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Abstract

In this article, we derive Ricker’s [22, 23] type nonlinear boundary con-
dition for an age structured population dynamic model by using a singular
perturbation. The question addressed in this paper is the convergence of
the singularly perturbed system. We first obtain a finite time convergence
for a fixed initial distribution. Then we focus on the convergence uniformly
of the singularly perturbed system with respect to the initial distribution
in bounded sets.
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1 Introduction

Age structured models have been extensively used in the context of population
dynamics mainly to take care of the history of individuals. We refer to the books
[1, 9, 13, 20, 30, 32] for a nice overview and more results on this topics. In this
article, we consider a singular perturbation problem for a class of nonlinear age
structured model. As far as we know, the only work going in that direction
is due to Arino et al. [2]. In [2] they investigate the singular limit of patch
and age structured model, and by assuming that the spatial motion is fast,
and they derive a limit model without space. Here we will focus on another
modelling issue. Our goal is to derive (\to understand) Ricker’s [22, 23] type
nonlinear boundary condition as a singular limit. The main question adressed
in this article is to understand in which sense the limit exists.

The class of age structured model considered in this article is the following




∂u

∂t
(t, a) +

∂u

∂a
(t, a) = −µ(a)u(t, a)

−m

(∫ +∞

0

γ1(a)u(t, a)da

)
h(a)

︸ ︷︷ ︸
intraspecific competition

]u(t, a), a ≥ 0,

u(t, 0) = exp

(
−

∫ +∞

0

γ2(a)u(t, a)da

)

︸ ︷︷ ︸
limitation of births

∫ +∞

0
β(a)u(t, a)da

u(0, .) = ϕ ∈ Lp+ ((0,+∞);R) , with 1 ≤ p < +∞.

(1.1)

In order to define properly this semiflow generated by (1.1) we make the follow-
ing assumption.

Assumption 1.1 We assume that m : [0,+∞) → [0,+∞) is locally Lipschitz
continuous, and

µ, h ∈ L∞
+ ((0,+∞);R) , (1.2)

β, γ1, γ2 ∈ Lq+ ((0,+∞);R) , (1.3)

where 1 < q ≤ +∞ with
1

p
+

1

q
= 1.

In this context of ecology this class of model corresponds to density depen-
dent age structured population dynamics models. The model (1.1) has been
considered previously by Liu and Cohen [14] for

m(x) = x, ∀x ≥ 0.

We also refer to [3, 4, 5, 6, 12, 11, 15, 21, 24, 25, 26, 31] for more information
and results on this topic in the context of the ecology.

Here the distribution a→ u(t, a) is the density of population at time t ≥ 0.
This means that ∫ a2

a1

u(t, a)da
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is the number of individuals at time t with an age in between a1 and a2 (with
0 ≤ a1 < a2 ≤ +∞). Therefore the total number of individuals in the population
is given by ∫ +∞

0

u(t, a)da.

The term −µ(a)u(t, a) describes the mortality of individuals, and µ(a) is the

age-specific mortality rate of individuals. The term
∫ +∞

0
β(a)u(t, a)da is the flux

of new born individuals while β(a) is the age-specific fertility rate. The term

−m
(∫ +∞

0
γ1(a)u(t, a)da

)
h(a)u(t, a) describes an intra-specific competition be-

tween individuals. Namely this term is introduced to describe the limitations
for resources (food, space, etc...). Here we focus on the last term arising in the
boundary condition of (1.1) that reads as

exp

(
−

∫ +∞

0

γ2(a)u(t, a)da

)
,

and that describes a birth limitation. In the context of fishieries, Ricker [22, 23]
introduced this term to describe a canibalism phenomenon of larvea by adults.
In the context forests, this term can be regarded as a term of competition for
light between small trees with large trees.

In order to understand this term, we consider the following system




∂uε
∂t

(t, a) +
∂uε
∂a

(t, a) = −


µ (a)+m

(∫ +∞

0

γ1(a)uε(t, a)da

)
h(a)

︸ ︷︷ ︸
intraspecific competition


uε(t, a)

−



1

ε
1[0,ε] (a)

∫ +∞

0

γ2(a)uε(t, a)da

︸ ︷︷ ︸
fast intraspecific competition


uε(t, a), a ≥ 0,

uε(t, 0) =
∫ +∞

0
β(a)uε(t, a)da

uε(0, .) = ϕ ∈ Lp+ ((0,+∞);R) .
(1.4)

where

1[0,ε] (a) :=

{
1, if a ∈ [0, ε] ,
0, otherwise.

One may observe that system (1.4) has a linear boundary condition. From a

modelling point of view the term
∫ +∞

0
γ2(a)u(t, a)da appears in system (1.4)

as a fast predation or competition process between young individuals and older
individuals.

Since the population is usually assumed to have a finite number of individuals
at each time. Hence, one usually imposes

∫ +∞

0

u(t, a)da < +∞, ∀t ≥ 0,
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so that the natural state space for age structured model is L1 (i.e. p = 1). Here
in order to derive some convergence results when ε→ 0 we will rather consider
the general case p ∈ [1,+∞) . We refer to Magal and Ruan [16, 17, 18] and
Thieme [29] for results on this topic. A direct consequence of the results in [17,
(see section 3)] combined together with the application part in [16, (section 6)]
we obtain the following result.

Theorem 1.2 Let Assumption 1.1 be satisfied. Let p ∈ [1,∞) and ε > 0.

There exists a unique continuous semiflow {Ûε(t)}t≥0 on Lp+(0,∞) (respectively

{Û(t)}t≥0 on Lp+(0,∞)) such that for each ϕ ∈ Lp+(0,∞) the map t→ Ûε(t)ϕ =
uϕε (t) (respectively the map t → U(t)ϕ) is an integrated (or mild) solution of
(1.4) (respectively of (1.1)).

In order to derive a convergence result of the solution of system (1.4) to the
solution of system (1.1) when ε → 0, we need to impose some extra conditions
on the map γ2.

Assumption 1.3 We assume that

γ2 ∈W 1,q ((0,+∞) ,R) , (1.5)

and

κ̂ := sup
ε∈(0,1]

1

ε
‖γ2‖Lq([0,ε]) < +∞. (1.6)

wherein q ∈ (1,∞] is defined by 1
p +

1
q = 1.

The condition (1.6) reads as

lim sup
ε→0

1

εq

∫ ε

0

γ2(a)
qda < +∞, if q ∈ (1,+∞) ,

and

lim sup
ε→0

1

ε
sup
a∈[0,ε]

γ2(a) < +∞, if q = +∞.

Therefore the condition (1.6) combined with (1.5) implies

γ2(0) = 0, (1.7)

and the condition (1.6) is satisfied if (for example) there exists a constant δ > 0,
such that

γ2(a) ≤ δa,

for all a > 0 small enough.
Under the above conditions we obtain the following convergence result.

Theorem 1.4 Let Assumptions 1.1 and 1.3 be satisfied. Let τ > 0. Then for
each ϕ ∈ Lp+ ((0,+∞);R)

sup
t∈[0,τ ]

∥∥∥Ûε(t)ϕ− Û(t)ϕ
∥∥∥
Lp

→ 0 as ε(> 0) → 0.
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Remark 1.5 Beyond this convergence result, this class of examples provides
a class of non-densely defined Cauchy problem that can be approximated by a
singular limit of densely defined semi-linear Cauchy problem. Indeed, it is well
know that problem (1.4) has a densely defined Cauchy problem formulation, and
system (1.1) has ”only” a non-densely defined Cauchy problem formulation (see
Proposition 2.6 for more presicions).

Theorem 1.4 shows that Ricker’s type boundary conditions can be inter-
preted as a fast predation (or limitation) process. But it seems that some
extra-conditions on γ2 (see Assumption 1.3) are needed to derive such a result.

We now turn to convergence results uniformly with respect to the initial
distribution ϕ in a bounded set. In order consider this problem, we will need to
introduce the following definition.

Definition 1.6 Let p ∈ [1,∞) be given. Let B be a subset of Lp+ ((0,+∞) ;R).
We define the quantity κp(B) ∈ [0,∞) as

κp(B) := lim
δց0+

sup
ϕ∈B

(∫ δ

0

|ϕ(a)|
p
da

) 1
p

.

We will say that B is a (p−)non-atomic set at 0 if

κp(B) = 0.

The first main result of this article is the following theorem.

Theorem 1.7 Let Assumptions 1.1 and 1.3 be satisfied. Let p ∈ [1,∞) and
τ > 0. Then for each B bounded subset of Lp+(0,∞) there exists a constant

C̃ = C̃ (γ1, γ2, β, τ,B) > 0 such that

lim sup
ε(>0)→0

sup
t∈[0,τ ]

sup
ϕ∈B

∥∥∥Ûε(t)ϕ− Û(t)ϕ
∥∥∥
Lp

≤ C̃κp(B).

Set
B|(0,δ) :=

{
ϕ|(0,δ) : ϕ ∈ B

}
⊂ Lp (0, δ) ,

for each constant δ > 0.
In section 2.1, we will see that the functional κp(B) satisfies most of the

properties of a measure of non-compactness. In particular, if B|(0,δ) is compact
in Lp (0, δ) for some δ > 0, then

κp(B) = 0.

Of course the converse implication is false. This question will be studied in
section 2.1.

As a direct consequence of Theorem 1.7 we obtain the following corollary.
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Corollary 1.8 (Strong uniform convergence) Let Assumptions 1.1 and 1.3
be satisfied. Let τ > 0. Assume that

p ∈ [1,∞),

and B is bounded subset of Lp+(0,∞) satifying

κp(B) = 0.

Then
lim
ε→0

sup
t∈[0,τ ]

sup
ϕ∈B

∥∥∥Ûε(t)ϕ− Û(t)ϕ
∥∥∥
Lp

= 0.

Remark 1.9 From this corollary we deduce that if B is a compact subset of
Lp+(0,∞), then

Ûε(t)ϕ→ Û(t)ϕ as ε→ 0 in Lp(0,∞),

and the convergence is uniform with respect to t in bounded intervals and uni-
form with respect to ϕ in B.

Note that when B consists in a single point B = {ϕ}, it is compact and
Corollary 1.8 implies Theorem 1.4.

The second main result of this article is the following theorem.

Theorem 1.10 (Weak uniform convergence) Let Assumptions 1.1 and 1.3
be satisfied. Let τ > 0 and M > 0. Assume that

p ∈ (1,∞).

Then
Ûε(t)ϕ ⇀ Û(t)ϕ as ε→ 0 for the weak topology in Lp

uniformly with respect to t ∈ [0, τ ], and ϕ ∈ Lp+(0,∞) with ‖ϕ‖Lp ≤M. That is
to say that, for each ψ ∈ Lq (0,+∞) ,

lim
ε→0

sup
t∈[0,τ ]

sup
ϕ∈Lp

+
(0,∞):‖ϕ‖Lp≤M

∫ +∞

0

ψ (a)
(
Ûε(t)ϕ (a)− Û(t)ϕ (a)

)
da = 0.

The plan of the paper is the following. The section 2 is spitted into two parts.
The section 2.1 summarizes some properties of κp. The section 2.2 is devoted
to the existence of a continuous semiflow by applying integrated semigroups
theory. Section 2.3 is focusing on Volterra’s integral equations formulations. In
section 3, we will prove Theorem 1.7 and Theorem 1.10.

2 Preliminary

2.1 Pseudo measure of non compactness

Let B be a bounded subset of Lp ((0,+∞) ,R) for some p ∈ [1,∞). For each
δ0 > 0 we set
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Bp|(0,δ0) :=
{
|ϕ|

p
|(0,δ0)

: ϕ ∈ B
}
⊂ L1

+ (0, δ0) .

We summarize some properties of κp in the following proposition.

Proposition 2.1 Let p ∈ [1,∞) and δ0 > 0. Let B and B′ be two bounded
subsets of Lp ((0,+∞) ;R). Then the following properties are satisfied:

(i) If Bp|(0,δ0) is relatively compact for the weak topology σ(L1, L∞), then κp(B) =
0;

(ii) If there exists p′ ∈ (p,+∞) , such that B|(0,δ0) is a bounded in Lp
′

+ (0, δ0)
then κp(B) = 0;

(iii) If B|(0,δ0) is compact for the strong topology of Lp (0, δ0) then κp(B) = 0;

(iv) κp(B + B′) ≤ κp(B) + κp(B
′);

(v) B ⊂ B′ =⇒ κp(B) ≤ κp(B
′);

(vi) κp
(
B
)
= κp (B) ;

(vii) κp (conv (B)) = κp (B) ;

(viii) κp(B ∪ B′) = max {κp(B), κp(B
′)} ;

(ix) κp(cB) = |c|κp(B), ∀c ∈ R.

Proof. The proof for (i) and (ii) are respectively direct consequences of Dunford-
Pettis’s Theorem (see Brezis [7, Theorem 4.30 p.115]) and De la Vallée-Poussin’s
theorem (see Brezis [7, Problem 23-D p.468]). To prove (iii), let η > 0 be given.
Then since B|(0,δ0) is compact without loss of generality we may assume that

B|(0,δ0) ⊂
m
∪
k=1

B (ϕk, η) ,

where B (ϕk, η) is a open ball in Lp+ (0, δ0) . Hence for ψ ∈ B|(0,δ0), there exists
k0 ∈ {1, ..,m} such that ψ ∈ B (ϕk0 , η) and we have for each δ ∈ (0, δ0)

(∫ δ

0

|ψ(a)|
p
da

) 1
p

≤

(∫ δ

0

|ϕk0 (a)− ψ(a)|
p
da

) 1
p

+

(∫ δ

0

|ϕk0(a)|
p
da

) 1
p

,

≤ η +

(∫ δ

0

|ϕk0(a)|
p
da

) 1
p

≤ η + max
k=1,...,m

(∫ δ

0

|ϕk(a)|
p
da

) 1
p

, ∀δ ∈ (0, δ0) .

Thus letting δ ց 0 leads us to

κp(B) ≤ η, ∀η > 0
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and the results follows. The proof of properties (iv)-(ix) are similar to the
proofs for measure of non-compactness (see Deimling [10], Martin [19], Sell and
You [27]).

To conclude this subsection, we will characterize the fact that B is atomic
set at 0, that is to say that

κ1(B) > 0.

To do so, let us first recall some definitions and basic fact on bounded variation
functions.

Definition 2.2 A map η : [0, 1] → R has a bounded variation on [0, 1] if

V (η, [0, 1]) = sup

n∑

i=1

|η(xi+1)− η(xi)| < +∞

where the supremum is taken over all the partitions x1 = 0 < x2 < ... < xn+1 =
1.

Recall that by the Riesz’s representation theorem, for each ϕ∗ ∈ C ([0, 1] ,R)
∗

the dual space of C ([0, 1] ,R) , we can find η : [0, 1] → R a function with bounded
variation on [0, 1] such that for each χ ∈ C ([0, 1] ,R) ,

〈ϕ∗, χ〉C∗,C =

∫ 1

0

dη(x)χ(x),

where the last integral is a Stieltjes integral. The Stieltjes integral is defined as
follows ∫ 1

0

dη(x)χ(x) = lim
∆(Γ)→0

n∑

i=1

[η(xi+1)− η(xi)]χ(yi)

where the limit is taken over all the partition Γ = (x1, x2, ..., xn+1) satisfying

x1 = 0 < x2 < ... < xn+1 = 1,

with
yi ∈ [xi, xi+1] ,

and
∆ (Γ) = max

i=1,...,n
xi+1 − xi.

As a direct consequence of the definition of the Stieltjes integral, one deduces
that

〈ϕ∗, χ〉C∗,C ≤ V (η, [0, 1]) ‖χ‖∞ .

Definition 2.3 An element of ϕ∗ of C ([0, 1] ,R)
∗
is said to have a non null

mass at 0, if and only if

lim
ε→0

sup
χ∈C with Support(χ)⊂[0,ε)

〈ϕ∗, χ〉C∗,C > 0.
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We also recall that

ϕ∗ ≥ 0 ⇔ 〈ϕ∗, χ〉C∗,C ≥ 0, ∀χ ∈ C+ ([0, 1] ,R) .

We remark that if χ ∈ C ([0, 1] ,R) with Support(χ) ⊂ [0, ε) then

〈ϕ∗, χ〉C∗,C =

∫ ε

0

dη (x)χ(x).

Furthermore, if ϕ∗ ∈ C+ ([0, 1] ,R)
∗
, then the map x → η(x) is a non-negative

and increasing function from [0, 1] into R. Hence one deduces that

V (η, [0, ε]) ≥ sup
χ∈C with Support(χ)⊂[0,ε)

〈ϕ∗, χ〉C∗,C ≥ lim
ε̂րε

V (ϕ∗, [0, ε̂]) .

As a consequence, ϕ∗ has a non null mass at 0 if and only if

c := lim
ε(>0)→0

V (η, [0, ε]) > 0.

This implies that
η(x)− η(0) > c, ∀x > 0.

therefore
〈ϕ∗, χ〉C∗,C ≥ cδ0 (χ) , ∀χ ∈ C+ ([0, 1] ,R) ,

where δ0 is the Dirac mass a 0.
The main theorem of this section is the following.

Theorem 2.4 Let B be a bounded subset of L1
+ ((0, 1) ,R). Then

κ1(B) > 0

if and only if the weak* closure of B considered as a subset of the dual space
of C ([0, 1] ,R) contains at least one element with non zero mass at 0. More
precisely κ1(B) > 0 if and only if B contains a sequence ϕn such that

ϕn
weak∗
⇀ ϕ∗ in C ([0, 1] ,R)

∗

and there exists a positive constant c > 0 such that

ϕ∗ ≥ cδ0 ⇔ 〈ϕ∗, χ〉C∗,C ≥ cδ0 (χ) , ∀χ ∈ C+ ([0, 1] ,R) .

Proof. Let B ⊂ L1
+ ((0,+∞) ,R) be a given bounded. Assume that it satisfies

κ1(B) = lim
δց0+

sup
ϕ∈B

∫ δ

0

ϕ(a)da > 0.

Set
ρ := κ1(B).

9



Then we can find a decreasing sequence of positive numbers {δn}n∈N
such that

δn ց 0, as n→ +∞,

and a sequence
ϕn ∈ B

such that ∫ δn

0

ϕn(a)da > ρ/2.

Let ε > 0 be given. Let χ ∈ C([0, 1],R) be given such that





χ ≥ 0,

χ(x) = 1 if x ∈ [0, ε/2]

Support(χ) ⊂ [0, ε).

Then recall that

lim
n→∞

∫ 1

0

ϕn(a)χ(a)da =

∫ ε

0

χ(a)dϕ∗(a).

Since χ ≥ 0 then one obtains that

∫ 1

0

ϕn(a)χ(a)da ≥

∫ ε/2

0

ϕn(a)da, ∀n ≥ 0.

Now since δn → 0, there exists N = Nε such that for all n ≥ Nε one has
δn ≤ ε/2 and therefore

ρ

2
<

∫ δn

0

ϕn(a)da ≤

∫ ε
2

0

ϕn(a)da

This implies that
ρ

2
≤

∫ 1

0

χ(a)dϕ∗(a),

and the result follows. The converse easily holds true.

2.2 Integrated semigroup formulation

In order to explain the meaning of mild solutions for systems (1.1) and (1.4) we
first introduce a suitable functional framework. Let p ∈ [1,∞). Consider the
Banach space X as well as its positive cone X+ respectively defined by

X = R× Lp(0,∞), X+ = R+ × Lp+(0,∞),

and endowed with the usual product norm
∥∥∥∥
(
α

ψ

)∥∥∥∥ = |α|+ ‖ψ‖Lp , ∀

(
α

ψ

)
∈ Xp.
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Next consider the linear operator A : D(A) ⊂ X → X defined by

A

(
0
ψ

)
=

(
−ψ(0)

−ψ′ − µ(.)ψ

)
,

with
D(A) = {0R} ×W 1,p(0,∞).

Set
X0 := D(A) = {0R} × Lp(0,∞).

Consider the bounded linear operator B : X0 → X defined by

B

(
0
ψ

)
=

(∫ +∞

0
β(a)ψ (a) da

0Lp

)
.

Set
X0+ := X0 ∩X+ = {0R} × Lp+(0,∞).

Recall that, (A+B)0 : D ((A+B)0) ⊂ X0 → X0 the part of A + B : D(A) ⊂
X → X in X0 is defined by

(A+B)0

(
0

ψ

)
=

(
0R

−ψ′ − µ(.)ψ

)

and

D ((A+B)0) =

{(
0

ψ

)
∈ D (A) : ψ (0) =

∫ +∞

0

β(a)ψ (a) da

}
.

By combining the bounded perturbation result of section 3 in [16], and by
applying the results of section 6 in [16] we obtain the following result.

Lemma 2.5 Let Assumption 1.1 be satisfied. Then the linear (A+B)0 : D ((A+B)0) ⊂
X0 → X0 is the infinitesimal generator a strongly continuous semigroup

{
T(A+B)

0
(t)
}
t≥0

of bounded linear operators on X0.

Next consider the map F : X0 → X by

F

(
0

ψ

)
=

(exp
(
−
∫ +∞

0
γ2(a)ψ (a) da

) ∫ +∞

0
β(a)ψ (a) da

−m
(∫ +∞

0
γ1(a)ψ (a) da

)
h(a)ψ (a)

)
.

For each ε > 0, we consider the map Fε : X0 → X

Fε

(
0
ψ

)
=

( ∫ +∞

0
β(a)ψ (a) da

−

[
m
(∫ +∞

0
γ1(a)ψ (a) da

)
h(a)−

1

ε
1[0,ε] (a)

∫ +∞

0
γ2(a)ψ(a)da

]
ψ (a)

)

and Gε : X0 → X0 defined by

Gε

(
0
ψ

)
=

( 0R

−

[
m
(∫ +∞

0
γ1(a)ψ (a) da

)
h(a)−

1

ε
1[0,ε] (a)

∫ +∞

0
γ2(a)ψ(a)da

]
ψ (a)

)
.
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By identifying u(t, .) to v (t) =
(

0
u(t,.)

)
, the problem (1.1) can be reformulated

as the following abstract non-densely Cauchy problem

dv(t)

dt
= Av(t) + F (v(t)), v(0) =

(
0
ϕ

)
∈ X0+, (2.1)

and uε (t, .) to vε (t) =
(

0
uε(t,.)

)
, the problem (1.4) can be reformulated as the

following abstract non-densely Cauchy problem

dvε(t)

dt
= Avε(t) + Fε(vε(t)), vε(0) =

(
0
ϕ

)
∈ X0+. (2.2)

This former problem is also equivalent to the following densely defined Cauchy
problem

dvε(t)

dt
= (A+B)0 vε(t) +Gε(vε(t)), vε(0) =

(
0
ϕ

)
∈ X0+. (2.3)

Now in order to derive a global existence result for the semiflow generated by
(2.1) and (2.2) it is sufficient to use the following arguments combined together
with the results in [17]. First since F and Fε are Lipschitz continuous on bounded
sets, the existence and uniqueness of a maximal semiflow follows. Secondly, the
positivity of solutions is obtained by observing

(λI −A)
−1
X+ ⊆ X+ for each λ > 0 large enough,

and that for each constant M > 0 there exists λ = λ(M) > 0 such that

(F + λI)

(
0
ψ

)
∈ X0+, (2.4)

whenever

(
0
ψ

)
∈ X0+ and

∥∥∥∥
(

0
ψ

)∥∥∥∥ ≤ M. Finally, the global existence of

positive solutions follows from the sub-linearity argument

F

(
0
ψ

)
≤ B

(
0
ψ

)
and Fε

(
0
ψ

)
≤ B

(
0
ψ

)

whenever

(
0
ψ

)
∈ X0+.

Now by applying the results in [17] we obtain the following theorem.

Proposition 2.6 Let Assumption 1.1 be satisfied. Then there exists a unique
continuous semiflow {U(t)}t≥0 on X0+ such that for each x ∈ X0+ the map
t→ U(t)x is the unique integrated solution (or mild solution) of (2.1) that is to
say that U(.)x ∈ C ([0,+∞) , X0+) and satisfies the following properties

∫ t

0

U(s)xds ∈ D(A), ∀t ≥ 0,
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and

U(t)x = x+A

∫ t

0

U(s)xds+

∫ t

0

F (U(s)x)ds, ∀t ≥ 0.

Similarly, for each ε ∈ (0, 1], there exists a unique continuous semiflow {Uε(t)}t≥0

on X0+ such that for each x ∈ X0+ the map t → Uε(t)x is a mild solution of
(2.2), that is to say that Uε(.)x ∈ C ([0,+∞) , X0+) and satisfies the following
properties ∫ t

0

Uε(s)xds ∈ D(A), ∀t ≥ 0,

and

Uε(t)x = x+A

∫ t

0

Uε(s)xds+

∫ t

0

Fε(Uε(s)x)ds, ∀t ≥ 0.

Moreover Uε(.)x ∈ C ([0,+∞) , X0+) is a mild solution of the densely defined
Cauchy problem of (2.3), that is to say that

Uε(t)x = T(A+B)
0
(t)x+

∫ t

0

T(A+B)
0
(t− s)Gε(Uε(s)x)ds, ∀t ≥ 0.

2.3 Volterra’s integral equation formulation

In this subsection, we present a Volterra’s integral equation formulation of the
age-structured systems (1.1) and (1.4). We refer to the book of Webb [32] and
Iannelli [13] for more results and informations on this subject. Set

Γϕγ (t) :=
∫ +∞

0
γ(a)uϕ(t, a)da, ∀t ≥ 0, for γ = γ1, γ2, β. (2.5)

for γ = γ1, γ2 or β and each initial distribution ϕ ∈ Lp+ ((0,+∞) ,R).
The solution of system (1.1) integrated along the characteristics is given by

uϕ(a, t) =

{
Iϕ (t, a, a− t)ϕ(a− t), if a ≥ t,

Iϕ (t, a, 0) exp
(
−Γϕγ2(t− a)

)
Γϕβ (t− a), if a ≤ t.

(2.6)

where

Iϕ (t, a, s) = exp

(
−

∫ a

s

[
µ(r) +m

(
Γϕγ1(r + t− a)

)
h(r)

]
dr

)
, (2.7)

for each a ≥ s ≥ 0. Combining (2.5) and (2.6) we deduce that t → Γϕγ1(t), t →
Γϕγ2(t) and t → Γϕβ (t) are the unique continuous solutions of the system of
Volterra’s integral equations:

Γϕγ1 (t) =
∫ +∞

t
γ1(a)I

ϕ (t, a, a− t)ϕ(a− t)da+
∫ t
0
γ1(a)I

ϕ (t, a, 0) Γϕβ (t− a)e−Γϕγ2 (t−a)da,

Γϕγ2 (t) =
∫ +∞

t
γ2(a)I

ϕ (t, a, a− t)ϕ(a− t)da+
∫ t
0
γ2(a)I

ϕ (t, a, 0) Γϕβ (t− a)e−Γϕγ2
(t−a)da,

Γϕβ (t) =
∫ +∞

t
β(a)Iϕ (t, a, a− t)ϕ(a− t)da+

∫ t
0
β(a)Iϕ (t, a, 0) Γϕβ (t− a)e−Γϕγ2

(t−a)da.

(2.8)
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Similarly, set

Γϕγ,ε(t) :=

∫ +∞

0

γ(a)uϕε (t, a)da, (2.9)

for γ = γ1, γ2 or β and each initial distribution ϕ ∈ Lp+ ((0,+∞) ,R). As before
we have

uϕε (t, a) =

{
Iϕε (t, a, a− t)ϕ (a− t) , if a ≥ t,
Iϕε (t, a, 0) Γϕβ,ε (t− a) , if a ≤ t,

(2.10)

wherein

Iϕε (t, a, s) := exp

(
−

∫ a

s

[
µ (r) +m

(
Γϕγ1,ε (r + t− a)

)
h(r)

]
dr −

∫ min(ε,a)

min(ε,s)

1

ε
Γϕγ2,ε (r + t− a) dr

)
,

(2.11)
for each a ≥ s ≥ 0, and t → Γϕγ1,ε(t), t → Γϕγ2,ε(t) and t → Γϕβ,ε(t) are the
unique continuous solutions of the system of Volterra’s integral equations:

Γϕγ1,ε(t) =
∫ +∞

t
γ1 (a) I

ϕ
ε (t, a, a− t)ϕ (a− t) da

+
∫ t
0
γ1 (a) I

ϕ
ε (t, a, 0) Γϕβ,ε (t− a) da

Γϕγ2,ε (t) =
∫ +∞

t
γ2 (a) I

ϕ
ε (t, a, a− t)ϕ (a− t) da

+
∫ t
0
γ2 (a) I

ϕ
ε (t, a, 0) Γϕβ,ε (t− a) da

Γϕβ,ε (t) =
∫ +∞

t
β (a) Iϕε (t, a, a− t)ϕ (a− t) da

+
∫ t
0
β (a) Iϕε (t, a, 0) Γϕβ,ε (t− a) da.

(2.12)

3 Proofs of the main results

We start this section with a preliminary estimate.

Lemma 3.1 Let Assumption 1.1 be satisfied. Let p ∈ [1,+∞). Then for each
ϕ ∈ Lp+(0,∞) we have the following upper bound

∥∥∥Û(t)ϕ
∥∥∥
Lp

≤ ‖ϕ‖Lp(0,∞) e
‖β‖

p
Lq

p
t, ∀t ≥ 0, (3.1)

and ∥∥∥Ûε(t)ϕ
∥∥∥
Lp

≤ ‖ϕ‖Lp(0,∞) e
‖β‖

p
Lq

p
t, ∀t ≥ 0. (3.2)

As a consequence we deduce that for each γ ∈ Lq+ ((0,∞);R) we have for each
ε > 0, ϕ ∈ Lp+ ((0,∞);R)

0 ≤ Γϕγ,ε (t) ≤ ‖γ‖Lq ‖ϕ‖Lp e
‖β‖

p
Lq

p
t, ∀t ≥ 0. (3.3)
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Proof. The proof of the two inequalities are similar. Let us for example consider
inequality (3.2). By using (2.10) we obtain

∫ +∞

0

|uϕε (t, a)|
p
da ≤

∫ +∞

0

|ϕ (l − t)|
p
dl +

∫ t

0

∣∣∣Γϕβ,ε(t− r)
∣∣∣
p

dr

≤ ‖ϕ‖
p
Lp +

∫ t

0

∣∣∣∣
∫ +∞

0

β(σ)uϕ(t− r, σ)dσ

∣∣∣∣
p

dr

≤ ‖ϕ‖
p
Lp + ‖β‖

p
Lq

∫ t

0

‖uϕ(r, .)‖
p
Lp dr,

and the result follows from Gronwall’s lemma.

3.1 Preliminary estimates

To derive the main results of this paper it will be important to give some esti-
mates of the quantity

∫ +∞

0

ψ (a) (uϕε (t, a)− uϕ (t, a)) da,

for some given test function ψ ∈ Lq(0,∞). To do so we shall re-write the above
quantity as follows

∫ +∞

0
ψ (a) (uϕε (t, a)− uϕ (t, a)) da =

∫ t
0
ψ (a)Hϕ

ε (a, t− a) da

+
∫ +∞

t
ψ (a)J ϕ

ε (a, a− t)ϕ (a− t) da,
(3.4)

where we have set for each t ∈ [0, τ ] ,

Hϕ
ε (a, t− a) := Iϕ (t, a, 0) e−Γϕγ2 (t−a)Γϕβ (t− a)− Iϕε (t, a, 0) Γϕβ,ε (t− a) , ∀a ≤ t,

(3.5)
and

J ϕ
ε (a, a− t) := Iϕ (t, a, a− t)− Iϕε (t, a, a− t) , ∀a ≥ t. (3.6)

Let us first derive some Lipschitz estimates independent of ε for some useful
linear form, namely of the form Γϕγ2,ε.

Lemma 3.2 Let Assumptions 1.1 and 1.3 be satisfied. Let τ > 0 and M > 0.
Then for each ε ∈ (0, 1] and each ϕ ∈ Lp+ ((0,∞);R) with ‖ϕ‖Lp ≤ M, the
map t 7→ Γϕγ2,ε (t) is Lipschitz continuous on [0, τ ], and we have the following
estimate ∥∥Γϕγ2,ε

∥∥
Lip,[0,τ ]

≤ κγ2 (τ,M)Me
‖β‖

p
Lq

p
τ (3.7)

where
∥∥Γϕγ2,ε

∥∥
Lip,[0,τ ]

:= sup
t,s∈[0,τ ]:t 6=s

∣∣Γϕγ2,ε(t)− Γϕγ2,ε(s)
∣∣

|t− s|
,
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and the constant

κγ2 (τ,M) :=
∥∥∥γ′

2

∥∥∥
Lq

+ ‖µ‖∞ ‖γ2‖Lq

+m∞ ‖h‖∞ ‖γ2‖Lq + ‖γ2‖Lq κ̂Me
‖β‖

p
Lq

p
τ

where κ̂ is defined in (1.6) and

m∞ := sup

x∈



0,‖γ1‖LqMe

‖β‖
p
Lq

p
τ





m(x).

Proof. By choosing the initial distribution ϕ smooth enough that is to say that

D =

{
ϕ ∈W 1,p (0,+∞) : ϕ(0) =

∫ +∞

0

β(a)ϕ(a)da

}

then it is well known that t→ uϕε (t, .) is from [0,+∞) into Lp (0,+∞) , and for
t ≥ 0,

uϕε (t, .) ∈W 1,p (0,+∞) with uϕε (t, 0) =

∫ +∞

0

β(a)uϕε (t, a) da.

Hence for such an initial distribution t 7→ Γϕγ2,ε (t) is continuously differentiable
and we have

dΓϕγ2,ε (t)

dt
=

∫ +∞

0

γ2 (a)
∂uϕε (t, a)

∂t
da

= −

∫ +∞

0

γ2 (a)
∂uϕε (t, a)

∂a
da−

∫ +∞

0

γ2 (a)µ (a)u
ϕ
ε (t, a) da

−m
(
Γϕγ1,ε (t)

) ∫ +∞

0

γ2 (a)h (a)u
ϕ
ε (t, a) da

−Γϕγ2,ε (t)

∫ +∞

0

γ2 (a)
1

ε
1[0,ε] (a)u

ϕ
ε (t, a) da,
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since γ2 (0) = 0, by integrating by parts we obtain

dΓϕγ2,ε (t)

dt
= γ2(0)

∫ +∞

0

β(a)uϕε (t, a) da+

∫ +∞

0

γ′2 (a)u
ϕ
ε (t, a) da

−

∫ +∞

0

γ2 (a)µ (a)u
ϕ
ε (t, a) da

−m
(
Γϕ1,ε (t)

) ∫ +∞

0

γ2 (a)h (a)u
ϕ
ε (t, a) da

−Γϕγ2,ε (t)

∫ +∞

0

γ2 (a)
1

ε
1[0,ε] (a)u

ϕ
ε (t, a) da,

=

∫ +∞

0

γ′2 (a)u
ϕ
ε (t, a) da

−

∫ +∞

0

γ2 (a)µ (a)u
ϕ
ε (t, a) da

−m

(∫ +∞

0

γ1 (a)u
ϕ
ε (t, a) da

)∫ +∞

0

γ2 (a)h (a)u
ϕ
ε (t, a) da

−

(∫ +∞

0

γ2 (a)u
ϕ
ε (t, a) da

)(∫ +∞

0

γ2 (a)
1

ε
1[0,ε] (a)u

ϕ
ε (t, a) da

)
.

Using Holder’s inequality and Lemma 3.1, we obtain (3.7).
Now let ϕ ∈ Lp+ (0,+∞). Since D ∩ Lp+ (0,+∞) and dense in Lp+ (0,+∞) ,

we can find a sequence {ϕn}n≥0 ⊂ D ∩ Lp+ (0,+∞) such that

ϕn →
n→+∞

ϕ in Lp (0,+∞) .

Therefore from the fact that

∣∣Γϕnγ,ε (s)− Γϕnγ,ε (l)
∣∣ ≤ κγ (t,M) |s− l| , ∀s, l ∈ [0, t] , ∀n ≥ 0.

Passing to the limit n→ ∞ and using the continuity of the semiflow with respect
to the initial value, we obtain

∣∣Γϕγ,ε (s)− Γϕγ,ε (l)
∣∣ ≤ κγ (t,M) |s− l| , ∀s, l ∈ [0, t] , ∀ϕ ∈ X0+,

this completes the proof of Lemma 3.2.
Now we are ready to give the estimates which are the key point to prove our

main results.

Lemma 3.3 Let Assumptions 1.1 and 1.3 and be satisfied. Let τ > 0 and
M > 0. Then there exists a constant C0 = C0(τ,M) > 0 such that for each
ε ∈ (0, 1] ,

∫ t
0
|ψ (a)| |Hϕ

ε (a, t− a)| da

≤ C0

[
‖ψ‖Lqε

1
p +

∫ t
0
(|ψ (t− r)|+ ‖ψ‖Lq )Fε(ϕ)(r)dr

] (3.8)
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whenever ϕ ∈ Lp+ ((0,+∞) ,R) with ‖ϕ‖Lp ≤M, t ∈ [0, τ ], ψ ∈ Lq ((0,+∞) ,R) , and

Fε(ϕ)(t) =
∑

γ=γ1,γ2,β

∣∣Γϕγ,ε (t)− Γϕγ (t)
∣∣ , ∀r ∈ [0, τ ] . (3.9)

Proof. Let ϕ ∈ Lp+ ((0,∞),R) be such that ‖ϕ‖Lp ≤M and ψ ∈ Lq ((0,+∞) ,R) . Let
ε ∈ (0, 1]. Then for each t ∈ [0, τ ] and each a ∈ [0, t] ,

Hϕ
ε (a, t− a) =

[
Iϕ (t, a, 0) e−Γϕγ2 (t−a) − Iϕε (a, 0)

]
Γϕβ (t−a)+I

ϕ
ε (t, a, 0)

[
Γϕβ (t− a)− Γϕβ,ε (t− a)

]
.

Recall that
|Iϕε (t, a, 0)| ≤ 1, ∀a ∈ [0, t] , ∀t ≤ τ,

hence
∫ t

0

|ψ (a)| |Hϕ
ε (a, t− a)| da ≤

∥∥∥Γϕβ
∥∥∥
∞,[0,τ ]

∫ t

0

|ψ (a)|
∣∣Iϕ (t, a, 0) exp

(
−Γϕγ2(t− a)

)
− Iϕε (t, a, 0)

∣∣ da

+

∫ t

0

|ψ (a)|
∣∣∣Γϕβ (t− a)− Γϕβ,ε (t− a)

∣∣∣ da.

It remains to evaluate the integral

I1 =

∫ t

0

|ψ (a)|
∣∣Iϕ (t, a, 0) exp

(
−Γϕγ2(t− a)

)
− Iϕε (t, a, 0)

∣∣ da.

Since

Iϕ (t, a, 0) exp
(
−Γϕγ2(t− a)

)
= exp

(
−

∫ a

0

[
µ(r) +m

(
Γϕγ1(r + t− a)

)
h(r)

]
dr − Γϕγ2(t− a)

)
,

and

Iϕε (t, a, 0) = exp

(
−

∫ a

0

[
µ (r) +m

(
Γϕγ1,ε (r + t− a)

)
h(r)

]
dr −

∫ min(ε,a)

0

1

ε
Γϕγ2,ε (r + t− a) dr

)

we deduce that
∣∣Iϕ (t, a, 0) exp

(
−Γϕγ2(t− a)

)
− Iϕε (t, a, 0)

∣∣

≤ ‖m‖Lip,[0,C1]
‖h‖L∞

∫ a

0

∣∣Γϕγ1 (r + t− a)− Γϕγ1,ε (r + t− a)
∣∣ dr

+

∣∣∣∣∣Γ
ϕ
γ2(t− a)−

∫ min(ε,a)

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣∣

≤ ‖m‖Lip,[0,C1]
‖h‖L∞

∫ a

0

∣∣Γϕγ1 (t− l)− Γϕγ1,ε (t− l)
∣∣ dl

+
∣∣Γϕγ2(t− a)− Γϕγ2,ε (t− a)

∣∣

+

∣∣∣∣∣Γ
ϕ
γ2,ε (t− a)−

∫ min(ε,a)

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣∣
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where C1 = ‖γ1‖Lq Me
‖β‖

p
Lq

p
τ . Next let us set

C2 := ‖m‖Lip,[0,C1]
‖h‖L∞ τ1/p.

Then by using Holder’s inequality, we obtain

I1 ≤ C2

∫ t

0

‖ψ‖Lq
∣∣Γϕγ1 (t− l)− Γϕγ1,ε (t− l)

∣∣ dlda

+

∫ t

0

|ψ (a)|
∣∣Γϕγ2(t− a)− Γϕγ2,ε (t− a)

∣∣ da

+

∫ t

0

|ψ (a)|

∣∣∣∣∣Γ
ϕ
γ2,ε (t− a)−

∫ min(ε,a)

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣∣ da.

Now it remains to evaluate

I2 :=

∫ t

0

|ψ (a)|

∣∣∣∣∣Γ
ϕ
γ2,ε (t− a)−

∫ min(ε,a)

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣∣ da.

If t ≤ ε, we have

I2 ≤

∫ t

0

|ψ (a)|

[
Γϕγ2,ε (t− a) +

∫ a

0

1

ε
Γϕγ2,ε (r + t− a) dr

]
da

≤ C3

∫ ε

0

|ψ (a)| da

with C3 := 2 ‖γ2‖Lq Me
‖β‖

p
Lq

p
τ . Hence by using Holder’s inequality, we obtain

I2 ≤ C3ε
1/p‖ψ‖Lq .

If t ≥ ε, we have

I2 : =

∫ ε

0

|ψ (a)|

∣∣∣∣Γ
ϕ
γ2,ε (t− a)−

∫ a

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣ da

+

∫ t

ε

|ψ (a)|

∣∣∣∣Γ
ϕ
γ2,ε (t− a)−

∫ ε

0

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣ da

≤ C3ε
1/p‖ψ‖Lq

+

∫ t

ε

|ψ (a)|
1

ε

∫ ε

0

∣∣Γϕγ2,ε (t− a)− Γϕγ2,ε (r + t− a)
∣∣ drda

≤ C3ε
1/p‖ψ‖Lq

+
∥∥Γϕγ2,ε

∥∥
Lip,[0,τ ]

∫ t

ε

|ψ (a)|
1

ε

∫ ε

0

rdrda

= C3ε
1/p‖ψ‖Lq +

∥∥Γϕγ2,ε
∥∥
Lip,[0,τ ]

ε

2

∫ τ

0

|ψ (a)| da

≤ C3ε
1/p‖ψ‖Lq +

∥∥Γϕγ2,ε
∥∥
Lip,[0,τ ]

ε

2
τ1/p‖ψ‖Lq .

the result follows.
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Lemma 3.4 Let Assumptions 1.1 and 1.3 be satisfied. Let τ > 0 and M > 0.
Then there exists a constant Ĉ0 = Ĉ0(τ,M) > 0 such that for each ε ∈ (0, 1] ,

∫ +∞

t
|ψ (a)| |J ϕ

ε (a, a− t)| |ϕ (a− t)| da

≤ Ĉ0

[
‖ψ‖Lq

∫ t
0

∣∣Γϕγ1(r)− Γϕγ1,ε (r)
∣∣ dr +

∫ ε
0
|ψ (a+ t)| |ϕ (a)| da

]
,

(3.10)

whenever ϕ ∈ Lp+ ((0,+∞) ;R) with ‖ϕ‖Lp ≤M , t ∈ [0, τ ], and ψ ∈ Lq ((0,+∞) ;R) .

Proof. Let M > 0 and τ > 0 be given. Let ϕ ∈ Lp+ ((0,+∞) ;R) be given such
that ‖ϕ‖Lp ≤M . Then we have for each a ≥ t and for each t ∈ [0, τ ] ,

J ϕ
ε (a, a− t) = Iϕε (t, a, a− t)− Iϕ (t, a, a− t)

= exp

(
−
∫ a
a−t

[
µ (r) +m

(
Γϕγ1,ε (r + t− a)

)
h(r)

]
dr −

∫min(ε,a)

min(ε,a−t)

1

ε
Γϕγ2,ε (r + t− a) dr

)

− exp
(
−
∫ a
a−t

[
µ(r) +m

(
Γϕγ1(r + t− a)

)
h(r)

]
dr
)

≤
∣∣∣
∫ a
a−t

[
m
(
Γϕγ1,ε (r + t− a)

)
−m

(
Γϕγ1(r + t− a)

)]
h(r)dr

∣∣∣

+

∣∣∣∣
∫min(ε,a)

min(ε,a−t)

1

ε
Γϕγ2,ε (r + t− a) dr

∣∣∣∣

Let ψ ∈ Lq ((0,+∞) ,R) . Then

I1 :=
∫ +∞

t
|ψ (a)| |Jϕε (a, a− t)| |ϕ (a− t)| da

≤ ‖m‖Lip,[0,C1]
‖h‖L∞

∫ +∞

t
|ψ (a)|

(∫ t
0

∣∣Γϕγ1(l)− Γϕγ1,ε (l)
∣∣ dl
)
|ϕ (a− t)| da

+
∫ +∞

t
|ψ (a)|

∣∣∣∣
∫min(ε,a)+t−a

min(ε,a−t)+t−a

1

ε
Γϕγ2,ε (l) dl

∣∣∣∣ |ϕ (a− t)| da

= ‖m‖Lip,[0,C1]
‖h‖L∞

∫ +∞

t
|ψ (a)|

(∫ t
0

∣∣Γϕγ1(l)− Γϕγ1,ε (l)
∣∣ dl
)
|ϕ (a− t)| da

+
∫ t+ε
t

|ψ (a)|

∣∣∣∣
∫min(ε,a)+t−a

min(ε,a−t)+t−a

1

ε
Γϕγ2,ε (l) dl

∣∣∣∣ |ϕ (a− t)| da

therefore we obtain

I1 ≤ ‖m‖Lip,[0,C1]
‖h‖L∞

∫ +∞

t

|ψ (a)|

(∫ t

0

∣∣Γϕγ1(l)− Γϕγ1,ε (l)
∣∣ dl
)
|ϕ (a− t)| da

+
∥∥Γϕγ2,ε

∥∥
∞,[0,τ ]

∫ t+ε

t

|ψ (a)| |ϕ (a− t)| da

and the result follows.

3.2 Proof of Theorem 1.7

Lemma 3.5 (Gronwall’s like inequality) Let τ > 0 be fixed and f ∈ Lp+ ((0, τ) ,R) . Assume
in addition that there exist two constants α ≥ 0 and β ≥ 0 such that

0 ≤ f (t) ≤ α+ β

(∫ t

0

f (s)
p
ds

) 1
p

, for almost every t ∈ (0, τ) . (3.11)
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Then

f (t) ≤ 2α exp

(
2pβp

p
t

)
, for almost every t ∈ (0, τ) .

Proof. We first observe that

(a+ b)
p
≤ (2max(a, b))

p
≤ 2p (ap + bp) (3.12)

whenever a ≥ 0, b ≥ 0 and p ∈ [1,∞) . The inequality (3.11) implies

f (t)
p
≤

(
α+ β

(∫ t

0

f (s)
p
ds

) 1
p

)p

and by using (3.12) we obtain

f (t)
p
≤ 2p

(
αp + βp

∫ t

0

f (s)
p
ds

)

and by using Gronwall inequality in L1 the result follows.

Proof. (of Theorem 1.7) Let B ⊂ Lp+ ((0,+∞) ;R) be a given bounded set.
Let τ > 0 be given and fixed. Since B is bounded, we set

M := sup
ϕ∈B

‖ϕ‖Lp .

Recalling that

Fε(ϕ)(t) :=
∑

γ=γ1,γ2,β

∣∣Γϕγ,ε (t)− Γϕγ (t)
∣∣ ,

we first observe that

Fε(ϕ)(t) ≤ C̃0 ‖u
ϕ
ε (t, .)− uϕ (t, .)‖Lp ,

with
C̃0 := (‖γ1‖Lq + ‖γ2‖Lq + ‖β‖Lq ) .

Moreover it is well known that

‖uϕε (t, .)− uϕ (t, .)‖Lp = sup
ψ∈Lq((0,+∞);R)

‖ψ‖Lq≤1

∫ +∞

0

ψ (a) (uϕε (t, a)− uϕ (t, a)) da.

Let ψ ∈ Lq ((0,+∞) ;R) with ‖ψ‖Lq ≤ 1. We have

∫ +∞

0
ψ (a) (uϕε (t, a)− uϕ (t, a)) da =

∫ t
0
ψ (a)Hϕ

ε (a, t− a) da

+
∫ +∞

t
ψ (a)J ϕ

ε (a, a− t)ϕ (a− t) da.

therefore due to Lemma 3.4 and Lemma 3.3, we obtain for each ε ∈ (0, 1], each
t ∈ [0, τ ] and each ϕ ∈ B that

Fε(ϕ)(t) ≤ C1

[
ε

1
p +

∫ t

0

(|ψ (t− r)|+ 2)Fε(ϕ)(r)dr +

∫ ε

0

|ψ (a+ t)| |ϕ (a)| da

]
,
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where
C1 := C̃0

(
C0 + Ĉ0

)
.

So by using Holder’s inequality, we deduce that

Fε(ϕ)(t) ≤ C1

[[
ε

1
p +

(∫ ε

0

|ϕ (a)|
p
da

)1/p
]
+
[
‖|ψ|+ 2‖Lq(0,τ)

](∫ t

0

Fε(ϕ)(r)
pdr

)1/p
]
,

and this implies the following:

Fε(ϕ)(t) ≤ C1

[[
ε

1
p +

(∫ ε

0

|ϕ (a)|
p
da

)1/p
]
+
[
1 + 2τ1/q

](∫ t

0

Fε(ϕ)(r)
pdr

)1/p
]
.

By applying Gronwall’s like inequality given in Lemma 3.5, we obtain

Fε(ϕ)(t) ≤ 2C1

[
ε

1
p +

(∫ ε

0

|ϕ (a)|
p
da

)1/p
]
exp

(
2pCp1

[
1 + 2τ1/q

]p

p
τ

)
,

the proof of Theorem 1.7 is completed.

3.3 Proof of Theorem 1.10

By definition we have

Fε(ϕ)(t) =
∑

γ=γ1,γ2,β

∣∣∣∣
∫ ∞

0

γ (a) (uϕε (t, a)− uϕ (t, a)) da

∣∣∣∣

≤

∫ ∞

0


 ∑

γ=γ1,γ2,β

|γ (a)|


 |uϕε (t, a)− uϕ (t, a)| da.

Set
χ :=

∑

γ=γ1,γ2,β

|γ(.)| ∈ Lq+ (0,+∞) .

By using the same argument as in the proof of Theorem 1.7 with ψ = χ, we
obtain

Fε(ϕ)(t) ≤ Ĉ1

[
ε

1
p +

∫ t

0

(|χ (t− r)|+ 2)Fε(ϕ)(r)dr +

∫ ε

0

|χ (a+ t)| |ϕ (a)| da

]
,

for some constant Ĉ1 = Ĉ1(τ,M, ‖χ‖Lq ) > 0.
Now Holder’s inequality leads us to

Fε(ϕ)(t) ≤ Ĉ1

[(
ε

1
p +M

(∫ ε

0

|χ (a+ t)|
q
da

)1/q
)

+
[
‖|χ|+ 2‖Lq(0,τ)

](∫ t

0

Fε(ϕ)(r)
pdr

)1/p
]
.
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Hence Gronwall’s inequality (see Lemma 3.5) provides

Fε(ϕ)(t) ≤ 2Ĉ1

[
ε

1
p +M

(∫ t+ε

t

|χ (a)|
q
da

)1/q
]
exp



2pĈp1

[
‖|χ|+ 2‖Lq(0,τ)

]p

p
τ


 .

Next, we infer from the continuity of the map t→
∫ t
0
|χ (a)|

q
da that

sup
t∈[0,τ ] and ϕ∈B

Fε(ϕ)(t) → 0 as ε→ 0.

Let ψ ∈ Lp (0,+∞) be given and fixed. We have

I(t) :=
∫ +∞

0
ψ (a) (uϕε (t, a)− uϕ (t, a)) da =

∫ t
0
ψ (a)Hϕ

ε (a, t− a) da

+
∫ +∞

t
ψ (a)J ϕ

ε (a, a− t)ϕ (a− t) da.

And by using the same arguments as in the proof Theorem 1.7 we obtain

|I(t)| ≤ Ĉ1

[
ε

1
p +

∫ t

0

(|ψ (t− r)|+ 2)Fε(ϕ)(r)dr +

∫ ε

0

|ψ (a+ t)| |ϕ (a)| da

]
,

that completes the proof of the result.
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