X, such that[
(δ −B)

−1
+ (−δ −A)

−1
]
x = 0,

and let us show that x = 0. To do so, let us apply R(A+B) on both sides of the
above equation. This yields

0 =
[
(δ −B)

−1
+ (−δ −A)

−1
]
R(A+B)x

= [−A−B] (δ −B)
−1

(−δ −A)
−1R(A+B)x

= [−A−B]R(A+B) (δ −B)
−1

(−δ −A)
−1
x,

and, by using Lemma 4.5 we obtain

(δ −B)
−1

(−δ −A)
−1
x = 0.

This implies that x = 0 and the uniqueness of weak solution follows.
The next lemma deals with the regularity of the solutions.

Lemma 4.9 Let Assumptions 4.1 and 4.3 be satisfied. Let x, y ∈ X be given
such that x is a weak solution of (4.1). Then the following properties are satis-
fied:

(i) if either x ∈ D(A) or x ∈ D(B), then x ∈ D(A)∩D(B) and x is a classical
solution of (4.1);

(ii) if y ∈ D(B) then x is a classical solution of (4.1).

Proof. Assume that x is a weak solution of (4.1) and assume for example that

x = R(A+B)y ∈ D(A).

Let δ ∈ (ω0(B),−ω0(A0)) . Then by applying (−δ −A) on both sides of (4.5)
yields

x = (δ −B)
−1

[y + (−δ −A)x] .

Therefore x ∈ D(B) and, by using Lemma 4.5, we deduce that x is a classical
solution. This completes the proof of the lemma.

Proposition 4.10 (Closability) Let Assumptions 4.1 and 4.3 be satisfied. The
linear operator A+B : D(A)∩D(B) ⊂ X → X is closable, and its closure A+B
satisfies

A+B = L.

27



Remark 4.11 From the property (i) of Lemma 4.9 we deduce that

D(A+B) ∩D(A) = D(A+B) ∩D(B) = D(A) ∩D(B).

Proof. Set

G0 = {(x, y) : x ∈ D(A) ∩D(B) and y = − (A+B)x} .

By using the definition of the weak solution, we deduce that

G0 ⊂ G.

Define also
G1 =

{
(x, y) : x = (−L)

−1
y and y ∈ D(B)

}
.

By using Lemma 4.5, we have
G1 ⊂ G0,

and since D(B) is dense in X, we have G1 = G, so that G0 = G. This completes
the proof of the lemma.
Resolvent formula: Let Assumptions 4.1 and 4.3 be satisfied. The resolvent
of the linear operator

(
A+B

)
is given by(

λ−
(
A+B

))−1
x := KA (TB−λI(.)x) ,

whenever λ > ω0(A0) + ω0(B) and x ∈ X.
Finally by combining Theorem 4.7 in Thieme [76, Theorem 4.7], and all the

above results we obtain the following theorem

Theorem 4.12 (Integrated semigroup) Let Assumption 4.1 (i) be satisfied.
Then the linear operator A+B : D(A)∩D(B)→ X is closable, and its closure
A+B : D(A+B) ⊂ X → X satisfies Assumptions 2.1 and 2.3. More precisely
the following properties hold true:

(i) The linear operator
(
A+B

)
0

: D(
(
A+B

)
0
) ⊂ D(A) → D(A) defined

as the part of A+B in X0 := D(A) is the infinitesimal generator of a

C0−semigroup
{
T(A+B)

0

(t)
}
t≥0

on X0 and

T(A+B)
0

(t)x = TB(t)TA0
(t)x, ∀x ∈ X0,∀t ≥ 0.

In addition one has

ω0

((
A+B

)
0

)
≤ ω0 (A0) + ω0 (B) .

(ii) The linear operator A+B generates an exponential bounded (non degen-
erate) integrated semigroup

{
SA+B(t)

}
t≥0 of bounded linear operators on

X, given by

SA+B(t)x = (SA � TB(t− .)x) (t),∀x ∈ X,∀t ≥ 0,

and
V∞(SA+B , 0, t) ≤ sup

s∈[0,t]
‖TB(s)‖V∞(SA, 0, t),∀t ≥ 0.
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(iii) The following inclusions hold

D(A0) ∩D(B) ⊂ D
((
A+B

)
0

)
⊂ D(A)

D(A) ∩D(B) ⊂ D
(
A+B

)
⊂ D(A)

D
((
A+B

)
0

)
= D

(
A+B

)
= D(A)

(iv) The equality
−
(
A+B

)
x = y and x ∈ D(A+B)

holds if and only if[
(µ−B)

−1
+ (λ−A)

−1
]
x = (µ−B)

−1
(λ−A)

−1
[y + (λ+ µ)x]

for some λ ∈ ρ (A) and µ ∈ ρ (B) .

5 Application to first and second order prob-
lems

In this section we will apply the results of the preceding section to first and
second order differential equations on the real line. In order to perform our
analysis we need to introduce further notations and additional weighted spaces.
Recalling Definitions 2.2 and 2.3 let us define for each Banach space Y , each
interval I ⊂ R and each η ∈ R the closed subspace of BC0

η(I, Y ) given by

BUCη (I, Y ) :=
{
ϕ ∈ BC0

η (I, Y ) : x→ e−η|x|ϕ(x) is uniformly continuous
}
.

Now observe that if η ≥ 0 one has for all x ∈ R

e−η|x| = min
(
e−ηx, eηx

)
=
(
max

(
e−ηx, eηx

))−1
while

max
(
e−ηx, eηx

)
≤ e−ηx + eηx ≤ 2 max

(
e−ηx, eηx

)
.

Therefore when η ≥ 0, we can use the following equivalent norm on BC0
η(I, Y )

|ϕ|η = sup
x∈I

‖ϕ(x)‖
cosh (ηx)

, (5.1)

that satisfies the following estimates

‖ϕ‖0,η ≤ |ϕ|η ≤ 2 ‖ϕ‖0,η ,∀ϕ ∈ BC
0
η (I, Y ) (5.2)

where
‖ϕ‖0,η := sup

x∈R
e−η|x|‖ϕ(x)‖.
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We also define for each η ∈ R the space

BC0,η (R, Y ) :=

{
ϕ ∈ BC0

η (R, Y ) : lim
x→±∞

e−η|x| ‖ϕ(x)‖ = 0

}
.

Then BC0,η (R, Y ) is a closed subspace of BUCη (R, Y ) . Define for each integer
k ≥ 1,

BCk0,η (R, Y ) :=

{
ϕ ∈ BCkη (R, Y ) :

dmϕ

dxm
∈ BC0,η (R, Y ) ,∀m = 0, 1, ..., k

}
.

The spaceBCk0,η (R, Y ) is a closed subspace ofBCkη (R, Y ) and (BCk0,η (R, Y ) , ‖.‖0,η)
is a Banach space. Moreover if 0 < ξ < η we have the following inclusion

BC0,ξ (R, Y ) ⊂ BC0,η (R, Y )

and the embedding is continuous; more precisely we have

‖ϕ‖0,η ≤ ‖ϕ‖0,ξ ,∀ϕ ∈ BC0,ξ (R, Y ) .

5.1 Strongly continuous semigroups and integrated semi-
groups on spaces of continuous functions

Let A : D(A) ⊂ X → X be a linear operator satisfying Assumptions 2.1 and
2.3. Recalling the definition of BC0,η (R, X) above let us define for each η ∈ R
the space

BC0,η (R, D(A)) := {ϕ ∈ BC0,η (R, X) : ϕ (x) ∈ D(A),∀x ∈ R and Aϕ ∈ BC0,η (R, X)} .

Let η ≥ 0 be given. We consider the linear operatorA : D (A) ⊂ BC0,η (R, X)→
BC0,η (R, X) defined by{

D (A) = BC0,η (R, D(A)) ,

A (ϕ) (x) = Aϕ(x),∀x ∈ R.

In this section we precise some properties of the linear operator A. We refer to
the book by Chicone and Latushkin [11] for more results on this topic.
Let us first observe that

D (A) = BC0,η

(
R, D(A)

)
.

Moreover one has ρ (A) = ρ (A) and for each ϕ ∈ BC0,η (R, X)

(λ−A)
−1

(ϕ) (x) = (λ−A)
−1
ϕ(x),∀λ ∈ ρ (A) .

It follows that A satisfies Assumption 2.1 (a) and (c). Moreover, since

lim
x→±∞

ϕ(x)

cosh(ηx)
= 0,
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whenever ϕ ∈ BC0,η (R, X), it follows that for each given ϕ ∈ BC0,η (R, X) the
subset {

ϕ(x)

cosh(ηx)

}
x∈R

is relatively compact in X. Hence we obtain that

lim
λ→∞

∥∥∥(λ−A)
−1
ϕ
∥∥∥
0,η

= 0, ∀ϕ ∈ BC0,η(R, X),

and the operator A also satisfies Assumption 2.1 (b).
Now by using the results recalled in Section 3, we obtain the following lemma.

Lemma 5.1 The linear operator A0, the part of A in D(A) is the infinitesimal
generator of a C0− semigroup of bounded linear operators {TA0(t)}t≥0 which is

defined for each ϕ ∈ BC0,η

(
R, D(A)

)
by

TA0
(t) (ϕ) (x) = TA0

(t)ϕ(x),∀x ∈ R,

wherein A0 denotes the part of A in D(A).

By using the above lemma we deduce that

ω0 (A0) = ω0 (A0) .

Lemma 5.2 The linear operator A is the generator of the integrated semigroup
{SA(t)}t≥0 of bounded linear operators on BC0,η (R, X) that is defined for each
ϕ ∈ BC0,η (R, X) by

SA(t) (ϕ) (x) = SA(t)ϕ(x).

We finally summarize in the next proposition, all the properties we shall
need in the following.

Proposition 5.3 Let η ≥ 0 be given. The linear operator A satisfies Assump-
tions 2.1 and 2.3. For each τ > 0, for each f ∈ C ([0, τ ] , BC0,η (R, X)), the map
t → (SA ∗ f) (t)(x) is continuously differentiable from [0, τ ] into BC0,η (R, X0)
and

(SA � f) (t)(x) = (SA � f(., x)) (t),

and
‖(SA � f) (t)‖0,η ≤ V

∞(SA, 0, t) sup
s∈[0,t]

‖f(s)‖0,η ,∀t ≥ 0.

Proof. Since for each x ∈ R, the Dirac mass δx is a bounded linear functional
on C0,η (R, X) , we deduce that

δx

(∫ t

0

(SA � f(., .)) (s)ds

)
=

∫ t

0

(SA � f(., x)) (s)ds = (SA ∗ f(., x)) (s)

= δx (SA ∗ f(., .)) ,
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and the first part of the result follows. Next we observe that

e−η|x| ‖(SA � f) (t)(x)‖ = e−η|x| ‖(SA � f(., x) (t)‖
≤ V∞(SA, 0, t) sup

s∈[0,t]
e−η|x| ‖f(s, x)‖ ,

and the second estimate follows.

5.2 First order differential operators

Let η ≥ 0 be given and let (X, ‖.‖) be a Banach space. Let us consider the first
order differential operator ∂ : D (∂) ⊂ BC0,η (R, X)→ BC0,η (R, X) defined byD (∂) = BC1

0,η (R, X)

∂ϕ =
dϕ

dx
.

Then the following lemma holds true.

Lemma 5.4 The linear operator ∂ is the infinitesimal generator of a C0−group
{T∂(t)}t∈R of bounded linear operators on BC0,η (R, X) , defined by

T∂(t)(ϕ)(x) = ϕ(x+ t),∀t, x ∈ R.

Moreover the following estimate holds true

|T∂(t)|L(BC0,η(R,X)) ≤ e
η|t|,∀t ∈ R.

Here |.|L(BC0,η(R,X)) denotes the operator norm associated to the norm |.|η on

BC0,η (R, X).

Proof. Note that for each ϕ ∈ BC0,η (R, X) we have

2 ‖T∂(t)(ϕ)(x)‖ = 2 ‖ϕ(x+ t)‖ ≤
(
e−η(x+t) + eη(x+t)

)
|ϕ|η , ∀t ≥ 0, x ∈ R.

Therefore one gets

‖T∂(t)(ϕ)(x)‖ ≤ eη|t| cosh (ηx) |ϕ|η ,

and the result follows.

5.3 Second order differential operators

Let η ≥ 0 be given and let (X, ‖.‖) be a Banach space. We consider in
this section the following second order differential operator ∂2 : D

(
∂2
)
⊂

BC0,η (R, X)→ BC0,η (R, X) defined byD
(
∂2
)

= BC2
0,η (R, X) ,

∂2ϕ =
d2ϕ

dx2
.

Then the following lemma holds true.
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Lemma 5.5 The linear operator ∂2 is the infinitesimal generator of an analytic
semigroup {T∂2(t)}t≥0 of bounded linear operators on BC0,η (R, X) . Moreover
one has

T∂2(t) (ϕ) (x) =
1√
4πt

∫
R
e−

y2

4t ϕ(x− y)dy for t > 0,

and
|T∂2(t)|L(BC0,η(R,X)) ≤ e

η2t,∀t ≥ 0.

Proof. We have for each x ∈ R and ϕ ∈ BC0,η (R, X)

2 ‖T∂2(t)(ϕ)(x)‖ = 2

∥∥∥∥ 1√
4πt

∫
R
e−

y2

4t ϕ(x− y)dy

∥∥∥∥
≤ |ϕ|η√

4πt

∫
R
e−

y2

4t

(
e−η(x−y) + eη(x−y)

)
dy

=
1√
4πt
|ϕ|η

[
e−ηx

∫
R
e−

y2

4t +ηydy + eηx
∫
R
e−

y2

4t −ηydy

]
By using the formula∫

R
e−

z2

a +bzdz =
√
πae

b2a
4 , ∀a > 0, b ∈ R,

we obtain ∫
R
e−

y2

4t +ηydy =

∫
R
e−

y2

4t −ηydy =
√

4πteη
2t.

This leads us to

2 ‖T∂2(t)(ϕ)(x)‖ ≤ eη
2t
(
e−ηx + eηx

)
|ϕ|η ,

and the result follows.
Now let us define the map Ψ : BC0,0 (R, X)→ BC0,η (R, X) by

Ψ (ψ) (x) = cosh(ηx)ψ(x). (5.3)

Since Ψ is an isomorphism with Ψ−1 : BC0,η (R, X)→ BC0,0 (R, X) given by

Ψ−1 (ϕ) (x) = cosh(ηx)−1ϕ(x), (5.4)

the linear operator ∂2 can be identified together with the linear operator ∂̃2 :

D
(
∂̃2
)
⊂ BC0,0 (R, X)→ BC0,0 (R, X) defined by

∂̃2ψ = cosh(ηx)−1
d2

dx2
(cosh(ηx)ψ) =

d2ψ

dx2
+ 2η

sinh(ηx)

cosh(ηx)

dψ

dx
+ η2ψ.

This remark will used in the next section.
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5.4 Both first and second order systems

Let ε > 0 and γ ∈ R. Let η ≥ 0 be given. Consider the linear operator
D : D (D) ⊂ BC0,η (R, X)→ BC0,η (R, X) defined by{

D (D) = BC2
0,η (R, X) ,

D = ε∂2 + γ∂.

By using the theory of commutating sums of operators, we obtain that D is the
inifitesimal generator of a C0−semigroup on BC0,η (R, X) and

TD(t) = Tγ∂(t)Tε∂2(t) = T∂(γt)T∂2(εt), ∀t ≥ 0.

Then we infer from all the above explicit formula that TD(t) is given by

TD(t)(ϕ)(x) =
1√
4πt

∫
R
e−

y2

4t ϕ(x+ γt− y)dy =
1√
4πt

∫
R
e−

(x+γt−y)2
4t ϕ(y)dy.

This allows us to obtain the following growth rate estimate.

Lemma 5.6 The linear operator D is the infinitesimal generator of strongly
continuous semigroup {TD(t)}t≥0 of bounded linear operators on BC0,η (R, X) .
Moreover the following estimate holds true

|TD(t)|L(BC0,η(R,X)) ≤ e[
εη2+|γ|η]t, ∀t ≥ 0,

therefore
ω0 (D) ≤

[
εη2 + |γ| η

]
.

In the rest of this section we consider a linear operator A : D(A) ⊂ X → X
satisfying Assumptions 2.1 and 2.3. We are now concerned with the linear
operator D + A. Using the above results coupled with the results obtained in
Section 4 lead us to the following important theorem.

Theorem 5.7 Let A : D(A) ⊂ X → X be a linear operator satisfying Assump-
tions 2.1 and 2.3. Let η ≥ 0 be given. Then the linear operator D + A :
D (D) ∩ D (A) ⊂ BC0,η (R, X) → BC0,η (R, X) is closable, and its closure
D +A : D

(
D +A

)
⊂ BC0,η (R, X) → BC0,η (R, X) satisfies Assumptions 2.1

and 2.3. More precisely it satisfies the following properties:

(i) The following inclusion holds true

BC2
0,η (R, X) ∩BC0,η (R, D(A)) ⊂ D

(
D +A

)
= BC0,η

(
R, D(A)

)
.

(ii) The part of D +A in BC0,η

(
R, D(A)

)
, denoted by

(
D +A

)
0

is the in-

finitesimal generator of a C0− semigroup
{
T(D+A)

0

(t)
}
t≥0

on BC0,η

(
R, D(A)

)
,

and one has

T(D+A)
0

(t) = TD(t)TA0
(t) = TA0

(t)TD(t),∀t ≥ 0,
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so that the following growth rate estimate holds true

ω0

((
D +A

)
0

)
≤ ω0 (A0) +

[
εη2 + |γ| η

]
.

(iii) The linear operator D +A generates an exponential bounded (non degen-
erate) integrated semigroup

{
SD+A(t)

}
t≥0 of bounded linear operators on

BC0,η (R, X) given by

SD+A(t) = (SA � TD(t− .)) (t), ∀t ≥ 0,

and
V∞

(
SD+A, 0, t

)
≤ e[εη

2+|γ|η]tV∞(SA, 0, t), ∀t ≥ 0.

(iv) The equality
−
(
D +A

)
u = v and u ∈ D(D +A)

holds if and only if[
(λ−D)

−1
+ (µ−A)

−1
]
u = (λ−D)

−1
(µ−A)

−1
[v + (λ+ µ)u] .

for some λ ∈ ρ (D) and µ ∈ ρ (A) . This last formula is also equivalent to

(µ−A)
−1
u(.) ∈ BC2

0,η (R, X) ,

and, for some µ ∈ ρ (A) and any x ∈ R,

−
(
ε

d2

dx2
+ γ

d

dx

)
(µ−A)

−1
u(x) = −u(x) + (µ−A)

−1
[v(x) + µu(x)] .

We complete this section by deriving an important estimate for the resolvent
of the operator D + A. Roughly speaking, one will show, that under suitable
conditions, the norm of the resolvent operator is uniformly bounded with respect
to η small enough, the size of the exponential weight. The following Proposition
will be fundamental, in the sequel, to construct a second order center manifold
theory.

Proposition 5.8 (Resolvent estimate) Let A : D(A) ⊂ X → X be a lin-
ear operator satisfying Assumptions 2.1 and 2.3. Assume furthermore that the
growth rate of A0 satisfies

ω0(A0) < 0.

Consider η0 > 0 the unique solution of

ω0 (A0) + εη20 + |γ| η0 = 0.

Let β ∈ (0, η0) be given. Then the following holds true

35



(i) Let
ρ∗ :=

[
ω0 (A0) + εβ2 + |γ|β

]
< 0

then for each η ∈ [0, β], the linear operator D +A : D
(
D +A

)
⊂ BC0,η (R, X)→

BC0,η (R, X) satisfies

(ρ∗,∞) ⊂ ρ
(
D +A

)
.

(ii) There exists C = C(β) > 0 such that for each η ∈ [0, β]∣∣∣∣(−(D +A)
)−1∣∣∣∣

L(BC0,η(R,X))

≤ C(β).

Proof. Proof of (i). Let us first recall that according to the resolvent formula
derived in Section 4,(

λ− (D +A)
)−1

u = KA
(
e−λ.TD(.)u

)
which is well defined when

ω0 (A0) + ω0 (D − λ) < 0.

Therefore according to Lemma 5.6, it follows that(
ω0 (A0) +

[
εη2 + |γ| η

]
,+∞

)
⊂ ρ

(
D +A

)
,

and (i) follows.
Proof of (ii). By using the maps Ψη and Ψ−1η defined respectively in (5.3) and
(5.4), we have for each u ∈ BC0,η(R, X)∣∣∣∣(−(D +A)

)−1
u

∣∣∣∣
η

=

∣∣∣∣Ψ−1η (
−(D +A)

)−1
u

∣∣∣∣
0

=

∣∣∣∣Ψ−1η (
−(D +A)

)−1
ΨηΨ−1η u

∣∣∣∣
0

=
∣∣Ψ−1η KA

(
TD(.)ΨηΨ−1η u

)∣∣
0
.

Since Ψη commutes with A, we deduce that∣∣∣∣(−(D +A)
)−1

u

∣∣∣∣
η

=
∣∣KA (Ψ−1η TD(.)ΨηΨ−1η u

)∣∣
0
, ∀u ∈ BC0,η (R, X) .

Next note that one has for all v ∈ BC0,0 (R, X) and t ≥ 0∣∣Ψ−1η TD(t)Ψηv
∣∣
0

= |TD(t)Ψηv|η ≤ e
[εη2+|γ|η]t |Ψηv|η ≤ e

[εη2+|γ|η]t |v|0 .
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Now by applying Proposition 3.10 (ii) we deduce that there exists some constant
C = C (β) > 0, such that for all η ∈ [0, β] and all u ∈ BC0,η(R, X)∣∣∣∣(−(D +A)

)−1
u

∣∣∣∣
η

=
∣∣KA (Ψ−1η TD(t)ΨηΨ−1η u

)∣∣
0

≤ C (β) sup
t≥0

e−[εη2+|γ|η]t ∣∣Ψ−1η TD(t)ΨηΨ−1η u
∣∣
0

≤ C (β)
∣∣Ψ−1η u

∣∣
0

= C (β) |u|η .

Hence the result follows.

6 Center manifolds

The aim of this section is to prove Theorem 3.6 that states the existence of a
global center manifold for (1.3) when F is Lipschitz small. The first step of
this construction is to reformulate (1.3) into a more suitable form. The second
step consists in reformulating the entire orbits of (1.3) under a suitable fixed
point problem. Before going to our main step let us mention and emphasize
that throughout this section Assumptions 2.1, 2.3 and 2.5 are satisfied. We
moreover assume that ε = 1.

6.1 Reformulation of (1.3)

As mentioned in Section 2, the idea of this re-formulation is to project the
solution of (1.3) according to the decomposition X = Xs ⊕Xcu. Formally this
corresponds to consider the following system posed for x ∈ R

d2ucu(x)

dx2
− γ ducu(x)

dx
+Acuucu(x) = ΠcuF (ucu(x) + us(x)) ,

d2us(x)

dx2
− γ dus(x)

dx
+Asus(x) = ΠsF (ucu(x) + us(x)) ,

wherein uh(x) = Πhu(x) for h ∈ {s, cu}. Recall that dimXcu < ∞ so that the
first equation is an ODE in Xcu. A rigorous meaning of the above splitting is
described in the following proposition.

Proposition 6.1 Let Assumptions 2.1, 2.3 and 2.5 be satisfied. Let η > 0 be
given. Consider the second order differential operators for h ∈ {s, cu} defined

on BC0,η (R, Xh) by Dh = ∂2 − γ∂. Then u ∈ BC0,η

(
R, D(A)

)
is a weak

solution of (1.3) (according to Definition 2.4) if and only if the maps

ucu = Πcuu ∈ BC0,η (R, Xcu) and us = Πsu ∈ BC0,η (R, Xs) ,

defined by
uh(x) = Πh (u(x)) ,∀x ∈ R,∀h ∈ {s, cu},
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are respectively weak solutions of

−
(
Dcu +Acu

)
ucu = ΠcuF (ucu + us)

and
−
(
Ds +As

)
us = ΠsF (ucu + us).

Here and in the sequel, A denotes the linear operator associated to A as
in Subsection 5.1 while for each h ∈ {s, cu, 0}, Ah denotes the linear operator
associated to Ah as above.
Proof. Let us consider the linear operator on BC0,η(R, X) defined by D = ∂2−
γ∂. Let us first notice that due to Definition 2.4 and its equivalent formulation
in Theorem 5.7 (iv), u ∈ BC0,η(R, X) is a weak solution of (1.3) if and only if
one has for each λ ∈ ρ (D) and µ ∈ ρ (A)[

(λ−D)
−1

+ (µ−A)
−1
]
u = (λ− D)

−1
(µ−A)

−1
[F (u) + (λ+ µ)u] . (6.1)

Next let us notice that for each λ ∈ ρ (A) and each u ∈ BC0,η(R, X), one has
for all x ∈ R and h ∈ {s, cu}

Πh

(
(λI −A)

−1
u
)

(x) = (λI −Ah)
−1

Πhu(x) =
(

(λI −Ah)
−1

Πhu
)

(x).

On the other hand, one has for all λ ∈ ρ (D) and each u ∈ BC0,η(R, X)

Πh

(
(λI −D)

−1
u
)

(x) = (λI −Dh)
−1

(Πhu) (x).

Next for each x ∈ R, projecting (6.1) on Xh for h ∈ {s, cu} leads us to the
following system

Πh

[
(λ−D)

−1
+ (µ−A)

−1
]

(u)(x) = Πh (λ−D)
−1

(µ−A)
−1

[F (u) + (λ+ µ)u] (x).

Using the aforementioned commutating property yields[
(λ−Dh)

−1
+ (µ−Ah)

−1
]
uh = Πh (λ− Dh)

−1
(µ−Ah)

−1
[ΠhF (u) + (λ+ µ)uh] .

This proves the first of the result. The converse part of the proof can be handled
similarly.

Remark 6.2 Let η > 0 be given and let u ∈ BC0,η

(
R, D(A)

)
be a weak solu-

tion of (1.3). Then according to Proposition 6.1 the map

ucu := Πcuu ∈ BC0,η (R, Xcu) ,

is a weak solution of

−
(
Dcu +Acu

)
ucu = ΠcuF (ucu + us).
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Next when λ ∈ ρ (Acu), then according to Theorem 5.7 (iv) one has (λ−Acu)
−1
ucu ∈

BC2
0,η (R, Xcu). Since dimXcu < ∞ then (λ−Acu) ∈ L (Xcu) so that ucu ∈

BC2
0,η (R, Xcu). It therefore satisfies the following finite dimensional second or-

der ordinary differential equation for each x ∈ R

0 =

[
d2

dx2
− γ d

dx

]
ucu(x) +Acuucu(x) + ΠcuF (us (x) + ucu (x)) .

As a consequence of the above proposition and the above remark, one obtains
the following equivalent formulation.

Lemma 6.3 Let Assumptions 2.1, 2.3 and 2.5 be satisfied. Let η > 0 be given.

Then u ∈ BC0,η

(
R, D(A)

)
is a weak solution of (1.3) if and only if the maps(

u′cu
ucu

)
∈ BC1

0,η (R, Xcu ×Xcu) and us = Πsu ∈ BC0,η (R, Xs) ,

satisfy:

(i) The function us is a weak solution of

−
(
Ds +As

)
us = ΠsF (ucu + us);

(ii) The function (ucu, u
′
cu) satisfies, for all x ∈ R, the problem

d

dx

(
ucu
u′cu

)
=

(
0 I
−Acu γI

)(
ucu
u′cu

)
+

(
0

−ΠcuF (us (x) + ucu (x))

)
.

According to the above remark we set

B =

(
0 I
−Acu γI

)
∈ L(Xcu ×Xcu) and v =

(
v1
v2

)
:=

(
ucu
u′cu

)
∈ Xcu ×Xcu.

We also set G : X0s× (Xcu ×Xcu)→ Xcu×Xcu and H : X0s× (Xcu ×Xcu)→
Xs defined by

G

((
v1
v2

)
, us

)
=

(
0

−ΠcuF (v1 + us)

)
and H

((
v1
v2

)
, us

)
= ΠsF (v1 + us) .

(6.2)
Together with these notations (1.3) becomes equivalent to the following system
posed for x ∈ R 

dv(x)

dx
= Bv(x) +G (v(x), us(x)) ,

−
(
Ds +As

)
us(x) = H (v(x), us(x)) .

(6.3)

Because of the above formulation and keeping in mind that at the next stage
we shall incorporate parameters into the system to investigate Hopf bifurcation
theorem, we will prove in the next section the existence of a global center man-
ifold for (1.3). This will be achieved by proving a more general version (see
Theorem 2.9) for a class of systems of the form (6.3).
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6.2 Existence and smoothness of the center manifold

As mentioned above, in this section we will prove the existence of a global center
manifold for a system of the form (6.3) before coming back to the specific case

(1.3). To do so, let (Z, ‖.‖) be a Banach space and Â : D
(
Â
)
⊂ Z → Z a linear

operator satisfying Assumption 2.1 and 2.3. Next we set Z0 := D
(
Â
)

and we

assume that
ω0

(
Â0

)
< 0,

wherein
(
Â0, D

(
Â0

))
denotes the part of Â in Z0. Now let us consider (Y, ‖.‖)

a finite dimensional Banach space and let B ∈ L(Y ) be a given bounded linear
operator. Next we set

σs(B) = {λ ∈ C : Re(λ) < 0}, σu(B) = {λ ∈ C : Re(λ) > 0} and σc(B) = σ(B)∩iR.

We also denote by ΠBα ∈ L(Y ) the spectral projector on the spectral set σα(B)
for α ∈ {s, u, c}. Next we assume that

σc(B) 6= ∅.

Let G : Y × Z0 → Y and H : Y × Z0 → Z be two Lipschitz continuous maps
such that

G(0, 0) = 0 and H(0, 0) = 0.

Then we consider the problem for x ∈ R
dv(x)

dx
= Bv(x) +G (v(x), u(x)) ,

d2u(x)

dx2
− γ du(x)

dx
+ Âu(x) +H (v(x), u(x)) = 0.

(6.4)

In order to construct a global center manifold for the above problem, let us set
for α ∈ {s, c, u}

Yα = ΠBαY and Bα = B|Yα ∈ L (Yα) .

We also set ΠBh = ΠBs + ΠBu and Yh = ΠBhY =
(
I −ΠBc

)
Y . Before stating our

result, let us fix β > 0 such that

0 < β < min (−ω0 (Bs) , ω0 (Bu) , η0) ,

wherein η0 > 0 is the unique solution

η20 + |γ|η0 + ω0

(
Â0

)
= 0.

Let us now recall the definition of a center manifold for the above problem.

Definition 6.4 (η−center manifold) Let η ∈ (0, β) be given. The η−center
manifold of (6.4) denoted by Vη is the set of all (u0, v0) ∈ Z0 × Y such that
there exist a pair of functions (u, v) ∈ BC0,η(R, Z0)×BC0,η(R, Y ) such that
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(i) (u, v)(0) = (u0, v0),

(ii) (u, v) is a mild solution of (6.4) in the following sense

u = −
(
D + Â

)−1
H (u(.), v(.)) ,

v(x+ y) = eByv(x) +

∫ y

x

eB(y−s)G (u(s), v(s)) ds, ∀x ∈ R, ∀y ≥ 0.

In the sequel we will prove that under some suitable assumptions, Vη is a
graph over Yc. This is the aim of the next theorem. This result will then be
used to system (1.3) to derive Theorem 2.9 as a specific case.

Theorem 6.5 (Existence of a global manifold) Under the above assump-
tions, let η ∈ (0, β) be given. There exists δ0 = δ0(η) > 0 such that for each
(H,G) ∈ Lip(Y × Z0, Z)× Lip(Y × Z0, Y ) such that

‖H‖Lip(Y×Z0,Z) + ‖G‖Lip(Y×Z0,Y ) ≤ δ0, (6.5)

then there exists Ψη ∈ Lip (Yc, Z0 × (Ys ⊕ Yu)) such that

Vη =

{(
0
yc

)
+ Ψη(yc), yc ∈ Yc

}
.

Moreover the following statements are equivalent:

(i) (u, v) ∈ BC0,η(R, Z0)×BC0,η(R, Y ) is a mild solution of (6.4).

(ii) Function (u, v) ∈ C (R;Z0 × Y ) satisfies(
u(x)

ΠBhv(x)

)
= Ψη

(
ΠBc v(x)

)
for all x ∈ R,

and the map w = ΠBc v(.) : R → Yc is a solution of the following ordinary
differential equation

dw(x)

dx
= Bcw(x) + ΠBc G

((
0

w(x)

)
+ Ψη (w(x))

)
, ∀x ∈ R. (6.6)

Before proving this result, let us mention that Theorem 2.9 becomes a direct
consequence of the above theorem. Indeed due Lemma 6.3 (see also (6.3)),
Problem (1.3) re-writes as (6.4) with

Y = Xcu ×Xcu, Z = Xs and Z0 = X0s,

while
(
Â,D

(
Â
))

= (As, D (As)),

B =

(
0 I
−Acu γI

)
∈ L(Xcu ×Xcu),
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and wherein functions H and G are defined in (6.2). Note that ω0

(
Â0

)
=

ω0 (A0s) < 0 since ω0,ess (A0) < 0. Next recalling the notations in (2.4) and
Assumption 2.7 one may observe that

σc (B) = σP(A) while ΠBc =

(
ΠP 0
0 ΠP

)
,

so that Yc = XP ×XP and Yh = XQ ×XQ. Due to this remark, Theorem 2.9
is a simple re-formulation of the more general result Theorem 6.5 in the above
described context.

We are now in position to prove Theorem 6.5. This proof requires some
preliminaries.

Let us first define for each η ∈ [0, β] and each f ∈ BC0,η(R, Y ) the linear
operator

K(f)(t) =

∫ t

0

eB(t−τ)ΠBc f(τ)dτ−
∫ ∞
t

eB(t−τ)ΠBuf(τ)dτ+

∫ t

−∞
eB(t−τ)ΠBs f(τ)dτ.

Then as proved in [77], the following estimates hold true.

Lemma 6.6 For each η ∈ [0, β), K is a bounded linear operator from BC0,η(R, Y )
into itself. Furthermore, there exists some constant M > 0 such that for each
ν ∈ (−β, 0) there exists some constant Ĉs,ν > 0 such that for all η ∈ (0,−ν):

‖K‖L(BC0,η(R,Y )) ≤ Ĉs,ν +
M

β − η
+ C̃η,

wherein we have set

C̃η = ‖ΠB
c ‖L(Y ) max

(∫ ∞
0

∥∥∥e(Bc−η)t∥∥∥dt,

∫ ∞
0

∥∥∥e−(Bc+η)t∥∥∥dt

)
.

Consider now the linear operator Kc defined by

Kc(yc)(t) = etBcyc, t ∈ R, yc ∈ Yc.

Then the following estimate holds true.

Lemma 6.7 For each η ∈ (0, β), Kc ∈ L (Yc, BC0η(R, Yc)) and the following
operator norm estimate holds true:

‖Kc‖L(Yc,BC0η(R,Yc)) ≤ max

(
sup
t≥0

∥∥∥e(Bc−η)t∥∥∥ , sup
t≥0

∥∥∥e−(Bc+η)t∥∥∥) .
We also refer to [77] for the proof of this estimate.
Using the above notations, we are able to state the fixed point problem that

will be used to derive Theorem 6.5.
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Lemma 6.8 Let η ∈ (0, β) be given. Then (u0, v0) ∈ Vη ⊂ Z0 × Y if and only
if there exist (u, v) ∈ BC0,η(R, Z0)×BC0,η(R, Y ) such that

u(0) = u0, v(0) = v0,

v = Kc
(
ΠBc y

)
+KG(u(.), v(.)),

u = −
(
D + Â

)−1
H(u(.), v(.)).

The proof of this lemma is straightforward by using Lemma 4.9 in [54] as
well as Definition 6.4.
Proof of Theorem 6.5. Let η ∈ (0, β) be given. Let us recall that due to
the resolvent estimate derived in Proposition 5.8 there exists some constant
C(β) > 0 such that for each η ∈ [0, β] one has∥∥∥∥−(D + Â

)−1∥∥∥∥
L(BC0,η(R,Z))

≤ C(β).

For simplicity, in the sequel we will write R = −
(
D + Â

)−1
. Consider now

δ0 > 0 small enough arising in (6.5) such that

δ0
(
‖K‖L(BC0,η(R,Y )) + C(β)

)
< 1.

Consider the map T : BC0,η(R, Z0)× B0,η(R, Y )→ BC0,η(R, Z0)× B0,η(R, Y )
defined by

T

(
u
v

)
=

(
RH(u(.), v(.))
KG(u(.), v(.))

)
. (6.7)

Then due to the choice of δ0, the map I − T is invertible and one has∥∥∥(I − T )
−1
∥∥∥
Lip
≤ 1

1− δ0
(
‖K‖L(BC0,η(R,Y )) + C(β)

) .
We define for each yc ∈ Yc the pair of functions (U(yc), V (yc)) ∈ BC0,η (R, Z0)×

B0,η (R, Y ) by (
U(yc)(.)
V (yc)(.)

)
= (I − T )

−1
(

0
Kc (yc) (.)

)
.

Next we set Ψη : Yc → Z0 × Yh defined by

Ψη(yc) =

(
U(yc)(0)

ΠBhV (yc)(0)

)
,

so that the existence result follows.
It remains to show that (i) and (ii) are equivalent. To do so, let us now

assume that (u, v) ∈ BC0,η(R, Z0) × BC0,η(R, Y ) is a mild solution of (6.4).

Then from the definition of Vη, one has

(
u(t)
v(t)

)
∈ Vη for all t ∈ R. Hence
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(
u(t)

ΠBhv(t)

)
= Ψη

(
ΠBc v(t)

)
for all t ∈ R. Then projecting the v−equation in

(6.4) on Yc implies that the function w := ΠBc v(.) is solution of (6.6).
Assume now that (u, v) ∈ C (R, Z0 × Y ) satisfies (ii). Then from the defini-

tion of Vη, one has (
u(t)
v(t)

)
∈ Vη ∀t ∈ R.

In particular (u0, v0) := (u, v)(0) ∈ Vη and therefore there exists (U, V ) ∈
BC0,η (R, Z0) × BC0,η (R, Y ) a weak solution of (6.4) such that (U, V )(0) =
(u0, v0). As a consequence of the above part, function W (t) = ΠBc U(t) satis-
fies (6.6) together with W (0) = ΠBc v(0). The uniqueness result for ordinary
differential equations with Lipschitz continuous nonlinearity implies that

ΠBc V (t) = ΠBc v(t), ∀t ∈ R.

As a consequence of this together with the first relation into (ii) implies that
(u, v)(t) ≡ (U, V )(t) and therefore we conclude that (u, v) ∈ BC0,η (R, Z0) ×
BC0,η (R, Y ) is a weak solution of (6.4). This completes the proof of the result.

We will now investigate Theorem 2.10. The proof relies on the fibre contrac-
tion theorem applied to the truncated nonlinearity. Fix the nonlinear functions
G : Y × Z0 → Y and H : Y × Z0 → Z of the class Ck for some k ≥ 1 such that

G(0, 0) = 0, H(0, 0) = 0 and DG(0, 0) = 0, DH(0, 0) = 0.

In order to state the result, let us consider for each r > 0 the nonlinear functions
Gr : Y × Z0 → Y and Hr : Y × Z0 → Z defined by

Gr(v, u) = G(v, u)χY
(
r−1v

)
χZ
(
r−1‖u‖Z

)
Hr(v, u) = H(v, u)χY

(
r−1v

)
χZ
(
r−1‖u‖Z

)
,

wherein function χY : Y → R+ is a C∞ function such that χY (y) = 1 if ‖y‖ ≤ 1
and χY (y) = 0 if ‖y‖ ≥ 2. Recall that such a smooth map exists since Y is a
finite dimensional space. Furthermore function χZ : R+ → R+ is a C∞ function
such that χZ(z) = 1 if z ∈ [0, 1] and χZ(z) = 0 for all z ≥ 2. Now note that one
has as r → 0+

sup
(v,u)∈Y×Z0

‖Gr(v, u)‖Y + sup
(v,u)∈Y×Z0

‖Hr(v, u)‖Z = O
(
r2
)
,

‖Hr‖Lip(Y×Z0,Z) + ‖Gr‖Lip(Y×Z0,Y ) = O (r) ,

(Gr, Hr) ∈ Ckb (Y ×BZ0
(0, r), Y × Z) .

Here the subscript b stands for bounded. Note now that because of the above
estimate, Theorem 6.5 applies as soon as r is small enough. Then the following
proposition holds true.
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Proposition 6.9 Under the above assumptions, let η ∈ (0, β) be given small
enough. Then there exists r0 = r0(η) such that for each r ∈ (0, r0) the map Ψ
constructed in Theorem 6.5 for (6.4) with (G,H) replaced by (Gr, Hr) satisfies

Ψ ∈ Ckb (Yc;Z0 × Yh) , Ψ(0) = 0 and DΨ(0) = 0.

The proof of this result is an application of the fibre contraction theorem
using the fixed point formulation associated to operator T in (6.7). We refer to
Vanderbauwhede in [77], Vanderbauwhede and Iooss [81] and Magal and Ruan
[54]. To see this we shall reformulate the fixed point problem as in [54] so that
the methodology to prove such a smoothness property is similar. Consider the
map Φ(Hr,Gr) : BC0,η(R, Z0)×B0,η(R, Y )→ BC0,η(R, Z0)×B0,η(R, Y )

Φ(Hr,Gr)

(
u
v

)
(t) =

(
Hr (u(t), v(t))
Gr (u(t), v(t))

)
,

Consider also the linear operator K2 ∈ L (BC0,η(R, Z0)×BC0,η(R, Y )) defined
by

K2 =

(
R 0
0 K

)
,

so that operator T defined in (6.7) re-writes as T = K2Φ(Hr,Gr). Consider for
r small enough the nonlinear operator Γ0 = (I − T )−1 and the linear operator
L ∈ L (BC0,η(R, Z0)×B0,η(R, Y ), X × Y ) defined by

L

(
u
v

)
=

(
I 0
0 ΠBh

)(
u(0)
v(0)

)
Together with these notations, recall that the graph Ψ re-writes for all yc ∈ Yc
as

Ψ(yc) = LΓ0 (K1(yc)) ,

wherein we have set K1(yc) =

(
0
K(yc)

)
. Moreover Γ0 satisfies

Γ0(U) = U +K2Φ(Gr,Hr) (Γ0(U)) , ∀U ∈ {0} ×BC0,η(R, Yc).

Hence Γ0 is a fixed point for the following problem

Γ0 = J +K2Φ(Gr,Hr) (Γ0) ,

wherein J denotes the embedding from {0}×BC0,η(R, Yc) into BC0,η(R, Z0)×
B0,η(R, Y ). This fixed point formulation is similar to the one studied by Magal
and Ruan [54] and, as explained above, the proof of Proposition 6.9 is similar.

Now let us notice that a solution (u, v) of (6.4) with (G,H) coincides together
with a solution of (6.4) with (Gr, Hr) as soon as (u, v)(x) ∈ Ω := BY (0, r) ×
BZ0(0, r) for all x ∈ R. This remark directly implies the following local center
manifold result for (6.4).
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Theorem 6.10 Let G : Y ×Z0 → Y and H : Y ×Z0 → Z be two given functions
of the class Ck for some k ≥ 1 such that

G(0, 0) = 0, H(0, 0) = 0 and DG(0, 0) = 0, DH(0, 0) = 0.

Next under the assumptions of Theorem 6.5 for the linear operator Â and B, let
η ∈ (0, β) be given small enough. Then there exists Ψ ∈ Ck (Yc, Z0 × Yh) with

Ψ(0) = 0 and DΨ(0) = 0,

and there exists Ω a bounded neighbourhood of 0 in Z0×Y satisfying the following
properties:

(i) If vc : R→ Yc is a solution of the reduced equation (6.6) then for some η
small enough

vc ∈ BC0,η (R, Yc) .

Moreover if (
0

vc(x)

)
+ Ψ (vc(x))) ∈ Ω,∀x ∈ R,

then (
u(x)
v(x)

)
=

(
0

vc(x)

)
+ Ψ

(
ΠBc v(t)

)
for all t ∈ R,

is a classical solution of (6.4) on R.

(ii) If (u, v) ∈ BC0,η (R, Y × Z0) is a weak solution of (6.4) such that

(u, v)(x) ∈ Ω,∀x ∈ R,

then function vc = ΠBc v is a solution of the reduced equation (6.6).

Finally recalling that (1.3) re-writes in the form (6.4) (see the comments
after Theorem 6.5), this also completes the proof of Theorem 2.10

7 Hopf bifurcation

This section is concerned with Hopf bifurcation. In the first subsection we state
our general Hopf bifurcation theorem using the ODE reduction we have obtained
in the previous section. Then we apply this general theorem to investigate the
persistence of non-degenerate Hopf bifurcation for some singularly perturbed
second order equation.
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7.1 Proof of Theorem 2.11

This section is devoted to the study of Hopf bifurcation theorem. To that aim
we consider the following problem depending on a real parameter µ ∈ R

d2u(x)

dx2
− γ du(x)

dx
+Au(x) + F (µ, u(x)) = 0, x ∈ R. (7.1)

In order to investigate the above problem, we first incorporate the parameter µ
into the system by considering the following system of equation

dµ(x)

dx
= 0,

d2u(x)

dx2
− γ du(x)

dx
+Au(x) + F (µ(x), u(x)) = 0.

(7.2)

Next projecting the second equation on Xs and Xcu and using the reduction
introduced in the previous section, we obtain a similar form as the one proposed
in (6.4). To be more precise, let us assume that Assumptions 2.1, 2.3 and 2.5
are satisfied, then the system (7.2) is equivalent to the following ones

dv(x)

dx
= Bv(x) +G (v(x), us(x)) ,

− (Ds +As)us = ΠsF (µ, ucu + us) ,
(7.3)

wherein we have set B ∈ L (Y ) with Y = R×Xcu ×Xcu and

B =

0 0 0
0 0 I
0 −Acu γI

 , v =

 µ
ucu
u′cu

 ,

and

G (v, us) =

 0
0

−ΠcuF (µ, ucu + us)

 and H(v, us) = ΠsF (µ, ucu + us) .

Finally let us mention that Theorem 6.10 applies and provides a reduction
technique that will be be used in the sequel to derive a Hopf bifurcation theorem.
Before doing so, let us notice that the matrix operator B satisfies the following
straightforward properties

Lemma 7.1 Let Assumptions 2.1, 2.3 and 2.5 be satisfied. The linear operator
B satisfies the following properties

(i) The spectrum of B is given by

σ (B) = {0} ∪
{
z ∈ C : −z2 + γz ∈ σ(Acu)

}
.
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(ii) One has

ΠBc =

I 0 0
0 ΠP 0
0 0 ΠP

 ∈ L(Y ) and Yc = R×XP ×XP .

We now focus on Hopf bifurcation theorem for (7.1). To do so we shall
assume that the following set of assumptions are fulfilled.

Assumption 7.2 Let η > 0 be given and F ∈ Ck ((−η, η)×BX0
(0, η)) for

some k ≥ 4. Assume that the following statements are satisfied:

(i) F (µ, 0) = 0 for all µ ∈ (−η, η) and ∂uF (0, 0) = 0.

(ii) The linear operator A satisfies Assumptions 2.1, 2.3 and 2.5.

(iii) For each µ ∈ (−η, η), there exists a pair of conjugated simple eigenvalues

of (A+ ∂uF (µ, 0))cu, denoted by λ(1)(µ) and λ(1)(µ), such that

λ(1)(0) = ω2
0 + iγω0 for some ω0 > 0,

and

σ (A0) ∩ P =
{
λ(1)(0), λ(1)(0)

}
with P = {ξ2 + iγξ; ξ ∈ R}. (7.4)

We furthermore assume that the map µ 7→ λ(1)(µ) is continuously differ-
entiable and satisfies

Re

[
1

γ − 2iω0

dλ(1)(0)

dµ

]
6= 0. (7.5)

Then the following Hopf bifurcation theorem holds true.

Theorem 7.3 (Hopf bifurcation theorem) Let Assumption 7.2 be satisfied.
Then, there exist a constant ε∗ > 0 and three Ck−1 maps, ε 7→ µ(ε) from (0, ε∗)
into R, ε 7→ (xε, yε) from (0, ε∗) into X0 × X0, and ε → γ(ε) from (0, ε∗)
into R, such that for each ε ∈ (0, ε∗) there exists a γ(ε)−periodic function
uε ∈ Ck(R, X0) , which is a weak solution of (7.1) with the parameter value
µ = µ(ε) and such that uε(0) = xε and u′ε(0) = yε.

Remark 7.4 Using Crandall and Rabinowitz’s Hopf bifurcation theorem given
in [18], the above theorem holds true when we only assume that F is the class
C2 and that condition (7.4) is replace by

σ (A0) ∩ Pξ0 =
{
λ(0), λ(0)

}
with Pξ0 = {ξ2 + iγξ; ξ ∈ ξ0N}. (7.6)
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The proof of the above result relies on the usual Hopf bifurcation theorem for
ordinary differential equations after the reduction provided by Theorem 6.10.
To see this, let us consider the matrix operator B(µ) acting from R×Xcu×Xcu

into itself and defined by

B(µ) =

0 0 0
0 0 I
0 − [A+ ∂uF (µ, 0)]cu γI

 .

Now note that Theorem 6.10 applies and allows us to reduce the problem to
an ordinary differential system of equations involving Bc(µ). To complete the
proof of Theorem 7.3, we need to investigate the center spectrum of B(µ) at
µ = 0 and check the transversality condition (see for instance [39] and [50]).

Note that when µ is small enough, the above matrix B(µ) has the following
properties:

(i) For each µ ∈ (−η, η), 0 is a simple eigenvalue.

(ii) Up to reduce η, for each µ ∈ (−η, η), there exists a map µ 7→ λ(2)(µ) of

the class C1 such that λ(2)(µ) and λ(2)(µ) are a pair of conjugated simple
eigenvalues of B(µ),

λ(2)(0) = iω0 and Re
dλ(2)(0)

dµ
6= 0.

In order to justify the above claim, it is sufficient to prove (ii). To do so, let
us notice that for each µ ∈ (−η, η)

λ(2)(µ) ∈ σ (B(µ)) ⇔ −
[
λ(2)(µ)

]2
+ γλ(2)(µ) ∈ σ ([A+ ∂uF (µ, 0)]cu) ,

and

λ(2)(µ) ∈ iR ⇔ −
[
λ(2)(µ)

]2
+ γλ(2)(µ) ∈ P.

Finally let us mention that λ(2)(µ) is a simple eigenvalue for B(µ) if and only if

−
[
λ(2)(µ)

]2
+ γλ(2)(µ) is a simple eigenvalue of [A+ ∂uF (µ, 0)]cu.

On the other hand, let us notice that using the implicit function theorem,
there exist η0 ∈ (0, η) and a map λ → λ(2)(µ) of the class C1 defined from
(−η0, η0) such that{[

λ(2)(µ)
]2 − γλ(2)(µ) + λ(1)(µ) = 0, ∀µ ∈ (−η0, η0),

λ(2)(0) = iω0.

Next note that
dλ(2)(0)

dµ
[2iω0 − γ] +

dλ(1)(0)

dµ
= 0,

so that (7.5) is equivalent to the usual transversality condition for λ(2) at µ = 0,
that reads as

Re
dλ(2)(0)

dµ
6= 0.

Finally Theorem 7.3 therefore follows.
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7.2 Persistence of non-degenerate Hopf bifurcation

The aim of this section is to compare the non-degenerate Hopf bifurcation prob-
lem for a first order abstract equation of the form

du(t)

dt
= Au(t) + F (µ, u(t)) , t ∈ R, (7.7)

together with the singularly perturbed second order equation

ε2
d2u(t)

dt2
− du(t)

dt
+Au(t) + F (µ, u(t)) = 0. (7.8)

Here ε > 0 is a small parameter while µ ∈ R is a bifurcation parameter.

Remark 7.5 Note that by setting γ = 1
ε , then u is a solution of (7.8) if and

only if the function ũ(t) = u (εt) is a solution of (1.3). Hence periodic solutions
of (7.8) for small ε corresponds to fast wave train for (1.3), namely with γ very
large.

The aim of this section is to prove that non-degenerate Hopf bifurcation
for (7.7) is persistent for (7.8) when ε is small enough. In order to make this
statement more precise, we will assume that

Assumption 7.6 We assume that operator A and function F satisfies Assump-
tion 7.2 (i) and (ii). Next we assume that for each µ ∈ (−η, η), there exists
a pair of conjugated simple eigenvalues of (A+ ∂uF (µ, 0))0, denoted by λ(1)(µ)

and λ(1)(µ), such that

λ(1)(0) = iω0 for some ω0 > 0,

and
σ (A0) ∩ iR =

{
λ(0), λ(0)

}
. (7.9)

We furthermore assume that the map µ 7→ λ(1)(µ) is continuously differentiable
and satisfies

Re
dλ(1)(0)

dµ
6= 0. (7.10)

Recall that the above assumption implies that µ = 0 is a Hopf bifurcation
point for the first order equation (7.7) (we refer to [50] for such a result). Here
we will prove the following result.

Theorem 7.7 Let Assumption 7.6 be satisfied. Assume that

Re
dλ(1)(0)

dµ
> 0 respectively < 0. (7.11)

Then there exist 0 < η̂ ≤ η and a map ε ≡ ε(µ) defined from (0, η̂) (resp. on
(−η̂, 0)) into (0,∞) such that for each µ ∈ (0, η̂) (respect for each µ ∈ (−η̂, 0),
µ is a Hopf bifurcation point for (7.8) with ε = ε(µ).
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Proof. In order to prove this result, we will assume, without loss of generality
that (due to (7.10)) that

Re
dλ(1)(0)

dµ
> 0. (7.12)

Then, up to reduce η > 0, one may assume that there exists δ > 0 such that for
each µ ∈ [0, η)

σ [Acu + ∂uF (µ, 0)]cu ∩ {z ∈ C : 0 ≤ Re z ≤ δ} =
{
λ(1)(µ), λ(1)(µ)

}
. (7.13)

Now for each µ ∈ (0, η), there exists a unique ε = ε(µ) such that{
λ(1)(µ), λ(1)(µ)

}
⊂ Pε(µ),

wherein Pε denotes the parabola

Pε :=
{
ε2ξ2 − iξ2, ξ ∈ R

}
.

It is easy to check that for each µ ∈ (0, η), one has

ε(µ) =

√
Re λ(1)(µ)(
Im λ(1)(µ)

)2 . (7.14)

Now, up to reduce η if necessary, there exists M > 0 such that for each µ ∈ [0, η)

σ [Acu + ∂uF (µ, 0)]cu ∩ {z ∈ C : 0 ≤ Re z and |Im z| ≥M} = ∅.

As a consequence of this property and since ε(µ)→ 0 when µ→ 0 (see (7.14)),
up to reduce η, one obtains that for each µ ∈ (0, η)

σ [Acu + ∂uF (µ, 0)]cu ∩ Pε(µ) =
{
λ(1)(µ), λ(1)(µ)

}
.

Now let µ∗ ∈ (0, η) be given. We set ε∗ = ε (µ∗). We will show that
µ∗ is a Hopf bifurcation point of (7.8) with ε = ε∗. To do so, it remains to
check Assumption 7.2 (iii). More specifically, due to the above computations,
it remains to check the transversality condition (2.10) at µ = µ∗. This conditions
reads as

Re

[
1

1− 2iε∗ω∗0

dλ(1)(µ∗)

dµ

]
6= 0, (7.15)

where ω∗0 > 0 is given by
ω∗0 = Imλ(1)(µ∗).

To complete the proof, observe that due to (7.12), one has

lim
µ→0+

Re

(
λ(1)

)′
(µ)

1− 2iε(µ)Imλ(1)(µ)
= Re

dλ(1)(0)

dµ
> 0.
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As a consequence, up to reduce µ∗ if necessary, (7.15) holds true and Theorem
7.3 applies to complete the proof of the result.

From this result, let us notice that when (7.12) holds true, up to reduce η,
the map µ 7→ ε(µ)2 is a bijection from (0, η) onto (0, ε∗) for some ε∗. As a
consequence, one obtains that for each ε ∈ (0, ε∗), there exists µ = µ (ε) ∈ (0, η)
such that µ = µ(ε) is a Hopf bifurcation point of system (7.8) with ε. The same
holds true when (7.12) is replaced by a non-positive condition. In the latter
situation, the map µ 7→ ε(µ) is a bijection from (−η, 0) onto (0, ε∗). Thus for
each ε ∈ (0, ε∗), there exists µ = µ(ε) ∈ (−η, 0) such that µ = µ(ε) is a Hopf
bifurcation point of (7.8). Due to the above remark, one obtains the following
re-formulation of Theorem 7.7.

Corollary 7.8 Let Assumption 7.6 be satisfied. Assume that

Re
dλ(1)(0)

dµ
6= 0.

Then there exists ε∗ > 0 and η̂ > 0 such that for each ε ∈ (0, ε∗), there exists
a unique µ = µ(ε) ∈ (−η̂, η̂) such that µ = µ(ε) is a Hopf bifurcation point for
(7.8) with ε.

8 Application to the existence of wave trains for
Problem (1.1)

In this section we come back to the age structured equation (1.1). We shall pro-
vide conditions that ensure the existence of periodic wave solutions emanating
from Hopf bifurcation. Note that a wave train profile U ≡ U(x, a) with speed
γ ∈ R associated to this equation is a solution of the following problem

∂2xU(x, a)− γ∂xU(x, a)− ∂aU(x, a)− µU(x, a) = 0, x ∈ R, a > 0,

U(x, 0) = αf

(∫ ∞
0

β(a)U(x, a)da

)
.

(8.1)

Here µ > 0 is a given and fixed parameter, α > 0 is a bifurcation parameter
while the nonlinear function f reads as the Ricker map described in Assumption
2.14. Furthermore assume that

β ∈ L∞+ (0,∞) normalized by

∫ ∞
0

β(a)e−µada = 1. (8.2)

Under the above assumptions, let us first re-write (8.1) as a special case of (1.3).
To do so, consider the Banach spaces

X = R× L1(0,∞) and X0 = {0} × L1(0,∞),

as well as the non-densely defined linear operator A : D(A) ⊂ X → X defined
by

D(A) = {0} ×W 1,1(0,∞) and A

(
0
ϕ

)
=

(
−ϕ(0)
−ϕ′ − µϕ

)
.
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Observe that X0 = D(A) 6= X. Next consider also the nonlinear map G : X0 →
X defined by

G

(
0
ϕ

)
=

(
f
(∫∞

0
β(a)ϕ(a)da

)
0

)
.

Next setting u(x) =

(
0

U(x, .)

)
, system (8.1) re-writes as

d2u(x)

dx2
− γ du(x)

dx
+Au(x) + αG (u(x)) = 0, x ∈ R. (8.3)

Note that the linear operator (A,D(A)) is a Hille-Yosida operator so that As-
sumptions 2.1 and 2.3 are readily satisfied. Also note that ω0,ess (A0) ≤ −µ < 0,
so that Assumption 2.5 holds true. We refer to Magal and Ruan in [54] for more
details.

Now let us observe that the stationary equation

Au+ αG (u) = 0, u ∈ D(A),

only has one solution u = 0 when α ∈ (0, 1] and two solutions when α > 1 that
are defined by

u = 0 and uα =

(
0
Uα

)
, with Uα(a) ≡ lnαe−µa, ∀a > 0.

In order to apply Theorem 7.7 or Corollary 7.8, we will first recall some known
results for the first order differential equation

du(x)

dx
= Au(x) + αG (u(x)) . (8.4)

We refer to Chap. 5 in [54] for a detailed study of this equation. Consider for
each α > 1, the linear operator Bα : D(Bα) ⊂ X → X defined by

D (Bα) = D(A), Bα = A+ αDG (uα) .

As described in Assumption 2.14 we furthermore assume that

β(a) =

{
0 if a ∈ (0, τ),

δ(a− τ)ne−ζ(a−τ) if a ≥ τ ,
with δ =

(∫ ∞
τ

(a− τ)ne−ζ(a−τ)−µada

)−1
,

Then, the following results hold true.

Lemma 8.1 (Chap. 5 in [54]) For each α > 1 one has

ω0,ess ((Bα)0) ≤ −µ < 0.

There exist α∗ > 1 and θ∗ > 0 such that

(i) σ (Bα∗) ∩ iR = {−iθ∗, iθ∗},
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(ii) sup {Re λ : λ ∈ σ (Bα∗) \ {−iθ∗, iθ∗}} < 0

(iii) there exist a constant η > 0 and a continuously differentiable map λ :
(α∗ − η, α∗ + η) → C such that for each α ∈ (α∗ − η, α∗ + η), λ(α) and
λ(α) is a pair of simple eigenvalue of Bα, λ(α∗) = iθ∗ and

Re
dλ (α∗)

dα
> 0.

In order to apply Corollary 7.8, let us re-write System 8.3 for α > 1 by
setting u = v + uα. This leads us to the following parametrized problem

d2v(x)

dx2
− γ dv(x)

dx
+Bαv(x) + F (α, v(x)) = 0,

where function F : (1,∞)×X0 → X is defined by

F (α, v) = α [G (v + uα)−G (uα)−DG (uα) v] .

Then according to Lemma 8.1, Corollary 7.8 applies and leads us to the following
result.

Theorem 8.2 Let Assumption 2.14 be satisfied. Then there exist γ∗ > 0 large
enough and η∗ > 0 such that for each γ ∈ (γ∗,∞), there exists α = α(γ) ∈
(α∗ − η∗, α∗ + η∗) such that α = α(γ) is a Hopf bifurcation point for (8.3)
around uα.
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