
A singularly perturbed Delay

Differential Equation modeling

nosocomial infections

A. Ducrot, P. Magal, O. Seydi
Institut de Mathematiques de Bordeaux, UMR CNRS 5251,

Universite Bordeaux Segalen, 3ter place de la Victoire, 33000 Bordeaux, France

Abstract

In this article we consider a model describing hospital acquired in-
fections. The model derived is a system of delay differential equations.
The state variable is formed by the patients and the healthcare workers
components. The system is a slow-fast system where the fast equation
corresponds to the healthcare workers equation. The question addressed
in this paper is the convergence to the so called reduced equations which
is a single equation for patients. We investigate both finite time conver-
gence and infinite time convergence (uniformly for of all positive time) of
the original system to the reduced equation.

1 Introduction

In this article, we consider a model describing bacterial nosocomial infections
(i.e. hospital acquired infections). In such a problem the pathogens (bacteria)
are assumed to be transmitted from the patients to the HealthCare Workers
(HCW) and from the HCWs to the patients. A Susceptible (S) patient may
become newly Infected (I) patient by contact with a colonized HCW. Typically,
the colonization of HCWs is of a superficial form such as dirty hands that carry
the pathogen. The HCWs are decomposed into the Uncolonized (HU ) and the
Colonized (HC). The fluxes of patients and HCWs are summarized in Figure 1.

The time scales for the process of colonization for HCWs and the process
of infection for patients are fairly different. HCWs may recover from the colo-
nization due to hygiene or due to the turn over in the medical unit (i.e. a shifts
of 8 Hours). When a HCW becomes colonized, the HCW is assumed to be
immediately capable to transmit the pathogen to a patient. The average time
during which the HCW stays colonized is approximatively one or two hours. For
a patient the infection process is much longer, and a patient needs several days
to be capable to transmit the pathogen to HCWs. Therefore when a patient
become infected, the period of time necessary to transmit the pathogen from
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patients to an HCW is much longer. In this sense there is (at least) one order
of magnitude between the time scale for HCWs and the time scale for patients.

In this article, we will consider a special version of a model presented in Ma-
gal and McCluskey [20, Section 7]. By using the usual idea coming from slow-fast
systems, we will cancel out the HCWs component of the system. Similar idea
was already used in D’Agata et al. [11] (without mathematical justification),
and as [11] we will endup with a single equation for patients. The model derived
turn to be similar (but different) to the one introduced in Webb et al. in [26].
A practical motivation for this study come from the fact that (usually) no data
are available for the colonized HCWs. Therefore it also makes sense to try to
get rid of the HCWs component in such a problems.

Figure 1: The figure represents a diagram of the individuals fluxes used to
describe hospital acquired infections. In this diagram each solid arrow represents
a flux of individuals, while the dashed arrows represent the influence of either
infected patients or colonized HCWs on the pathogen acquisition.

Let S(t) be the number of susceptible patients at time t, and i(t, a) be the
density of infected patients who have been infected for duration a at time t.
This means that ∫ a+

a−

i(t, a)da

is the number of infected patients having an age of infection (i.e. the time since
infection) 0 ≤ a− ≤ a ≤ a+. The age of infection is introduced in such a context
to account for antibiotic treatment in the model. Let HU (t) be the number of
uncolonized HCWs, HC(t) be the number of colonized HCWs. Assume that the
number of patients and HCWs is constant in the hospital (or the intensive care
unit), therefore we must have

S(t) +

∫ +∞

0

i(t, a)da = NP and HU (t) +HC(t) = NH . (1.1)
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Patient
equation



dS(t)

dt
= νRNP − νRS(t)− νV PI

NH
βV S(t)HC(t)

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
νV PI
NH

βV S(t)HC(t)

S(0) = S0 ≥ 0
i(0, .) = i0 ∈ L1

+ (0,+∞) ,
(1.2)

The rate νV at which contacts between staff and patients occur is taken
to be constant. The probability for a patient to have contact with a HCW
is βV := NH/Np and when a contact occurs the probability that is with a
contaminated HCW is the faction HC

NH
of HCWs that are colonized, where NH

is the total number of HCWs and Np is the total number of patients. Finally,
given a contact between a susceptible patient and a contaminated HCW, the
probability that the patient becomes infected is PI ∈ (0, 1]. Thus, the rate at
which incidence of new infections in the patient population is νV PI

NH
βV SHC . All

newly infected patients enter the infected population with infection age 0.
Next, we determine equations for the HCWs, beginning with the incidence.

while the system describing the HCWs colonization is the following

HCW
equation



dHU (t)

dt
= νHNH − νHHU (t)− νV PC

NP
HU (t)

∫∞
0
γ(a)i(t, a)da

dHC(t)

dt
=
νV PC
NP

HU (t)
∫∞

0
γ(a)i(t, a)da− νHHC(t)

HU (0) = HU0 ≥ 0
HC(0) = HC0 ≥ 0.

(1.3)
As in the patient equations, contacts occur at rate νV . Let PC ∈ (0, 1] be the
maximum probability that a contact between an infected patient and an uncon-
taminated HCW leads to a new contamination. The relative infectivity of pa-
tients of infection age a is γ(a) and the density of contacts with patients of infec-

tion age a is i(t,a)
NP

, where NP is the total number of patients. Thus, the incidence

of new contaminations in the HCW population is νV PC
NP

HU

∫ +∞
0

γ(a)i(t, a)da.
The decontamination rate for HCWs is νH .

The meaning of the parameters, as well as the values used in simulations,
are listed in Table 1.
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Symbol Interpretation Value Units
NP total number of patients 400∗ -
NH total number of HCWs 100∗ -
TH = 1

νH
average time during which an HCW stays colonized 1∗ hours

TV = 1
νV

average duration of visit to a patient by 1.58∗∗∗ hours

a HCW plus time to the next visit
TR = 1

νR
average time spent in the hospital for an 28∗ days

infected patient
PI probability for a patient to be infected by 0.06∗∗ -

a HCW per visit
PC probability for a HCW to be colonized by 0.4∗∗ -

a patient per visit
γ(a) relative infectivity of patients of infection age a
τ time necessary to become infectious 9.86 days

Table 1: The parameter values are taken from [11], and are used in numeri-
cal simulations. Values marked with * were estimated for Beth Israel Deaconess
Medical Center, Boston. Values marked with ** were estimated for Cook County
Hospital, Chicago. The parameter value τ is estimated in this work.

By using (1.1), the system (1.2)-(1.3) can be reduced to the following system

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
νV PIβV
NH

(
NP −

∫ +∞
0

i(t, a)da
)
HC(t)

dHC(t)

dt
=
νV PC
NP

(NH −HC(t))
∫∞

0
γ(a)i(t, a)da− νHHC(t)

i(0, .) = i0 ∈ L1
+ (0,+∞) , HC(0) = HC0 ≥ 0.

(1.4)

Assuming for simplicity that

γ(a) =

{
1, a ∈ [τ,+∞)
0, otherwise.

(1.5)

By setting

I(t) :=

∫ +∞

0

i(t, a)da, (1.6)

the system (1.4) can be rewritten for t ≥ τ,
dI(t)

dt
=
νV PIβV
NH

(NP − I(t))HC(t)− νRI(t)

dHC(t)

dt
=
νV PC
NP

(NH −HC(t)) e−νRτI(t− τ)− νHHC(t)

I(t, .) = I0(t) ≥ 0,∀t ∈ [−τ, 0] , HC(0) = HC0 ≥ 0.

(1.7)

The global asymptotic behavior of system (1.2)-(1.3) has been studied in
[20]. For example the basic reproductive number for system (1.7) is given by

R0 =

√
ν2
V

νHνR
PIβV PCe−νRτ . (1.8)
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The above formula suggests that the parameters τ play a crucial role for the
persistence (or the invasion) of resistant pathogens. Clearly, these parameters
are related to antibiotic treatment (see D’Agata et al. [11]). At the level of sin-
gle patient, antibiotic treatment provides an in-host environment that selects in
favour of the resistant strain. As a consequence, due to antibiotic treatment, pa-
tients may becomes more likely to transmit resistant pathogens. But the effects
of treatments for a single patient is a fairly complex system. Some mechanisms
involved in such problems have described in [12, 1] (see also references therein).

As far as we know no singular perturbation results are known for such age
structured systems. Moreover relatively few examples has been considered in the
literature. We refer to Arino et al. [4] and Ducrot et al. [15] for two examples
of singularly perturbed age structured systems. One may also observe that for
the functional differential equations (1.7) (as far as we know) the usual theory
does not apply (see Hale and Verduyn Lunel [17] Diekmann et al. [14], Arino
et al. [3], and Smith [25]). We also refer to Magalhães [21, 22] and Artstein
and Slemrod [5] for more result on singular perturbation in the context of delay
differential equations.

In order to introduce the singularly perturbed system a discussion of the
processes is in order. First the goal of the model is to describe the spread of
the hospital epidemic over several months. We observe that on the scale of one
month year, a HCW visit of an average period 1

νV
≈ 1.5 hours is very short.

Thus, we should use the idea of slow-fast system which as been successfully used
for several classes of bio-medical problems (see Auger et al. [6], Hek [18]). The
fast process corresponds here to HCW visit during which that contamination
may happen while the slow processes correspond to patient infection, admission,
and exit. Here we set 1

νV
= ε << 1. In order to re-scale (1.7) with respect to ε,

let us first notice that parameter 1
νH

, the average time during which an HCW
stays colonized is also related to ε. Indeed the larger the visit is, the larger is
the bacterial load and therefore the larger is the time during which an HCW
stays colonized. Here we shall assume a simple proportional law, that is

νH = γHνV =
γH
ε
.

Let us also mention that the probability PI for a patient to become infected
during a HCW visit also depends on 1

νV
. Indeed since patients are motionless,

the contamination process arises to due manipulation of the material, the pa-
tients themselves. As a consequence, the probability PI can be decomposed as
PI = P̂I × 1

νV
where P̂I denotes the probability for a patient to become infected

during a unit time of HCW visit. Here we assume that P̂I is fixed so that

PI = P̂Iε.

On the other hand the contamination process of an HCW by the contaminated
patient and described by PC is rather different. Indeed, the contamination of the
environment holds as soon as the patient is contaminated. This environmental
contamination occurs due to the bacterial spread as well as the manipulation
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of the material by the HCW. As a consequence, a contaminated patient and
his environment ensure a rather strong probability of HCW colonization even if
the visit time is small. Hence we decompose the probability PC into two terms
PC = P 0

C + P̂C × 1
νV

wherein P 0
C > 0 corresponds to the initial probability of an

HWC to become colonized as soon as he enters the contaminated environment
while P̂C corresponds to an additional probability to become colonized per unit
time of visit. As a consequence one has

PC := PC(ε) = P 0
C + P̂Cε.

As a consequence of the above modelling system (1.7) re-writes as
dI(t)

dt
=
P̂IβV
NH

(
NP −

∫ +∞
0

i(t, a)da
)
HC(t)− νRI(t)

ε
dHC(t)

dt
=
PC(ε)

NP
(NH −HC(t)) e−νRτI(t− τ)− γHHC(t)

I(t, .) = I0(t) ≥ 0,∀t ∈ [−τ, 0] , HC(0) = HC0 ≥ 0.

(1.9)

Formally, when ε = 0 the second equation of the above system gives

HC(t) = h(I(t− τ)) (1.10)

where h : [0,+∞)→ [0,+∞)

h(x) :=
βNHx

γH + βx
, with β :=

P 0
C

NP
e−νRτ .

The so called reduced system corresponds to the first equation of (1.9) (i.e. the
slow equation of (1.9)) in which HC(t) is replaced by h(I(t− τ)). Therefore the
result model is nothing but the following single delay differential equation

dI(t)

dt
=
P̂IβV
NH

(NP − I(t))h(I(t− τ))− νRI(t). (1.11)

In section 2, we will provide a careful comparison between the solutions of system
(1.9) and the solution of system (1.11). A question left for future investigation
is the comparison of the original model with age of infection with the following
model

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −νRi(t, a),

i(t, 0) =
P̂IβV
NH

(
NP −

∫ +∞
0

i(t, a)da
)
h
(∫∞

0
γ(a)i(t, a)da

)
i(0, .) = i0 ∈ L1

+ (0,+∞) .

(1.12)

One may observe that this reduced model also corresponds to the model intro-
duced in Webb et al. in [26]. We refer to [9, 13, 16, 23] (and the references
therein) for more results on this nosocomial infections modelling.

The plane of the paper is the following. In section 2, we summarize the main
results of this article. Section 3 is devoted to deriving preliminary result that
will be used to the proof of Theorem 2.1 in Section 4. Finally Section 5 is
devoted to the study of the convergence as ε → 0 to the unique heteroclinic
solution of the reduced system.
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2 Main results

For simplicity we fix P̂C = 0, so we assume that PC(ε) ≡ P 0
C . Then by intro-

ducing the prevalence xε = I
Np

and yε = HC
NH

, system (1.9) can be rewritten as

the following delay differential equation

dxε (t)

dt
= −µxε (t) + αyε (t) (1− xε (t)) , ∀t ≥ 0,

ε
dyε (t)

dt
= −νyε (t) + βxε (t− τ) (1− yε (t)) , ∀t ≥ 0,

yε (0) = y0 ∈ R,
xε (θ) = ϕ (θ) ,∀θ ∈ [−τ, 0] ,

(2.1)

wherein we have set

µ = νR, α =
P̂IβV
NH

, ν = γH and β =
P 0
C

NP
e−νRτ , (2.2)

while ε ∈ (0, 1) is a small parameter. Note that using the above notations, R0

defined in (1.8) re-writes as

R0 :=

√
αβ

µν
. (2.3)

Let C := C ([−τ, 0] ,R) be the Banach space of continuous functions from [−τ, 0]
to R endowed with the supremum norm

‖ϕ‖C := sup
θ∈[−τ,0]

|ϕ (θ)| .

By taking ε = 0 in equation (2.1) and solving the second equation in y, we

obtain y(t) =
βx(t− τ)

βx(t− τ) + ν
. By replacing y by this expression in the first

equation of system (2.1), we obtain the reduced equation of (2.1){
dx (t)

dt
= −µx (t) + αh (x (t− τ)) (1− x (t)) , ∀t ≥ 0,

x (θ) = ϕ (θ) ,∀θ ∈ [−τ, 0] ,
(2.4)

where the function h : R+ → R+ is defined by

h (x) :=
βx

βx+ ν
,∀x ≥ 0. (2.5)

Set
M := C ([−τ, 0] , [0, 1])× [0, 1] . (2.6)

The main results are stated as follows.
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Theorem 2.1 Let τ, µ, α, ν, β > 0 be given positive constants and let

(
y0

ϕ

)
∈

M. Let (xε, yε) (resp. x) be the solution of (2.1) with initial data (ϕ, y0) ∈ M
(resp. of (2.4) with initial data ϕ) with

ϕ 6= 0C .

Then the following properties are satisfied

lim
ε→0

sup
t≥0
|xε(t)− x(t)| = 0

and
lim
ε→0

sup
t≥ε|ln ε|

|yε(t)− h (x(t− τ))| = 0.

Remark 2.2 If R0 ≤ 1 and ϕ ≡ 0 then the above uniform convergence holds
true.

Remark 2.3 By using the classical change of time scale

x(t) = xε(εt) and y (t) = yε (εt) ,

system (2.1) becomes

dx (t)

dt
= ε [−µx (t) + αy (t) (1− x (t))] ,

dy (t)

dt
= −νy (t) + βx (t− τε) (1− y (t)) .

(2.7)

where τε :=
τ

ε
→ +∞ as ε(> 0) → 0. One may observe that the equation

remains singular after this change of time scale since the delay τε goes to infinity
as ε → 0. To the best of our knowledge the only available nonlinear theory is
concerned with convergence local in time towards the reduced system. We refer
to Artstein and Slemrod [5] and the references therein for general results on this
topic.

Remark 2.4 Roughly speaking the proof of the above result shows that in a
very fast time tε of order ε| ln ε|, yε(tε) becomes very close to h (ϕ(tε − τ)).
Next yε(t) stays close to h (xε(t− τ)) with the following kind of estimate for
t ≥ τ and ε small enough:

yε(t) = h (xε(t− τ)) +O(ε) +O
(
e−

ν(t−τ)
ε

)
.

It is important to point out the fact that the above theorem is established in
the context that the same initial condition ϕ is taken for the system (2.1) and
(2.4). When ϕ is the zero function we do not have a global uniform convergence
of xε to x whenever y0 6= 0 and R0 > 1. The study of the convergence of xε to
x is much more delicate. The result obtained is the following
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Theorem 2.5 Assume that R0 > 1. Then the reduced system (2.4) has a
unique (up to time shift) heteroclinic orbit x∞ such that

lim
t→−∞

x∞ (t) = 0 and lim
t→+∞

x∞ (t) = x̄ :=
αβ − µν
αβ + µβ

. (2.8)

Furthermore x∞ is increasing on R.
Let y0 ∈ (0, 1] be given and let us denote by (xε, yε) the solution of (2.1) with
initial data (0C , y0). Define

tε := sup

{
t ≥ 0 : xε(t) =

x

2

}
< +∞.

Then we have
lim
ε→0

tε = +∞

and
lim
ε→0

xε (t+ tε) = x∞(t),

uniformly in t on each interval of the form [−T,+∞) with T ≥ 0 and where
x∞ ≡ x∞(t) is the unique heteroclinic orbit of the reduced system (2.4) satisfying

x∞(0) =
x

2
.

In order to illustrate the latter results and more specifically Theorem 2.1
with realistic parameters, we shall use the values described in Table 1. Notice
that the average time necessary to become infectious, namely τ , is unknown
and needs to be estimated. This is performed by using the expression of the
endemic prevalence equilibrium x given in (2.8). Using the parameters of Table
1, to reach 10% prevalence of patient we obtain τ = 9.86 days. Figure 2-
(a) illustrates how the equilibrium prevalence of patients varies with respect
to the parameters τ and 1

νV
. Note that the prevalence is very sensitive with

respect to the average time of HCW visit. Indeed for the value τ = 9.86 days
the prevalence at equilibrium varies from 10% to 18% when the length of visit
varies from 95 min to 90 min. Figure 2-(b) illustrates the dependence on the
basic reproduction number R0 with respect to τ and 1

νV
. An increasing of the

length of visit 1
νV

leads to a decrease of the basic reproduction number and thus
on the bacteria’s spread.
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Figure 2: Figures (a) and (b) describe respectively the evolution of the preva-
lence of infected patients at the equilibrium and R0 with respect to 1/νV and
τ .

Finally the convergence result stated in Theorem 2.1 is illustrated in Figure
3. The error between the prevalence for the full and reduced system is plotted
for different values for the time of HCW visit. Together with the parameters of
Table 1 and the different values of νV recalled in Figure 3, we obtain a maximal
error of order 10−3 over one year’s computation time.
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Figure 3: Error between the full and the reduced system for the same non zero
initial data and different νV . Precisely error(t) = |xε(t)− x(t)|, the parameters
ν, µ, α, β are computed using the relation (2.2) with the approximation P 0

C = PC
for the parameter value of the Table 1. The intial data for y is y0 = 0.5 and the
initial data for x and xε is ϕ(t) = 0.6 for t ∈ [−9.86, 0].
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3 Preliminaries

The aim of this section is to derive preliminary results for (2.1) and (2.4). We
shall more specifically focus one existence and uniqueness of solution as well as
asymptotic behavior. We shall use the usual history function to deal with delay
differential equation, namely for each continuous function x : [−τ, T ) → R for
some given T > 0 we write t ∈ [0, T ) 7→ xt ∈ C defined by xt(θ) = x(t + θ)
for each θ ∈ [−τ, 0] and t ∈ [0, T ). We first state the preliminary result for the
reduced system (2.4).

Lemma 3.1 Consider the set

M̂ := {ϕ ∈ C : 0C ≤ ϕ ≤ 1C} . (3.1)

Then M̂ is positively invariant with respect to the semiflow generated by (2.4).
If we denote by {U(t)}t≥0 the strongly continuous semiflow on M̂ generated by
(2.4) defined by U(t)ϕ = xt the following holds true:

(i) for each (ϕ,ψ) ∈
(
M̂
)2

ϕ ≤ ψ ⇒ U(t)ϕ ≤ U(t)ψ, ∀t ≥ 0. (3.2)

(ii) When R0 ≤ 1 then the semiflow U only has the trivial equilibrium 0C .
When R0 > 1 the semiflow admits exactly two equilibrium points: the
trivial one and the constant x defined by

x̄ :=
αβ − µν
αβ + µβ

. (3.3)

(iii) When R0 ≤ 1 then the trivial equilibrium 0C is globally asymptotically
stable in M̂ . When R0 > 1 then the positive equilibrium x̄ is globally
asymptotically stable in M̂ \ {0C} .

Proof. The proof of the forward invariance of M̂ as well as (i) directly follows
from the results of Smith [24]. Indeed if we define g : C → R by

g(ψ) := −µψ (0) + αh (ψ (−τ)) (1− ψ (0)) .

Then one has g (1C) ≤ 0 and g (0C) = 0 so that M̂ is forward invariant and on
M̂ function g is quasi monotone. Now the proof (ii) comes from straightforward
computations. It remains to prove (iii). To do so let us first notice that

lim
δ→0

g (δ1C)

δ
= −µ+

αβ

ν
= µ

[
R2

0 − 1
]
> 0.

Then using the results of Smith [24] for each δ ∈ (0, 1) small enough we have
U (t) (δ1C)→ x̄ as t→ +∞. On the other hand let us also notice that g(1C) < 0
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so that we deduce using (i) that U(t)1C → x as t→∞. To complete the proof
(iii) it remains to show that for each ϕ ∈ M̂\ {0C} the solution t→ xt = U (t)ϕ
of the system (2.4) satisfies x (t) > 0 for all t ≥ τ. Since ϕ ∈ M̂\ {0C} there
exists t0 ∈ [0, τ ] such that x (t0) > 0. Hence one gets for each

x (t) = e−µ(t−t0)x (t0) +

∫ t

t0

e−µ(t−s)αh (x (s− τ)) (1− x (s)) ds

≥ e−µ(t−t0)x (t0) > 0, ∀t ≥ t0,

and the result follows.
Let us now state a similar preliminary result for System (2.1).

Lemma 3.2 Let ε > 0 be given. Then the subset M ⊂ C × R (defined in
(2.6)) is positively invariant by the semiflow generated by (2.1). If we de-
note by {Uε(t)}t≥0 the continuous semiflow on M generated by (2.1) defined

by Uε(t)ϕ = (xεt , y
ε(t))

T
then the following holds true:

(i) for each (ϕ,ψ) ∈ (M)
2
:

ϕ ≤C×R ψ ⇒ U(t)ϕ ≤C×R U(t)ψ, ∀t ≥ 0, (3.4)

where the partial order ≤C×R is defined by the usual positive cone C+ ×
R+ ⊂ C × R.

(ii) When R0 ≤ 1 then the only equilibrium of the semiflow Uε is the trivial

equilibrium (0C , 0)
T

. When R0 > 1 the semiflow admits exactly two equi-

librium points: the trivial one and the constant (x, y)
T

where x is defined
in defined in (3.3) while y = h (x).

(iii) When R0 ≤ 1 then the trivial equilibrium (0C , 0)
T

is globally asymptoti-

cally stable in M . When R0 > 1 then the interior equilibrium (x̄, y)
T

is
globally asymptotically stable in M \ {(0C , 0)} .

The proof of this results is straightforward and follows by the same steps
and arguments as the one of Lemma 3.1.

Our next preliminary result relies on some property of the entire solutions
of the reduced system (2.4). This will be needed in the proof of Theorem 2.1 as
well as Theorem 2.5.

Lemma 3.3 Assume that R0 > 1. Then {x(t)}t∈R is a complete orbit in M̂ of
(2.4) if and only if one of the following property is satisfied:

(i) x is an equilibrium point of the system (2.4), namely x(t) ≡ 0C or x(t) ≡
x̄.

(ii) x is a heteroclinic orbit of the system (2.4) satisfying the following prop-
erties

12



(a) 0 < x (t) ≤ x̄ for all t ∈ R.
(b) lim

t→+∞
x (t) = x̄ and lim

t→−∞
x (t) = 0.

Proof. Let us first notice that (i) or (ii) implies that x is an complete orbit of
(2.4) in M̂ . Let {x(t)}t∈R be a given complete orbit of the system (2.4) in M̂
such that x 6≡ 0C and x 6≡ x̄.

Let us first prove that x satisfies (ii)-(a). Since x(t) ∈ M̂ for each t ∈ R
one has 0C ≤ xt−s ≤ 1C for each t ∈ R and s ∈ R. Lemma 3.1-(i) yields that
0C ≤ xt ≤ U (s) 1C for each s ≥ 0 and t ∈ R. Lemma 3.1-(iii) implies that
U (s) 1 → x̄ as s → +∞ that ensures that 0 ≤ x(t) ≤ x for all t ∈ R. To
complete the proof of ii)-(a) it remains to prove that 0 < x(t) for all t ∈ R. To
prove this property let us argue by contradiction by assuming that there exists
t̃ ∈ R such that x

(
t̃
)

= 0. Let us first notice that from the reduced system, one
gets

d [eµtx (t)]

dt
= eµth (x (t− τ)) (1− x (t)) ≥ 0, ∀t ∈ R,

so that t 7→ eµtx (t) is non-decreasing. Hence x(t) = 0 for all t ≤ t̃. Since
x(t) ≡ 0 on [t̃ − τ, t̃] one concludes that x(t) = 0 for all t ≥ t̃. We obtain that
x(t) ≡ 0, a contradiction that completes the proof of (ii)-(a).

It remains to prove (ii)-(b). First since x 6≡ 0C , Lemma 3.1-(iii) yields that
x(t) → x̄ as t → ∞. As a consequence we only need to show that x(t) → 0 as
t→ −∞. This property is related to the following functional

V (xt) := x (t) + µ

∫ t

t−τ
x (s) ds, ∀t ∈ R. (3.5)

Straightforward computations yields that

dV (xt)

dt
= h (x (t− τ)) [α (x̄− x (t)) + µ (x̄− x (t− τ))] , ∀t ∈ R. (3.6)

Then due to (ii)-(a), x(t) ≤ x̄ for all t ∈ R and t 7→ V (xt) is non-decreasing.
To conclude let us consider a decreasing sequence {tn}n≥0 such that tn → −∞
as n → +∞. Let us define the uniformly bounded sequence of shifted maps
{xn}n≥0 be

xn (t) = x (t+ tn) , ∀t ∈ R.

Since xn is a an entire solution of (2.4) and since {xn} is uniformly bounded,
one concludes that

{
dxn

dt

}
n≥0

is also uniformly bounded. As a consequence,

possibly along a sub-sequence, one may assume that xn(t)→ x∞(t) as n→∞
locally uniformly in t ∈ R and wherein x∞ is also an entire solution in M̂ of
(2.4). Next for each n ≥ 0 and K > 0, integrating (3.6) over [tn −K, tn + K]
yields

V (xtn+K) =

∫ K

−K
h (xn (t− τ)) [α (x̄− xn (t)) + µ (x̄− xn (t− τ))] dt

+ V (x) (tn −K) .

13



Since t 7→ V (xt) is non-increasing and bounded from below one obtains when
n→ +∞ that∫ K

−K
h (x∞ (t− τ)) [α (x̄− x∞ (t)) + µ (x̄− x∞ (t− τ))] dt = 0, ∀K > 0.

This implies that

h (x∞ (t− τ)) [α (x̄− x∞ (t)) + µ (x̄− x∞ (t− τ))] ≡ 0,

so that x∞(t) ≡ 0 or x∞(t) ≡ x. To conclude the proof we need to prove that
x∞(t) ≡ 0. Let us argue by contradiction by assuming that x∞(t) ≡ x̄. Then
the functional ϕ→ V (ϕ) is monotone increasing therefore

xt ≤ x̄1C ⇒ V (xt) ≤ V (x̄)

since t ∈ R 7→ V (xt) is non-decreasing we also have

V (x̄) ≤ V (xt).

Therefore
V (xt) = V (x̄),∀t ∈ R,

As a consequence V (xt)
dt ≡ 0 that re-writes as

h (x (t− τ)) [α (x̄− x (t)) + µ (x̄− x (t− τ))] ≡ 0,

so that x(t) ≡ 0 or x(t) ≡ x, a contradiction. The proof is completed.

4 Proof of Theorem 2.1

The aim of this section is to prove Theorem 2.1. This proof is divided into two
parts. The first part is devoted to the convergence xεt → xt as ε(> 0)→ 0. The
second part is related the behavior of t→ yε (t).

4.1 Convergence of t 7→ xε (t)

In order to investigate the uniform convergence of xε let us first prove the
following local uniform convergence:

Lemma 4.1 (Local uniform convergence) Let

(
y0

ϕ

)
∈ M be given. Let x

be the solution of (2.4) with initial data ϕ. Then for each τ̂ > 0 we have

lim
ε→0

sup
t∈[−τ,τ̂ ]

|xε (t)− x (t)| = 0,

and

lim
ε→0

∫ τ̂

0

yε (t)ψ (t) dt =

∫ τ̂

0

h (x (t− τ))ψ (t) dt, ∀ψ ∈ L1 (0, τ̂ ;R) .

14



Note that the proof of the above result can be directly obtained using the
theory of Artstein and Slemrod in [5]. For the sake of completeness we provide
a direct and easy proof that takes into account the particular structure of our
system to conclude to the local weak star convergence for the y−component.
Let us also notice that since the work of Artstein and Slemrod [5] deals with
Young measure narrow convergence for the y−component, it allows to conclude
to the (local) strong L1−convergence of yε(t) to h (x(t− τ)). Such a strong
convergence will be derived latter on by deriving direct uniform estimates as
well as layer time estimates.

Proof. The proof of the above result also relies on Arzela-Ascoli’s theorem. Since
{(xε, yε)}ε∈(0,1) ⊂ C([0,∞),M) is uniformly bounded, one gets by using (2.1)

that
{
dxε

dt

}
ε∈(0,1)

is also uniformly bounded in C ([0,∞),R). Since xε0 = ϕ for

all ε ∈ (0, 1) we infer from Arzela-Ascoli’s theorem that {xε}ε∈(0,1) is relatively

compact in Cloc

(
[−τ,∞), M̂

)
while due to Banach-Alaoglu-Bourbaki’s theorem

{yε}ε∈(0,1) is relatively compact for the weak-∗ topology of σ
(
L∞loc ((0,∞) ,R) , L1

loc ((0,∞) ,R)
)
.

Let τ̂ > 0 be given and let {εn}n≥1 ⊂ (0, 1) be a given sequence tending
to 0 as n → ∞. Up to a sub-sequence, one may assume that xεn → x0 ∈
C([−τ, τ̂ ], M̂) uniformly on [−τ, τ̂ ] with x0(θ) = ϕ(θ) for each θ ∈ [−τ, 0] and

yεn
∗
⇀ y0 ∈ L∞ ((0, τ̂) ,R) for the weak-∗ topology of L∞((−τ, τ̂) ,R). That is

to say that for each τ̂ ∈ (0,+∞)

lim
n→+∞

∫ τ̂

0

yεn(t)φ(t)dt =

∫ τ̂

0

y0(t)φ(t)dt,∀φ ∈ L1 ((0, τ̂) ,R) .

It follows that∫ τ̂

0

y0(t)φ(t)dt ≥ 0 and

∫ τ̂

0

[
1− y0(t)

]
φ(t)dt ≥ 0,∀φ ∈ L1

+ ((0, τ̂) ,R) .

Since τ̂ < +∞, we deduce that

y0 ∈ L1 ((0, τ̂) ,R)

and∫ τ̂

0

y0(t)φ(t)dt ≥ 0 and

∫ τ̂

0

[
1− y0(t)

]
φ(t)dt ≥ 0,∀φ ∈ L∞+ ((0, τ̂) ,R) .

Now by applying the Hahn-Banach in L1 ((0, τ̂) ,R) , it follows that

0 ≤ y0 ≤ 1.

On the one hand, let ψ ∈ C1 ([0, τ̂ ] ,R) be a given test function. Multiplying
the yεn -equation in (2.1) by ψ and integrating over (0, τ̂) yields for each n ≥ 0
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εn [yεn (τ̂)ψ (τ̂)− y0ψ (0)]− εn
∫ τ̂

0

yεn (t)ψ′ (t) dt

=

∫ τ̂

0

[βxεn (t− τ) (1− yεn (t))− νyεn (t)]ψ (t) dt.

Letting n→ +∞ provides∫ τ̂

0

[
βx0 (t− τ)

(
1− y0 (t)

)
− νy0 (t)

]
ψ (t) dt = 0, ∀ψ ∈ C1 ([0, τ̂ ] ,R) ,

so that
y0 (t) = h

(
x0 (t− τ)

)
a.e. for t ∈ [0, τ̂ ] . (4.1)

On the other hand, from the xεn -equation in (2.1) one has for each n ≥ 0:

xεn (t) = ϕ (0) +

∫ t

0

[α (1− xεn (s)) yεn (s)− µxεn (s)] ds, ∀t ∈ [0, τ̂ ] .

Letting n→ +∞ provides that

x0 (t) = ϕ (0) +

∫ t

0

[
α
(
1− x0 (s)

)
y0 (s)− µx0 (s)

]
ds, ∀t ∈ [0, τ̂ ] .

Recalling (4.1) and that x0 satisfies x0(θ) = ϕ(θ) for each θ ∈ [−τ, 0] we obtain
that x0 = x on [−τ, τ̂ ]. This completes the proof of the result.

Before proving Theorem 2.1 we need some preliminary lemmas. First we
have an estimation from below of solutions independent of the parameter ε > 0.

Lemma 4.2 Assume that R0 > 1. Then for all

(
y0

ϕ

)
∈M, with ϕ 6= 0C . Then

the map t 7→ wε (t) defined by

wε (t) = xε (t) +
εµ

β
yε(t) + µ

∫ t

t−τ
xε (s) ds, ∀t ≥ 0, (4.2)

satisfies the following properties:

(i) For all t ≥ 0 and ε > 0

dwε (t)

dt
= αyε (t) (x̄− xε (t)) + µyε (t) (x̄− xε (t− τ)) .

(ii) There exists η > 0 and ε0 > 0 such that

wε (t) ≥ η,∀t ≥ τ,∀ε ∈ (0, ε0) .
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Proof. The proof of (i) follows from straightforward computations. In order to
prove (ii), let’s observe that by integrating the x-equation in system (2.1) in
between t− τ and t we obtain that

xε (t) + µ

∫ t

t−τ
xε (s) ds = xε (t− τ) + α

∫ t

t−τ
yε (s) (1− xε (s)) ds, ∀t ≥ τ.

Thus

wε (t) =
εµ

β
yε(t) + xε (t− τ) + α

∫ t

t−τ
yε (s) (1− xε (s)) ds, ∀t ≥ τ.

Since wε(t) ≥ xε(t) for all t ≥ 0, one obtains

wε (t) ≥ max {xε (t) , xε (t− τ)} , ∀t ≥ τ. (4.3)

If one sets xt = U(t)ϕ then since ϕ 6≡ 0 one has x(τ) = [U(τ)ϕ] (0) > 0. On
the other hand due to Lemma 4.1 we know that xε(τ) → x(τ) as ε → 0. Thus
there exists ε0 > 0 such that

xε(τ) ≥ x(τ)

2
> 0,∀ε ∈ (0, ε0). (4.4)

To conclude the proof of (ii) we will use the following claim.

Claim 4.3 Let ε ∈ (0, ε0) be given. Then for each δ ∈ (0, 1) such that δ
2x (τ) <

x we have

wε(t) ≥ δ

2
x(τ),∀t ≥ τ.

To prove this claim, let us notice that by (4.3) and (4.4) we have

wε (τ) ≥ xε(τ) >
δ

2
x(τ).

Let us consider

t0 := sup

{
t > τ : wε (l) ≥ δ

2
x(τ), ∀l ∈ [τ, t]

}
.

Then let us prove that
t0 = +∞.

Assume that t0 < +∞, then one has

wε (t0) =
δ

2
x(τ) < x̄.

One can therefore introduce t1 > t0 defined by

t1 = sup {t > t0 : wε (l) ≤ x̄, ∀l ∈ [t0, t]} .
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We infer from (4.3) that

xε(t) ≤ x and xε(t− τ) ≤ x, ∀t ∈ [t0, t1).

As a consequence (i) the map t 7→ wε(t) is non-decreasing on [t0, t1), that implies

wε (t) ≥ wε (t0) ≥ δ

2
x(τ), ∀t ∈ [t0, t1).

This contradicts the definition of t0 and completes the proof of (ii).

Coupling Lemma 3.3 and Lemma 4.2 lead to the following lemma.

Lemma 4.4 Let us assume that R0 > 1. Let

(
y0

ϕ

)
∈ M be given such that

ϕ 6≡ 0C . Then for each sequence {εn}n≥0 ⊂ (0, 1) and {tn}n≥0 ⊂ (0,∞) such
that εn → 0 and tn → +∞ as n→ +∞ we have

lim
n→+∞

xεn (t+ tn) = x̄, locally uniformly for t ∈ R.

Proof. Let {εn}n≥0 and {tn}n≥0 be given sequences such that εn → 0 and
tn → +∞ as n→ +∞. Define the sequences of shifted maps

xn (t) := xεn (t+ tn) ∈ [0, 1] and yn (t) := yεn (t+ tn) ∈ [0, 1] ,

with n ≥ 0 and t ∈ (−tn,+∞), that satisfy the system of equations:
dxn (t)

dt
= −µxn (t) + α (1− xn (t)) yn (t) , ∀t ≥ −tn,

εn
dyn (t)

dt
= −νyn (t) + βxn (t− τ) (1− yn (t)) , ∀t ≥ −tn.

Thus by using the same techniques as in the proof of Lemma 4.1, up to a sub-
sequence, one may assume that xn → x∞ locally uniformly for t ∈ R wherein
x∞ is a complete orbit of (2.4) in M̂ . It remains to prove that x∞ ≡ x̄ that is a
consequence of the uniform persistence result stated in Lemma 4.2-(ii). Indeed,
since ϕ 6≡ 0, there exists η > 0 and N > 0 such that for each n ≥ N and each
t ≥ τ − tn:

xεn (t+ tn) +
εnµ

β
yεn (t+ tn) + µ

∫ t

t−τ
xεn (s+ tn) ds ≥ η.

Letting n→∞ yields

x∞ (t) + µ

∫ t

t−τ
x∞ (s) ds ≥ η, ∀t ∈ R.

The classification of complete orbits of (2.4) provided by Lemma 3.3 allows us
to conclude that x∞(t) ≡ x and the result follows.

We are now ready to prove the first part of Theorem 2.1.
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Theorem 4.5 Let

(
y0

ϕ

)
∈M be given such that

either ϕ 6= 0 or

(
y0

ϕ

)
=

(
0R
0C

)
.

Let x be the solution of (2.4) with initial data ϕ. Then we have

lim
ε→0

sup
t≥0
|xε(t)− x(t)| = 0. (4.5)

Remark 4.6 Using similar argument as in the proof of Theorem 4.5, the con-
clusion remains true whenever R0 ≤ 1 and ϕ = 0. However when R0 > 1 then
Theorem 4.5 is no longer true when ϕ ≡ 0 and y0 > 0. The question will be
studied in Theorem 2.5.

Proof. Let us first remark that when ϕ = 0C and y0 = 0 then (4.5) it trivial
verified since

xεn(t) = x(t) = 0,∀t ≥ 0,∀ε > 0.

Let

(
y0

ϕ

)
∈ M with ϕ 6= 0. Assume that (4.5) is not satisfied. Then there

exist η > 0 and two sequences {εn}n≥0 → 0 and {tn}n≥0 such that

|xεn(tn)− x(tn)| > η, ∀n ≥ 0. (4.6)

Moreover by Lemma 4.1 we must have

{tn}n≥0 → +∞.

Define the shifted maps

xn (t) := xεn(t+ tn) and yn (t) := yεn(t+ tn),

for all n ≥ 0 and all t ∈ (−tn,+∞). Then we have

0 ≤ xn (t) ≤ 1 and 0 ≤ yn (t) ≤ 1,

for all n ≥ 0 and t ∈ (−tn,+∞).
By using the same techniques as in the proof of Lemma 4.1, one may assume

that xn(t) → x∞(t) locally uniformly where x∞ is a complete orbit of (2.4) in
M̂ such that

|x∞(0)− L| ≥ η (4.7)

where
L := lim

t→+∞
x(t).

So either
L = 0 or L = x.
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According to the classification provided by Lemma 3.1-(iii) we will now split the
proof into two parts: a) R0 ≤ 1 and L = 0; b) R0 > 1 and L = x.

a) If R0 ≤ 1 then x∞ is an entire solution of (2.4) in M̂ so that one can
deduce that x∞(t) ≡ 0. This is a direct consequence of Lemma 3.1 (ii) and
(iii). Since L = 0 we obtain a contradiction with (4.7).

b) If we consider the case when R0 > 1. Then by Lemma 4.4 we deduce that
x∞ ≡ x. But ϕ 6= 0 we also have L = x and we obtain a contradiction with
(4.7). This completes the proof of the result.

4.2 Convergence of yε

The aim of this section is to study the convergence property of yε as ε → 0 in
order to complete the proof of Theorem 2.1. Let’s start with an estimation of
yε (t)− h (xε (t− τ)) for t ∈ [τ,+∞) .

Lemma 4.7 For each ε > 0 and each initial datum

(
y0

ϕ

)
∈M we have

|yε (t)− h (xε (t− τ))| ≤ e− νε (t−τ) |yε(τ)− h(ϕ(0))|+ κε, ∀t ≥ τ,

with

κ :=
β (µ+ α)

ν2
.

Proof. Let us first notice that the integration of the y−equation in (2.1) yields
for each t ≥ τ to:

yε (t) = e−
1
ε

∫ t
τ

(ν+βxε(l−τ))dlyε (τ) +

∫ t

τ

e−
1
ε

∫ t
s

(ν+βxε(l−τ))dl β

ε
xε (s− τ) ds.

(4.8)
Equation (4.8) may of course be re-written for each t ≥ τ as

yε (t) = e−
1
ε

∫ t
τ

(ν+βxε(l−τ))dlyε (τ) + vε(t),

where the map vε : [τ,∞)→ R+ is defined by

vε(t) :=

∫ t

τ

e−
1
ε

∫ t
s

(ν+βxε(l−τ))dl β

ε
xε (s− τ) ds

then we observe that

vε(t) =

∫ t

τ

d

ds

[
e−

1
ε

∫ t
s

(ν+βxε(l−τ))dl
]
h (xε (s− τ)) ds

=
[
e−

1
ε

∫ t
s

(ν+βxε(l−τ))dlh (xε (s− τ))
]s=t
s=τ

−
∫ t

τ

d

ds

[
e−

1
ε

∫ t
s

(ν+βxε(l−τ))dl
]
h′ (xε (s− τ))

dxε

dt
(s− τ) ds
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Therefore for each t ≥ τ one has

vε (t)− h (xε (t− τ)) = −e− 1
ε

∫ t
τ

(ν+βxε(l−τ))dlh (ϕ (0))− wε(t),

with

wε(t) =

∫ t

τ

e−
1
ε

∫ t
s

(ν+βxε(l−τ))dlh′ (xε (s− τ))
dxε

dt
(s− τ) ds.

Together with these notations, one gets for each t ≥ τ

|yε (t)− h (xε (t− τ))| ≤ e− νε (t−τ) |yε(τ)− h (ϕ(0))|+ |wε(t)| . (4.9)

It remains to obtain an estimate for the last term in the above inequality. But
by using the x−equation in (2.1) we have∣∣∣∣dxε(t)dt

∣∣∣∣ ≤ (α+ µ) ,∀t ≥ 0.

Therefore

|wε(t)| ≤
∫ t

τ

e−
ν
ε (t−s) β (µ+ α)

ν
ds,∀t ≥ τ,

and the estimate follows from (4.9).
Next we evaluate yε(t)− h(x(t− τ)) for t ∈ [0, τ ]. Set

‖h′‖∞,[0,1] := sup
x∈[0,1]

|h′(x)| .

Lemma 4.8 Let (ϕ, y0)T ∈ M be given. Then for each δ > 0 there exists
η := η (δ) > 0 such that for each ε ∈ (0, 1) and t ∈ [0, τ ]

|yε (t)− h (ϕ (t− τ))| ≤ e− νtε + ‖h′‖∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
.

Proof. Let δ > 0 be given. Since ϕ is uniformly continuous on [−τ, 0], there
exists η := η (δ) > 0 such that for each θ1, θ2 ∈ [−τ, 0] ,

|θ1 − θ2| < η =⇒ |ϕ (θ1)− ϕ (θ2)| ≤ δ. (4.10)

By using similar arguments as in the proof of Lemma 4.7 we obtain

yε (t) = e−
1
ε

∫ t
0

(ν+βϕ(l−τ))dly0 + vε(t),∀t ∈ [0, τ ]

with vε : [0, τ ]→ R+ is defined by

vε(t) :=

∫ t

0

d

ds

[
e−

1
ε

∫ t
s

(ν+βϕ(l−τ))dl
]
h (ϕ (s− τ)) ds, ∀t ∈ [0, τ ] .

Therefore we obtain

|yε (t)− h (ϕ (t− τ))| ≤ e− νtε + |vε (t)− h (ϕ (t− τ))| , ∀t ∈ [0, τ ] . (4.11)
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In order to provide a suitable estimate of the second term of the right hand side
of the above inequality let us notice that

vε (t) =

∫ t

0

de−
1
ε

∫ t
s

(ν+βϕ(l−τ))dl

ds
[h (ϕ (s− τ))− h (ϕ (t− τ))] ds

+

∫ t

0

de−
1
ε

∫ t
s

(ν+βϕ(l−τ))dl

ds
h (ϕ (t− τ)) ds

=

∫ t

0

de−
1
ε

∫ t
s

(ν+βϕ(l−τ))dl

ds
[h (ϕ (s− τ))− h (ϕ (t− τ))] ds

+ h (ϕ (t− τ))− h (ϕ (t− τ)) e−
1
ε

∫ t
0

(ν+βϕ(l−τ))dl,

thus

|vε (t)− h (ϕ (t− τ))| ≤
∫ t

0

∣∣∣∣de− 1
ε

∫ t
s (ν+βϕ(l−τ))dl

ds

∣∣∣∣ |h (ϕ (s− τ))− h (ϕ (t− τ))| ds

≤ ‖h′‖∞,[0,1]
ν+β
ε

∫ t
0
e−

ν
ε (t−s) |ϕ (s− τ)− ϕ (t− τ)| ds

≤ ‖h′‖∞,[0,1]
ν+β
ε

[∫ t
t−η e

− νε (t−s) |ϕ (s− τ)− ϕ (t− τ)| ds

+
∫ t−η

0
e−

ν
ε (t−s) |ϕ (s− τ)− ϕ (t− τ)| ds

]
≤ 2 ‖h′‖∞,[0,1]

ν+β
ε

∫ t−η
0

e−
ν
ε (t−s)ds

+ ‖h′‖∞,[0,1]
ν+β
ε

∫ η
0
e−

ν
ε l |ϕ (t− τ − l)− ϕ (t− τ)| dl.

Due to (4.10) one obtains∫ η

0

e−
ν
ε l |ϕ (t− τ − l)− ϕ (t− τ)| dl ≤

∫ η

0

e−
ν
ε lδdl, ∀t ∈ [0, τ ] ,

that implies that for all t ∈ [0, τ ] ,

|vε (t)− h (ϕ (t− τ))| ≤ ‖h′‖∞,[0,1]

ν + β

ε

[
2

∫ t−η

0

e−
ν
ε (t−s)ds+ δ

∫ η

0

e−
ν
ε ldl

]
,

that completes the proof.
We are now able to complete the proof of Theorem 2.5 by investigating the

limit behavior of yε as ε→ 0.

Theorem 4.9 (Almost global uniform convergence) Let

(
y0

ϕ

)
∈ M be

given such that ϕ 6= 0C . Then the following holds true for each K > 0

lim
ε→0

sup
t≥Kε|ln ε|

|yε(t)− h (x(t− τ))| = 0.

Proof. Let K > 0 be given. Let δ > 0 be given. Due to Lemma 4.8 that there
exists η > 0 such that for all ε > 0 small enough and t ∈ [Kε| ln ε|, τ ] one has

|yε (t)− h (ϕ (t− τ))| ≤ e−Kν| ln ε| + ‖h′‖∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
. (4.12)
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On the other hand from Lemma 4.7 we have

|yε (t)− h (xε (t− τ))| ≤ κε+ e−
ν
ε (t−τ) |yε(τ)− h(ϕ(0))| , ∀t ≥ τ.

Now using (4.12) with t = τ to estimate |yε(τ)− h(ϕ(0))|, one obtains that for
all ε > 0 small enough and each t ≥ ε| ln ε|

|yε (t)− h (xε (t− τ))| ≤ κε+ e−Kν| ln ε| + ‖h′‖∞,[0,1]

ν + β

ν

[
2e−

νη
ε + δ

]
.

As a consequence one obtains

lim sup
ε→0

sup
t≥Kε| ln ε|

|yε (t)− h (xε (t− τ))| ≤ ‖h′‖∞,[0,1]

ν + β

ν
δ, ∀δ > 0

and the result follows.

5 Heteroclinic orbits

The aim of this section is to prove Theorem 2.5. To be more specific, in this
section we consider the case where ϕ ≡ 0C and y0 ∈ (0, 1] and we are interested
by the convergence of xε whenever R0 > 1. In such a case, due to Lemma 3.2-
(iii), the uniform convergence on the half line toward the solution of the reduced
problem cannot hold true. Instead of that we will prove the convergence to
the unique heteroclinic of the reduced system. We conclude the paper with a
convergence result which achieve the proof of Theorem 2.5.

5.1 Existence and uniqueness of heteroclinic orbits for the
reduced system

Our first result deals with the existence of heteroclinic orbits for the reduced
system and the result reads as follows:

Proposition 5.1 Assume that R0 > 1. Then there exists an heteroclinic orbit
x of the reduced system (2.4) that satisfies

0 < x (t) ≤ x̄, ∀t ∈ R; lim
t→−∞

x (t) = 0 and lim
t→+∞

x (t) = x̄.

Proof. Let ϕ = 0C and y0 ∈ (0, 1] be given. Due to Lemma 3.2 (iii) we know
that for each ε > 0, xε(t) → x as t → ∞. Next since xε (0) = ϕ (0) = 0, for
each ε > 0 there exists tε > 0 such that xε (tε) = x̄

2 . Moreover due to Lemma
4.1 the family of maps t 7→ xεt converges locally uniformly to the equilibrium
0C , so that tε → +∞ as ε→ 0. Hence one can define the family of shifted maps

x̂εt = xεt+tε and ŷε (t) = yε (t+ tε) , ∀t ≥ −tε.
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Similarly to proof of Lemma 4.1, there exists a sequence {εn}n≥0 ⊂ (0, 1] and
tending to 0 as n → ∞ such that x̂εn → x0 locally uniformly and where x0 is
an entire solution of (2.4) such that

x∞(0) =
x

2
, 0 ≤ x∞(t) ≤ 1, ∀t ∈ R.

As a consequence of the first constraint, x∞ cannot be identically equal to
an equilibrium point of (2.4), namely 0C or x. Then Lemma 3.3 applies and
completes the proof of the result.

The next result of this section is related to the uniqueness of the heteroclinic
orbit constructed in Proposition 5.1. Our precise result reads as follows:

Theorem 5.2 Assume that R0 > 1. The reduced system (2.4) has a unique (up
to time shift) heteroclinic orbit x such that

lim
t→−∞

x (t) = 0 and lim
t→+∞

x (t) = x̄.

The proof of this result will be related to Ikehara’s theorem (see Carr and
Chmaj [8] and the references cited therein) and Laplace transform (see Widder
[27]). Our proof is inspired by the one by Carr and Chmaj [8] and Yu and
Mei [28]. Before proving the above result, several lemmas are necessary. The
uniqueness of this orbit is related to a suitable description of its behavior as
t → −∞, when the function is approaching 0C . We will therefore consider the
linearized equation associated to (2.4) around 0C , namely

du (t)

dt
= −µu (t) + αh′ (0)u (t− τ) ,

u0 = ϕ ∈ C.
(5.1)

The characteristic equation of the above delay differential equation is

∆ (λ) := λ+ µ− αβ

ν
e−λτ . (5.2)

Then our first result is related to some properties on the location of the roots
of the characteristic function ∆.

Lemma 5.3 Assume that R0 > 1. Then the following properties are satisfied

(i) There exists a unique λ0 > 0 such that ∆ (λ0) = 0 and

∆′ (λ0) 6= 0 and ∆ (λ) < 0, ∀λ ∈ [0, λ0).

(ii) For all z ∈ C we have

∆ (z) = 0 and Re (z) = λ0 ⇐⇒ z = λ0.
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Proof. The proof (i) is obvious and thus omitted. Now let us prove (ii).
Let z ∈ C be given such that ∆ (z) = 0 and Re (z) = λ0. Then we have
∆ (λ0 + iIm (z)) = 0 which implies that{

λ0 + µ = αβ
ν e
−τλ0 cos (τIm (z)) ,

Im (z) = −αβν e
−τλ0 sin (τIm (z)) .

(5.3)

Since ∆ (λ0) = 0, namely λ0 + µ = αβ
ν e
−τλ0 , we infer from (5.3) that

αβ

ν
e−τλ0 =

αβ

ν
e−τλ0 cos (τIm (z)) =⇒ cos (τIm (z)) = 1,

thus
sin (τIm (z)) = 0.

The result follows by using the second equation of (5.3).
In the sequel, we always assume that R0 > 1 and let x be a given heteroclinic

orbit of the reduced system (2.4) such that

0 < x(t) < 1 and lim
t→−∞

x(t) = 0 and lim
t→∞

x(t) = x.

The aim of the next lemma is to prove that the convergence to 0 as t→ −∞ is
exponential. In the sequel we will prove that we have in fact x (t) = O

(
eλ0t

)
as

t→ −∞ where λ0 is described in Lemma 5.3.

Lemma 5.4 Assume that R0 > 1. There exists ρ > 0 such that x (t) = O (eρt)
as t→ −∞.

The proof of this result is split into three steps. In step 1, we show that∫ t
−∞ x (s) ds < +∞ for all t ∈ R. Step 2 is devoted to show that there exists
ρ > 0 such that

sup
t≤0

e−ρt
∫ t

−∞
x (s) ds < +∞.

Finally step 3 completes the proof of the lemma.
Proof. Note that

‖h′‖∞,[0,1] = h′ (0) =
β

ν
> 0. (5.4)

Since R0 > 1 we can find η ∈ (0, 1) such that

αβ

ν
(1− η) > µ. (5.5)

Moreover due to (5.4), we can find δ > 0 small enough such that

0 < x < δ =⇒ h (x) >
β

ν
(1− η)x, (5.6)

and
αβ

ν
(1− η) (1− δ) > µ. (5.7)
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Step 1: Let us prove that for each t ∈ R,
∫ t
−∞ x (s) ds < +∞. Integrating (2.4)

from t0 to t yields

x (t)− x (t0) = −µ
∫ t

t0

x (s) ds+ α

∫ t

t0

h (x (s− τ)) (1− x (s)) ds. (5.8)

Recalling that x(t)→ 0 as t→ −∞, there exists T > 0 large enough such that
for all t ≤ −T

0 < x (t) < δ,

where δ > 0 is defined in (5.6). Hence we obtain

h (x (s− τ)) ≥ β

ν
(1− η)x (s− τ) , ∀s ≤ −T, (5.9)

and by combining (5.8) and (5.9) we obtain for all t0 ≤ t ≤ −T, that

x (t)− x (t0) ≥ −µ
∫ t

t0

x (s) ds+

∫ t

t0

αβ

ν
(1− η)x (s− τ) (1− x (s)) ds.

But due to Lemma 3.3, we have

0 < x (t) ≤ x̄,∀t ∈ R,

therefore for all t0 ≤ t ≤ −T,

x (t)− x (t0) ≥ −µ
∫ t

t0

x (s) ds+

∫ t

t0

αβ

ν
(1− η) (1− δ)x (s− τ) ds,

thus

x (t)− x (t0) ≥ A
∫ t

t0

[x (s− τ)− x (s)] ds+B

∫ t

t0

x (s) ds, (5.10)

where

A :=
αβ

ν
(1− η) (1− δ) > 0 and B :=

[
αβ

ν
(1− η) (1− δ)− µ

]
> 0.

Let us notice that∫ t

t0

[x (s− τ)− x (s)] ds = −
∫ t

t0

∫ 0

−τ

dx (s+ l)

dl
dlds = −

∫ 0

−τ
[x (l + t)− x (l + t0)] dl.

Due to the above reformulation and B > 0, recalling that x(t)→ 0 as t→ −∞,
allow us to let t0 → −∞ into (5.10) yielding that for all t ≤ −T ,

x (t) +A

∫ 0

−τ
x (l + t) dl ≥ B

∫ t

−∞
x (s) ds, (5.11)
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that completes the proof of Step 1.
Step 2: Let us prove that there exists ρ > 0 and some constant κ > 0 such that
e−ρt

∫ t
−∞ x (s) ds ≤ κ, for all t ∈ (−∞, 0]. To do so let us define X : R→ R+ by

X (t) :=

∫ t

−∞
x (r) dr.

Note that due to (5.11), X ∈ L1(−∞,−T ). Since X is non-decreasing, one has
for each t ≤ −T∫ t

−∞

∫ 0

−τ
x (l + s) dsdl =

∫ 0

−τ
X(t+ l)dl ≤ τX(t),

therefore by integrating (5.11) over (−∞, t] we obtain

B

∫ t

−∞
X (s) ds ≤ (1 + τA)X (t) , ∀t ≤ −T. (5.12)

Now let t1 > 0 be given large enough such that

ρ :=
1

t1
ln

(
Bt1

1 + τA

)
> 0.

Then note that since X is increasing then

X (t− t1) ≤ X (t+ s) , ∀s ∈ [−t1, 0] , ∀t ∈ (−∞,−T ].

This implies that for each t ≤ −T

X (t− t1) ≤ 1

t1

∫ t

t−t1
X (s) ds, (5.13)

and this latter inequality combined together with (5.12) provides that for all
t ≤ −T :

X (t− t1) ≤ 1

t1

∫ t

−∞
X (s) ds ≤ 1 + τA

Bt1
X (t) .

Due to the definition of ρ, one obtains that

sup
t≤−T

e−ρtX(t) <∞,

that completes the proof of Step 2.
Step 3: This step will conclude the proof of Lemma 5.4. Integrating (2.4) over
(−∞, t) for some given t ≤ 0 yields to

x (t) ≤
∫ t

−∞
αh (x (s− τ)) (1− x (s)) ds ≤

∫ t

−∞
αh (x (s− τ)) ds ≤

∫ t

−∞

αβ

ν
x (s− τ) ds,

Step 2 applies and provides that the right hand side of this inequality is bounded
by Keρt on (−∞, 0] for some constant K > 0 and the result follows.
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Define the Laplace transform of u

L(u)(λ) :=

∫ +∞

0

u (t) e−λtdt

whenever the integral exists. We will say that the Laplace transform converges
if the limit

lim
τ→+∞

∫ τ

0

e−λtu(t)dt

exists, and we will say that the Laplace transform diverges otherwise.
For convenience let us recall the following theorem which can be found in

Carr and Chmaj [8].

Theorem 5.5 (Ikehara’s) Let u : [0,+∞) → [0,+∞) a positive decreasing
locally integrable function. Assume that there exists a function H which is an-
alytic in the strip Σ := {λ ∈ C : −ζ ≤ Re (λ) < 0} and there exists an integer
k > −1 such that

L(u)(λ) :=
H (λ)

(λ+ ζ)
k+1

,∀λ ∈ Σ.

Then

lim
t→+∞

u (t)

tke−ζt
exists

and this limit is equal to
H (−ζ)

Γ (ζ + 1)

where Γ (x) is the gamma function.

Before recalling Widder’s theorem, let us recall that for a function u :
[0,+∞)→ R, we call abscissa of convergence of u,

abs(u) := inf {Re (λ) : there exists λ ∈ C for which L(u)(λ) exists} .

Recall also that the abscissa of absolute convergence of u is abs(|u|).
We refer to the proof of Proposition 1.4.1 p. 28 in Arendt et al. [2] of the

following lemma.

Lemma 5.6 Let u : [0,+∞) → [0,+∞) be a locally integrable map. Assume
that L(u)(λ0) converges for some complex number λ0 ∈ C. Then L(u)(λ) con-
verges for each λ ∈ C with Re (λ) > Re (λ0).

Remark 5.7 By using this lemma we deduce that the Laplace transform of u
converges for each λ ∈ C with Re (λ) > abs(u) and diverges for each λ ∈ C
with Re (λ) < abs(u). This last property sometimes serves as a definition for
the abscissa of convergence of u.

The following Theorem is due to Widder [27, p.58] (see also Arendt et al. [2,
Theorem 1.5.3. p. 34]).
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Theorem 5.8 (Widder’s) Let u : [0,+∞) → [0,+∞) be a non-negative and
locally integrable map. Assume that abs(u) < +∞. Then L(u) (λ) is holomor-
phic in {λ ∈ C : Re (λ) > abs(u)} . If in addition abs(u) > −∞, then L(u) (λ)
has a singularity at abs(u).

Now let us set
v (t) := x (−t) , ∀t ∈ R,

that is an entire solution of the equation

dv (t)

dt
= µv (t)− αh (v (t+ τ)) (1− v (t)) , t ∈ R. (5.14)

Due to Lemma 5.4, we have

v(t) = O
(
e−ρt

)
as t→∞.

Therefore the Laplace transform L(v) (λ) converges for each λ ∈ C withRe (λ) >
−ρ, and we must have

abs(v) ≤ −ρ.
By applying the Laplace transform to (5.14) yields to(

λ− µ+
αβ

ν
eλτ
)
L (v) (λ) = v (0) +

αβ

ν
eλτ

∫ τ

0

v (t) e−λtdt+ L(R)(λ),

where

R (t) :=
αβ

ν
v (t+ τ)− αh (v (t+ τ)) (1− v (t)) .

Recalling the definition of ∆ in (5.2), the latter equation rewrites as

−∆ (−λ)L (v) (λ) = v (0) +
αβ

ν
eλτ

∫ τ

0

v (t) e−λtdt+ L(R)(λ). (5.15)

Remark 5.9 Note that for all t ∈ R

αh (v (t+ τ)) (1− v (t)) = α
βv (t+ τ)

βv (t+ τ) + ν
(1− v (t))

=
αβv (t+ τ)

ν

ν

βv (t+ τ) + ν
(1− v (t))

≤ αβv (t+ τ)

ν
(1− v (t)) ,

thus for all t ∈ R

R (t) ≥ αβ

ν
v (t+ τ)− αβv (t+ τ)

ν
(1− v (t)) ≥ αβ

ν
v (t+ τ) v (t) > 0,

and we deduce that

v (0) +
αβ

ν
eλτ

∫ τ

0

v (t) e−λtdt+

∫ +∞

0

R (t) e−λtdt > 0,

whenever λ ∈ R and L (v) (λ) < +∞.
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In the next lemma we investigate to the analyticity of L (v) (λ) .

Lemma 5.10 Let λ0 ∈ R be the real number defined in Lemma 5.3. Then the
Laplace transform L (v) (λ) is well defined and analytic in the strip {λ ∈ C : Re (λ) > −λ0} .
Moreover we have

lim
λ(>−λ0)→−λ0

L (v) (λ) = +∞,

while
abs(R) < −λ0.

Proof. Let us first prove that

lim
λ(>−λ+

0 )→−λ+
0

L (v) (λ) = +∞.

Let us assume that
lim

λ(>−λ+
0 )→−λ+

0

L (v) (λ) < +∞. (5.16)

Next note that since v (t) > 0 for all t ∈ R, we have for each λ1, λ2 ∈ R

λ1 ≥ λ2 =⇒ L (v) (λ1) ≤ L (v) (λ2) .

Therefore (5.16) implies that

L (v) (λ) < +∞, ∀λ ∈ R with λ > −λ0. (5.17)

But by using Fatou’s Lemma we obtain

L (v) (−λ0) =

∫ +∞

0

lim
λ(>−λ0)→−λ0

eλtv (t) dt ≤ lim
λ(>−λ0)→−λ0

∫ +∞

0

eλtv (t) dt < +∞.

We conclude from (5.17) that

L (v) (λ) < +∞, ∀λ ∈ [−λ0,+∞).

Now by using (5.15), it follows that

0 < L (R) (λ) < +∞, ∀λ ∈ [−λ0,+∞),

and since ∆(λ0) = 0 by taking the limit when λ goes to −λ+
0 (with λ ∈ R) into

(5.15) we obtain

lim
λ(>−λ0)→−λ0

L(R)(λ) = L (R) (−λ0) = −v (0)− αβ

ν
e−λ0τ

∫ τ

0

v (t) eλ0tdt < 0,

that is a contradiction with the fact that R(t) > 0 for each t ≥ 0 (see Remark
5.9).

The contradiction proves that L (v) has a singularity at −λ0 and

lim
λ(>−λ+

0 )→−λ+
0

L (v) (λ) = +∞.
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As a consequence of Lemma 5.6, we deduce that

−λ0 ≤ abs(v) ≤ −ρ < 0.

Next we will prove that L(v) is analytic on the strip {λ ∈ C : −λ0 < Re (λ)}.
Due to Theorem 5.8 it is sufficient to show that

abs(v) = −λ0.

Assume by contradiction that

−λ0 < abs(v).

Since λ∗ := abs(v) < 0, we have

−λ0 < λ∗ < 0,

therefore by Lemma 5.3-(i) we obtain

∆ (−λ∗) < 0. (5.18)

Let η ∈ (0, ρ) (where ρ > 0 is defined above). We also have for each t ∈ R

0 < R(t) =
αβ

ν
v (t+ τ)− α βv (t+ τ)

βv (t+ τ) + ν
(1− v (t))

=
αβ

ν
v (t+ τ)

[
1− ν (1− v (t))

βv (t+ τ) + ν

]
=

αβ

ν
v (t+ τ)

[
βv (t+ τ) + νv (t)

βv (t+ τ) + ν

]
≤ αβ

ν
v (t+ τ) v (t) .

Hence∫ +∞

0

R (t) e−(λ∗−η/2)tdt ≤ αβ

ν

∫ +∞

0

v (t+ τ) v (t) e−(λ∗−η/2)tdt

≤ αβ

ν

∫ +∞

0

v (t) e−(λ∗+η/2)tdt sup
t≥0

eηtv (t+ τ) .

Recalling Lemma 5.4 and the definition of v, due to the choice of η ∈ (0, ρ) one
has

sup
t≥0

eηtv (t+ τ) < +∞,

while since abs(v) + η/2 > abs(v) we obtain that∫ +∞

0

v (t) e−(λ∗+η/2)tdt <∞
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so by (5.15) ∫ +∞

0

R (t) e−(λ∗−η/2)tdt <∞.

Thus
abs(R) ≤ abs (v)− η/2, ∀η ∈ (0, ρ).

Moreover since abs(R) < abs(v) and since −λ0 < abs(v) there exists κ > 0 small
enough such that the map

λ 7→ 1

−∆ (λ)

[
v (0) +

αβ

ν
eλτ

∫ τ

0

v (t) e−λtdt+ L(R)(λ)

]
,

is analytic on the strip {λ ∈ C : Re(λ) > abs(v)− κ} and it is an extension
of L(v), a contradiction with Widder’s theorem, namely Theorem 5.8. As a
consequence abs(v) = −λ0. To complete the proof of the Lemma let us notice
that using the same arguments as before, one has abs(R) < −λ0(= abs(v)) and
the result follows.

Before proving Theorem 5.2 we need to derive the precise behavior of x(t)
when t goes to −∞. This will be achieved in the next lemma. Before let us
introduce, due to Lemma 5.10 the analytic function H acting from the strip
{λ ∈ C : Re(λ) > −λ0} into C defined by

H (λ) := (λ+ λ0)L (v) (λ) (5.19)

or equivalently

H (λ) :=
(λ+ λ0)

−∆ (−λ)

[
v (0) +

αβ

ν
eλτ

∫ τ

0

v (t) e−λtdt+ L(R)(λ)

]
. (5.20)

Using this function, our next lemma reads as

Lemma 5.11 The following holds true

lim
t→−∞

x (t)

eλ0t
=

H (−λ0 − µ)

Γ (1 + λ0 + µ)
> 0, (5.21)

with λ0 defined in Lemma 5.3.

Proof. Since we have defined v (t) = x (−t) for all t ∈ R, (5.21) is equivalent to

lim
t→+∞

v (t)

e−λ0t
=

H (−λ0 − µ)

Γ (1 + λ0 + µ)
.

But equation (5.14) implies that

d [e−µtv (t)]

dt
= −e−µtαh (v (t+ τ)) (1− v (t)) ≤ 0, ∀t ∈ R,

therefore the map t ∈ [0,+∞)→ e−µtv (t) is a decreasing. Set

v̂ (t) := e−µtv (t) , ∀t ≥ 0.
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Next notice that for each λ ∈
{
λ̂ ∈ C : −λ0 − µ ≤ Re

(
λ̂
)
< 0
}

one has

∫ +∞

0

v̂ (t) e−λtdt =
H (λ+ µ)

λ+ λ0 + µ
.

Therefore since v̂ is positive and decreasing, and Ikehara’s theorem implies

lim
t→+∞

v̂ (t)

e−(λ0+µ)t
=

H (−λ0 − µ)

Γ (1 + λ0 + µ)
⇔ lim

t→−∞

v (t)

eλ0t
=

H (−λ0 − µ)

Γ (1 + λ0 + µ)
.

That completes the proof.

Corollary 5.12 Function x is increasing on R.

Proof. According to Lemma 5.11, there exists αx > 0 such that e−λ0tx(t)→ αx
as t→ −∞. Now from (2.4) one obtains that

lim
t→−∞

e−λ0tx′(t) = αx

[
−µ+

αβ

ν
e−λ0τ

]
= αxλ0 > 0.

The result follows from the results of Smith [24].
We now have all the necessary ingredient to complete the proof of Theorem

5.2.

Proof of Theorem 5.2. Let x and y be two heteroclinic orbits of the reduced
system (2.4). From Lemma Lemma 5.11 there exists αx > 0 and αy > 0 such
that

lim
t→−∞

e−λ0tx(t) = αx and lim
t→−∞

e−λ0ty(t) = αy.

Hence there exists h ∈ R such that

lim
t→−∞

e−λ0tx(t) = lim
t→−∞

e−λ0ty(t+ h).

Up to change y(t) by y(t+ h), one may assume that h = 0, that is

lim
t→−∞

e−λ0tx(t) = lim
t→−∞

e−λ0ty(t).

Next let us define

w (t) :=
x (t)− y (t)

eλ0t
, ∀t ∈ R.

We aim to show that w(t) ≡ 0, so that x(t) ≡ y(t). To do so note that Lemma
5.11 ensures that w(t)→ 0 as t→ −∞ and one can also notice that since x and
y are bounded, one has w(t)→ 0 as t→∞. We conclude that w is bounded on
R. Assume by contradiction that w(t) 6≡ 0. Then, replacing eventually x− y by
y − x, we can assume, without loss of generality, there exists t0 ∈ R such that

w (t0) = sup
t∈R
|w (t)| > 0. (5.22)
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We claim that w (t0) = w (t0 − τ). Indeed since w (t0) is a maximum, we have

dw (t0)

dt
= 0 = − (λ0 + µ)w (t0)

+ e−λ0t0 [λ0αh (x (t0 − τ)) (1− x (t0))− αh (y (t0 − τ)) (1− y (t0))] ,

thus

(λ0 + µ)w (t0) = α
h (x (t0 − τ))− h (y (t0 − τ))

eλ0t0
(1− x (t0))− αw (t0)h (y (t0 − τ))

≤ α
h (x (t0 − τ))− h (y (t0 − τ))

eλ0t

≤ α

∫ 1

0

h′ (sx (t0 − τ) + (1− s) y (t0 − τ)) dsw (t0 − τ)

≤ αh′ (0)w (t0 − τ)

≤ αβ

ν
e−λ0τw (t0 − τ) .

Here recalling that λ0 + µ = αβ
ν e
−λ0τ it follows that

w (t0) ≤ w (t0 − τ) .

Therefore since w (t0) is a maximum point we also have w (t0) ≥ w (t0 − τ) so
that w (t0) = w (t0 − τ) . By induction one concludes w (t0) = w (t0 − nτ) for
all n ∈ N which implies that

w (t0) = lim
n→+∞

w (t0 − nτ) = lim
t→−∞

w (t) = 0.

That contradict the fact that w (t0) > 0. Therefore w(t) ≡ 0 and the result
follows.

5.2 Convergence to the heteroclinic orbits

In this subsection we study the convergence of xε whenever the initial conditions
ϕ = 0C and y0 6= 0 and we complete the convergence part stated in Theorem
2.5. In the sequel we denote x∞ the unique heteroclinic orbit of the reduced
system provided by Theorem 5.2 such that x∞(0) = x

2 .

Lemma 5.13 Assume that R0 > 1. Let y0 ∈ (0, 1] be given and let us denote
by (xε, yε) the solution of (2.1) with initial data (0C , y0). Then for each ε > 0
one has

tε := sup

{
t ≥ 0 : xε(t) =

x

2

}
<∞ and lim

ε→0
tε =∞,

and the following convergence holds true

lim
ε→0

xε (t+ tε) = x∞(t),

converges uniformly on any intervals of the form [−T,+∞) with T ≥ 0.
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Proof. By using the same arguments as in the proof of Proposition 5.1 we obtain
that there exists a family {tε}ε>0 such that for each ε > 0:

xε (tε) =
x̄

2
and lim

ε→0
tε =∞. (5.23)

and such that the family of function x̂ε(t) := xε(t + tε) converges locally uni-
formly to the unique heteroclinic orbit x∞. Now let T > 0 be given. We claim
that x̂ε converges uniformly to x∞ on [−T,+∞). Indeed assume that the con-
vergence is not uniform on [−T,+∞). Then there exists a sequence {εn} tending
to 0 as n→∞, η > 0 and a sequence tn → +∞ as n→ +∞ such that

|x̂εn (tn)− x∞ (tn)| > η, ∀n ≥ 0. (5.24)

Consider now the sequence of map xn(t) := x̂εn(tn+ t). Then since x̂εn(0) = x
2 ,

Lemma 4.4 applies and provides that

lim
n→+∞

x̂εn (t+ tn) = x̄, locally uniformly.

Since x∞(tn) → x as n → ∞ we reach a contradiction with (5.24). This
completes the proof of the lemma and therefore completes the proof of Theorem
(2.4).

6 Discussion

In this article we have investigated finite and infinite time singular limit for the
following system of delay differential equations

dx (t)

dt
= −µx (t) + αy (t) (1− x (t)) , ∀t ≥ 0,

ε
dy (t)

dt
= −νy (t) + βx (t− τ) (1− y (t)) , ∀t ≥ 0,

y (0) = y0 ∈ R, and x0 = ϕ ∈ C ([−τ, 0] ,R) .

(6.1)

From a practical point of view, no information is available for the parameters of
the second equation (i.e. HCW equation). The results of this paper show that
we can replace y in first equation of system (6.1) by

y(t) = h(x (t− τ)) =
βx (t− τ)

ν + βx (t− τ)
.

Therefore the system (6.1) is reduced to a single equation

dx (t)

dt
= −µx (t) + αh(x (t− τ)) (1− x (t)) , ∀t ≥ 0.

This new model provide a good generally approximation of the first equation
in system (6.1) as soon as ε is small enough. We prove that the finite time
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convergence is always thrue. Nevertheless when the infection starts only with
contaminated HCW, some difficulties arise for the long term comparison.

In terms of mathematical perspectives, many questions remain. One should
first extend the presents results to the original age-structured models (1.2)-(1.3).
Another class of questions is can we reconsider the systems from abstract point
of view. Namely it would be interesting to regard systems (6.1) as non-densely
defined Cauchy problem. By using (for example) the approach presented in Liu,
Magal and Ruan [19], one can reformulated system (6.1) in the following form d

dt

(
0R
u

)
= A

(
0R
u

)
+ F

((
0R
u

)
, y

)
εdydt = −νy (t) + βu (t,−τ) (1− y (t))

where A : D(A) ⊂ X → X is a linear operator on the Banach space

X = R× C ([−τ, 0] ,R)

defined by

A

(
0R
ψ

)
=

(
−ψ′ (0)

ψ′

)
with D(A) = {0R} × C1 ([−τ, 0] ,R)

and F : D(A)→ X is the map defined by

F

((
0R
ϕ

)
, y

)
=

(
−µϕ(0) + αy (1− ϕ(0))

0C

)
.

According to our best knowledge, very few results are available in the literature
for infinite dimensional singular limit. Some results are obtained for linear
diffusion operators (see Bates Lu and Zeng [7] and reference therein), but for
hyperbolic operators no general theory has been developed.
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