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Abstract

The main purpose of this paper is to formulate a deterministic mathematical model for the
transmission of malaria which considers two host types in the human population. The one type
is called ”child” comprising to all humans who have never acquired immunity against the malaria
and the other one ”adult”. Children are divided into susceptible, exposed and infectious and
adults are divided into susceptible, exposed, infectious and semi-immune. We obtain explicit
formula for the reproductive number, R0 in function of the weight of the transmission adult-
mosquito-adult, R0a, and the weight of the transmission child-mosquito-child, R0e. Then we study
the existence of endemic equilibria by using bifurcation analysis. We give a simple criterion for
forward and backward bifurcation when R0 crosses one. We explore the possibility of a control
of the malaria through a specific sub-group as children or adults or mosquitoes. We also provide
numerical examples.

Keywords: Malaria; Reproductive number, Type-reproduction number, Bifurcation analysis.

1 Introduction

Malaria is a mosquito-borne infection caused by protozoa of the genus plasmodium. Four species of
the parasite, namely: P. falciparum, P. vivax, P. ovale and P. malariae infect humans. P. falciparum
causes the most serious illness and is the most widespread in the tropics. It is estimated that about
1.5–3 million people, mostly children, die of malaria every year [41]. The parasites are transmitted
indirectly from human to human by the bite of infected female mosquitos of the genus Anopheles.
The biology of the four species of plasmodium is generally similar and consists of two distinct
phases: sexual at the mosquito host and asexual at the human host. The asexual phase consists
of at least three forms: sporozoites, merozoites, and trophozoites. After the bite by an infectious
mosquito, the sporozoite (parasite) enter the victims blood stream and invade a variety of liver cells.

1



Here, they give rise to the merozoite form after replication. The merozoites invade red blood cells
and they become the trophozoite form. Some merozoites differentiate into the sexual forms of the
parasite, either male or female, called gametocytes. Gametocytes are transmitted to a mosquito
during the blood meal of an infected person. In summary, gametocytes thus play a key role in
malaria transmission from human to mosquito and the sporozoites from mosquito to human.

Starting by the Ross’s model [38], mathematical modeling of malaria has known many refine-
ments. In 1957, Macdonald [27] reformulated the Ross’s model; the addition of acquired immunity
by Dietz et al. [13] has been the most outstanding. Further, other extensions has been made: on
acquired immunity in malaria which has been conducted in [3] and [6], on environmental effects
in [26, 43] and [44], on the spread of resistance to antimalarial drug in [5, 22] and [33], or on the
coevolution of immunity in [23]. Ngwa and Shu [32] and Ngwa [31] proposed a model involving
the growing of both population (humans and mosquitoes). Chitnis et al. [10, 9] included human
immigration.

These models do not make distinction between the susceptibility, the exposedness and the in-
fectivity of human host. However, the susceptibility of human host is depending on whether host
has lost his immunity (and is then becoming susceptible) or has not yet acquired it. immunity; in
the same way, the infectivity is differentiated following the host type. Indeed, acquired immunity
is developed after repeated infections generally after many years of chronic infection. It is never
complete and after interruption of exposure, human can lose his immunity and becomes susceptible
(see [3, 6, 4]). But by immunology memory, lost immunity can be rapidly restored when human
begin to be re-exposed against to infection. Humans who have acquired their immunity can tolerate
parasites without developing symptoms. They may become asymptomatic carriers of parasites in
the form of gametocyte but their infectivity of gametocytes to mosquitoes is very low following the
known principle transmission-blocking immunity (cf. [11, 20, 36]). New born (of a mother immune)
are protected due to maternal antibodies in the first 3-6 months of life. After these first months
they are vulnerable to clinical malaria episodes until they have built their own immunity [19] and
[39].

In order to differentiate the susceptibility, the exposedness and the infectivity of human host,
we develop in this paper a deterministic mathematical model for the transmission of malaria which
considers two host types in the human population. The one type host is considered vulnerable
because he can suffer and/or die of malaria and the second host type cannot1 die of malaria but
can only suffer. We assume that all humans who have never acquired immunity against the malaria
are considered vulnerable and the other ones are assumed not vulnerable. Next, we call ”child” any
human considered as vulnerable and ”adult” any human considered as not vulnerable and denote
by, e, and, a, respectively the children and adults index. In endemic area, the real children2 under
5 years of age are in majority the most vulnerable of malaria [28, 39, 19, 41, 34] and [8] because
they have not acquired their own immunity. Humans old in age (real adults) in a non-endemic area
such as the East African highlands and many parts of South America and Asia are considered as
some children according to our definition. Indeed, it has been shown that real children and real
adults have the same risk of malarial disease and infection depending on their first infections [7] and
[1]. That is what motivates us to disregard the age of the individual but rather the immunity of
the individual to structure the population. We model children group with a Susceptible-Exposed-

1Although this host type can die of malaria, the death rate is very weak so that we can neglect it in order to
simplify the model.

2The real children within the meaning of the word.
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Infectious-Susceptible (SeEeIeSe) model type until some children become adults and remains for
life and will follow the Susceptible-Exposed-Infectious-Recovered-Susceptible (SaEaIaRaSa) model
type. We model mosquito population with Susceptible-Exposed-Infectious (SvEvIv) model type.
Our goal is to develop a model in order to prevent malaria in areas of low, intermediary and high
transmission. This allows us to discuss on the effort required to control malaria through a specific
subgroup as the children group, adults group or mosquitoes group following the area studied and
the reservoir of infection for each sub-group.

The paper is organized as follows: In Section 2 we briefly outline the derivation of the model
and investigate the existence and stability of steady-state solution in Section 3. In Section 4, we
present some conditions required to control the malaria. Numerical simulations and some concluding
remarks will follow respectively in Section 5 and 6.

2 Malaria model
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Figure 1: A schematic of the mathematical model for malaria transmission involving the human host
susceptibility, exposedness and infectivity with variable children, adults and mosquito populations.

In order to derive our model, we divide the human population into seven subclasses (see figure
1): susceptible children Se, susceptible adults Sa, exposed children Ee, exposed adults Ea, infectious
children Ie, infectious adults Ia and immune3 adults Ra. Hence the total size of the population at
any time t is denoted by Nh(t) = Se(t) + Sa(t) + Ee(t) + Ea(t) + Ie(t) + Ia(t) +Ra(t).
We divide the mosquito population into three subclasses: susceptible, Sv; exposed, Ev; and infec-
tious, Iv. Hence the total size of the mosquito population at any time t is denoted by Nv(t) =
Sv(t) + Ev(t) + Iv(t).

3Immune is also call semi-immune because they are asymptotic carriers of parasites and are slightly infectious.
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We begin to make the following assumptions:
(H1) We assume that both humans and mosquitoes are born susceptible.
(H2) We also suppose an immigration of children into children susceptible class at rate p ·Λh and an
immigration adults into adults susceptible class at rate (1−p) ·Λh where p ∈ [0, 1] is the probability
for an immigrant to be a child, (1− p) is the probability for an immigrant to be a children and Λh

is the constant immigration rate of humans at any time t.
(H3) In order to simplify the model, we neglect as in Chitnis [10] immigration of exposed, infectious
and semi-immune humans.

Children enter the susceptible class, Se, either through birth at a per capita birth rate λh or
through immigration at a constant rate p·Λh or by migration of an infectious child at rate ρe. Adults
enter the susceptible class, Sa, either through immigration at rate (1 − p) · Λh or by migration of
adults in class Ra at rate βa. Mosquitoes enter the susceptible class, Sv by birth at a per capita
birth rate of mosquitoes λv.

When an infectious mosquito (in class Iv) bites a susceptible child (resp. adult), the parasite
enters the child (resp. adult) body with some probability cve (resp. cva) and the child (resp. adult)
will move to the exposed class, Ee, (resp. Ea). After a given time the child (resp. adult) moves from
the exposed class into the infectious class, Ie, (resp. Ia) at a rate νe (resp. νa). Infectious children
can go back to the susceptible class, Se, at a rate ρe if they have not yet acquired their immunity or
move to the immune class, Ra, at a rate αe after many years of chronic infection. By immunology
memory, immunity of infectious adults in class Ia might be rapidly restored when they begin to
be re-exposed at infection. Consequently, we assume that infectious adults move to the immune
class, Ra, at a rate αa before becoming susceptible. Immune individuals in class Ra, can lose their
immunity if they have not a continuous exposure to the parasite and go back to the susceptible
class, Sa. Children leave the population through a density-dependent per capita natural death rate
fh and through a per capita disease-induced death rate γe. But adults leave the population only
through a per capita density-dependent natural death rate fh.

When a susceptible mosquito bites an infectious child (resp. adult, resp. immune) the parasite
enters the mosquito with some probability cev (resp. cav, resp. c̃av)4 and the mosquito moves from
the susceptible to the exposed class Ev. The exposed mosquito becomes infectious and enters the
class Iv after a given time and remains infectious for life. Mosquitoes leave the population through
a per capita density-dependent natural death rate fv.

Let µh (resp. µv) be the density independent part of the death rate for humans (resp. mosquitoes)
and µ2h (resp. µ2v) be the density dependent part of the death rate for humans (resp. mosquitoes).
As in [32] and [10], we assume fh(Nh) = µh + µ2hNh and fv(Nv) = µv + µ2vNv.

Let ne, (resp. na) be the average number of bites given to children (resp. adults) by one
mosquito per unit time.

The probabilities cve, cva, cev, cav and c̃av are assumed belong to the interval ]0,1[, the parameters
λh, λv, νe, νa, νv, αe αa, ρe, βa, µv, µ2v, µh, µ2h, ne, na, and Λh are assumed to be positive except
for the disease-induced death rate, γe, which is assumed to be nonnegative.

Using the standard incidence as in the model of Ngwa and shu and Ross-Macdonald, define
respectively the infection incidence from mosquitoes to adults, ka, from mosquitoes to children, ke,

4The probability of transmission of the infection from infectious adults is much lower than the one from infectious
children (cev ≥ cav) and the probability of infection transmission from recovered humans is much lower than the one
from infectious adults (cav ≥ c̃av) (cf. [11, 20, 36]).
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from adults and children to mosquitoes, kv, at any time t as follows

ka = cvana
Iv
Nh

, ke = cvene
Iv
Nh

, kv = cavna
Ia
Nh

+ cevne
Ie
Nh

+ c̃avna
Ra

Nh
. (1)

Now, we write the model describing the spread of malaria in the form:

dSe

dt
= pΛh + λhNh + ρeIe − fh(Nh)Se − ke(t)Se, (2a)

dSa

dt
= (1− p)Λh + βaRa − fh(Nh)Sa − ka(t)Sa, (2b)

dEe

dt
= ke(t)Se − (νe + fh(Nh))Ee, (2c)

dEa

dt
= ka(t)Sa − (νa + fh(Nh))Ea, (2d)

dIe
dt

= νeEe − (αe + γe + ρe + fh(Nh))Ie, (2e)

dIa
dt

= νaEa − (αa + fh(Nh))Ia, (2f)

dRa

dt
= αeIe + αaIa − (βa + fh(Nh))Ra, (2g)

dSv

dt
= λvNv − fv(Nv)Sv − kv(t)Sv, (2h)

dEv

dt
= kv(t)Sv − (νv + fv(Nv))Ev, (2i)

dIv
dt

= νvEv − fv(Nv)Iv. (2j)

By adding up the equations (2a)-(2g) (resp. (2h)-(2k)) we obtain the equation for human (resp.
mosquitoes) total population:

dNh

dt
= Λh + λhNh − fh(Nh)Nh − γeIe, (3a)

dNv

dt
= λvNv − fv(Nv)Nv. (3b)

To analyze this model, we make the change of variables:

se =
Se

Nh
, sa =

Sa

Nh
, ee =

Ee

Nh
, ea =

Ea

Nh
, ie =

Ie
Nh

, ia =
Ia
Nh

, ra =
Ra

Nh
,

sv =
Sv

Nv
, ev =

Ev

Nv
, iv =

Iv
Nv

,

(4)

so that
(se + sa) + (ee + ea) + (ie + ia) + ra = 1, sv + ev + iv = 1. (5)

Using precedences, the infection rates (1) become

ka = cvanaiv ·
Nv

Nh
, ke = cveneiv ·

Nv

Nh
, kv = cavnaia + cevneie + c̃avnara. (6)
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If we introduce the following variables

M1 =
Λh

Nh
p+ λh, M2 =

Λh

Nh
+ λh, M3 =

Λh

Nh
+ νe + λh,

M4 =
Λh

Nh
+ νa + λh, M5 =

Λh

Nh
+ λh + αe + γe + ρe,

M6 =
Λh

Nh
+ λh + αa, M7 =

Λh

Nh
+ λh + βa, M8 = νv + λv,

(7)

then system (2)-(3) re-writes:

dse

dt
= M1(t)−M2(t)se + ρeie + γeiese − ke(t)se, (8a)

dee
dt

= ke(t)se + γeieee −M3(t)ee, (8b)

dea
dt

= ka(t) · (1− se − (ee + ea)− (ie + ia)− ra) + γeieea −M4(t)ea, (8c)

die
dt

= νeee + γei
2
e −M5(t)ie, (8d)

dia
dt

= νaea + γeieia −M6(t)ia, (8e)

dra
dt

= αeie + αaia + γeiera −M7(t)ra, (8f)

dev
dt

= kv(t) · (1− ev − iv)−M8ev, (8g)

div
dt

= νvev − λviv, (8h)

dNh

dt
= Λh + λhNh − fh(Nh)Nh − γeieNh, (8i)

dNv

dt
= λvNv − fv(Nv)Nv. (8j)

We assume that the initial conditions lie in Ω defined by Ω = Ω1 × Ω2 where

Ω1 = {(se, ee, ea, ie, ia, ra, ev, iv) ∈ [0, 1]8/0 ≤ ev + iv ≤ 1; 0 ≤ se + ee + ea + ie + ia + ra ≤ 1}, (9)

and for λv > µv,

Ω2 =

{
(Nh, Nv) ∈ R2/0 < Nh ≤

λh − µh +
√

(λh − µh)2 + 4µ2hΛh

2µ2h
; 0 < Nv ≤

λv − µv

µ2v

}
. (10)

We denote points in Ω by x = (se, ee, ea, ie, ia, ra, ev, iv, Nh, Nv)t. Then we re-write system (8) in
the compact form

dxi

dt
= fi(x), i = 1, . . . , 10, (11)

and we readily obtain the following result which will guaranty the global well-posedness of malaria
model (8):
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Theorem 1. If the density-dependent mosquito birth rate λv is greater than the density-independent
mosquito death rate µv, for any initial condition in Ω, system (8) has a unique globally defined
solution which remains in Ω for all time t ≥ 0.

Proof. Local existence of solution follows from the regularity of function f = (f1, . . . , f10) which
is of the class C1 in Ω. It remains to show the positivity and boundedness of solutions. We
first show that Ω1 is forward-invariant for all (Nh, Nv) ∈ Ω2. It is easy to see that if xi = 0,
then x′i = dxi/dt = fi(x) ≥ 0, i = 1, . . . , 8. It follows that if ev + iv = 0 then e′v + i′v ≥ 0, if
se + ee + ea + ie + ia + ra = 0 then s′e + e′e + e′a + i′e + i′a + r′a ≥ 0. Moreover, if ev + iv = 1 then
e′v +i′v = −λv < 0, if se+ee+ea+ie+ia+ra = 1 then s′e+e′e+e′a+i′e+i′a+r′a = Λh

Nh
(p−1)−βara < 0

because p ∈ [0, 1].
Next, we show that Ω2 is forward-invariant for all (se, ee, ea, ie, ia, ra, ev, iv) ∈ Ω1. For some
mh,mv > 0 small enough, if Nh = mh, then N ′h > 0 because N ′h = Λh + λhmh − µhmh −
µ2hm

2
h − γeiemh → Λh > 0 as mh → 0; if Nv = mv, then N ′v = mv(λv − µv − µ2vmv) > 0 if

only λv > µv + µ2vmv. It follows that for mv → 0, N ′v > 0 because we have assumed that λv > µv.
It is easy to see that lim supt→∞Nv(t) ≤ (λv − µv)/µ2v and
lim supt→∞Nh(t) ≤ (λh − µh +

√
(λh − µh)2 + 4µ2hΛh)/µ2h. We conclude that the solutions of

malaria model exist globally in Ω.

3 Existence and stability of steady-state solution

In this section, we analyze the existence and stability of equilibria including disease free equilibrium
as well as endemic equilibria. We recall that equilibria for system (8) are defined as the zeros in Ω
of the vector valued function f = (f1, . . . , f10).

3.1 Disease-free equilibrium point and reproductive number

3.1.1 Disease-free equilibrium point

The equilibria solutions for which there is no disease are generally called disease-free equilibrium
point (DFE). A disease will not exist within the three populations if the following classes ee, ea, ie,
ia, ra, ev, iv are all zero. Let xdfe (resp. Xdfe) be the disease free equilibrium with the proportion
(resp. original) variables for malaria model (8) (resp. (2)). The following theorem shows that xdfe

(resp. Xdfe) exists and is unique. Like models (2) and (8) are equivalent xdfe and Xdfe are also.

Theorem 2. The malaria model (2) or (8) has a unique equilibrium point with no disease in the
population on Ω where

xdfe = (s∗e, 0, 0, 0, 0, 0, 0, 0, N
∗
h , N

∗
v ) (12a)

Xdfe = (S∗e , 0, 0, S
∗
a, 0, 0, 0, S

∗
v , 0, 0) (12b)
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and

N∗h =
λh − µh +

√
(λh − µh)2 + 4µ2hΛh

2µ2h
, N∗v =

λv − µv

µ2v
, (13a)

s∗e =
Λh
N∗h
p+ λh

Λh
N∗h

+ λh

, s∗a = 1− s∗e, (13b)

S∗e = s∗eN
∗
h , S∗a = s∗aN

∗
h , (13c)

S∗v = s∗vN
∗
v = 1 ·N∗v . (13d)

The proof is given in Appendix A.1.
Next, at the DFE we simplify the writings as follows. We denoted

M∗i = Mi(N∗h), i = 1, . . . , 8, f∗h = fh(N∗h), f∗v = fv(N∗v ) from (14).

Note also that f∗h = Λh
N∗h

+ λh from (8i) and f∗v = λv from (8j) at the DFE. It follows

M∗3 = f∗h + νe, M∗4 = f∗h + νa, M∗5 = f∗h + αe + γe + ρe,
M∗6 = f∗h + αa, M∗7 = f∗h + βa, M∗8 = M8 = νv + λv.

(14)

3.1.2 Reproductive number R0

A key concept in epidemiology is the basic reproductive number, commonly denoted by R0. Usually,
R0 is defined as the expected number of secondary individuals produced, in a completely susceptible
population, by a typical infected individual during its entire period of infectiousness. In the case
of malaria where the disease is transmitted between two hosts types (humans and mosquitos),
the interpretation of ’secondary individuals’ has lead some authors to define R0 as the number of
humans infected by single infected humans during his entire infectious period (cf. [27, 32, 2]); that is
a definition originally used for malaria. Others Authors define R0 using the next-generation matrix
approach [2, 10, 9] described in [12, 42]. This approach defined R0 as the number of individuals
(humans or mosquitoes) infected by a single infected individual (humans or mosquitoes) during his
entire infectious period, in a population (humans and mosquitoes) which is entirely susceptible. The
difference is that the first definition approximates the total number of infections within a human
class given by one infective human belonging to this class whereas the second one gives the mean
number of new infections per infective in any class per generation where a generation refers to the
infection. We will see in Section 4 that these two definitions depend on the goal we want to reach.

To derive the reproductive number for our model, we use the next generation approach. We have
three host types indexed by e for children, a for adults and v for mosquitoes. The next-generation
matrix K is :

K =

 Kee Kea Kev

Kae Kaa Kav

Kve Kva Kvv

 ,

where each element Krs represents the expected number of secondary cases in host, indexed by s,
produced by a typical primary case in host, indexed by r in a completely susceptible population.
We assume that there are no infections transmission between children, between adults, between
adults and children, only transmission from children to mosquitoes, from mosquitoes to children,
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from adults to mosquitoes, from mosquitoes to adults, therefore Kee = Kaa = Kvv = Kae = Kea.
As a consequence, K simplifies to

K =

 0 0 Kev

0 0 Kav

Kve Kva 0

 . (15)

Like Krs has the concept of reproductive number, it can be easily derived as the product of the
survival probability until the infectious state, the contact number per unit time, the probability of
transmission per contact and the mean duration of the infectious lifetime see [18].

We derive heuristically the elements Kev,Kav,Kve,Kva of K. We recall that the disease-free
equilibrium (DFE) corresponds to steady state solutions where there is no disease within the three
host types; this means that the populations are entirely susceptible. The infectious class corresponds
to variables Ie, Ia, Ra, Iv and the infected class are the variables Ee, Ea, Ev.When a disease is newly
introduced in a population by one infected individual, the next generation approach defines R0

as the average number of secondary cases produced by that infected during his entire infectious
period. In the case of our model, a new infected can be introduced either in the susceptible children
or susceptible adults or susceptible mosquitoes.
• First, we introduce a single newly infected child in population at the DFE state (ie. all adults

and mosquitoes are assumed to be susceptible). Note that this child can infect a mosquito if he
survives in the class Ee and enters respectively in the infectious classes Ie and Ra. Let Kev, be the
expected number of mosquitoes that this child will infect. This child comes out of the class Ee with
a survival probability, νe/(f∗h + νe), and enters the class, Ie, where he/her could infect a susceptible
mosquito if there are infectious contact with a probability cev and a contact number, ne

S∗v
N∗h
, with

a mean duration of the infectious lifetime, 1/(f∗h + αe + γe + ρe), in that class. This child might
become adult in entering the class Ra with a probability νe/(f∗h +νe) ·αa/(f∗h +αe +γe +ρe); where
he could still infect a susceptible mosquito if there are infectious contact with a probability cav and
a contact number, na

S∗v
N∗h
, with a lifetime, 1/(f∗h + βa), in that class. Consequently, we can write

Kev as the sum of expected number of mosquitoes infected by the class Ie denoted, KIe
ev and by the

class Ra denoted KRa
ev , ie.

Kev = KIe
ev +KRa

ev , where (16a)

KIe
ev =

νe

f∗h + νe
· ne

S∗v
N∗h
· cev ·

1
f∗h + αe + γe + ρe

, (16b)

KRa
ev =

νe

f∗h + νe

αe

f∗h + αe + γe + ρe
· na

S∗v
N∗h
· c̃av ·

1
f∗h + βa

. (16c)

• Now, we introduce a single newly infected adult in the population at the DFE state (ie. all
children and mosquitoes are assumed susceptible). Let Kav, be the expected number of mosquitoes
for which this child will infect. Using the same reasoning as previous , we can write Kav as the
sum of expected number of mosquitoes infected by the class Ie denoted, KIa

av and by the class Ra

9



denoted KRa
av , ie.

Kav = KIa
av +KRa

av , where (17a)

KIa
av =

νa

f∗h + νa
· na

S∗v
N∗h
· cav ·

1
f∗h + αa

, (17b)

KRa
av =

νa

f∗h + νa

αa

f∗h + αa
· na

S∗v
N∗h
· c̃av ·

1
f∗h + βa

. (17c)

• Next, we consider adults and children entirely susceptible near the DFE and introduce a single
newly infected mosquito in the mosquito population. Let Kve, (resp. Kva) be the expected number
of susceptible children (resp. adults) for which this mosquito will infect.

This mosquito comes out of the class Ev with a survival probability, νv/(f∗v + νv), and enters
the class, Iv, where it could infect a susceptible children (resp. adult) if there are infectious contact
with a probability cve(resp. cva) and a contact number, ne

S∗e
N∗h

(resp. na
S∗a
N∗h

), with a mean duration
of the infectious lifetime, 1/f∗v , in that class Iv. We define :

Kve =
νv

f∗v + νv
· ne

S∗e
N∗h
· cve ·

1
f∗v
, (18a)

Kva =
νv

f∗v + νv
· na

S∗a
N∗h
· cva ·

1
f∗v
. (18b)

The value of R0 is mathematically defined as the spectral radius of K ( see [12]). Therefore we
can state the following proposition:

Proposition 2.1. The reproductive number for malaria model (2) is explicitly given by the formula
(19) where Kve, Kva, Kev and Kav are respectively defined in (18a), (18b),(16) and (17) :

R0 =
√
Kve ·Kev +Kva ·Kav. (19)

Consider a human population at the DFE without adults. This means that all susceptible adults
are protected by a vaccine or other control measures type. This also corresponds to an area where
there are no adult at the DFE. Therefore S∗a = 0 and S∗e = N∗h ie. s∗e = 1 allowing to take Kva = 0
in Equation (18b). It follows that R0 =

√
K1

ve ·Kev where we denoted K1
ve = Kve when s∗e = 1.

Now, consider a human population at the DFE without children. S∗e = 0, allowing to take Kve = 0
in Equation (18a). It follows R0 =

√
K1

va ·Kav and K1
va = Kva when s∗a = 1.

We can define a reproductive number for an infection due to transmission adult-mosquito-adult
denoted R1

0a, and for an infection due to transmission child-mosquito-child denoted R1
0e so that

R1
0e approaches the average number of children or mosquitoes infected by a single infected child

or mosquito during his entire infectious period in a population (children and mosquitoes) which is
entirely susceptible assuming there are no adult in the population at the DFE; and R1

0a, approaches
the average number of adults or mosquitoes infected by a single infected adult or mosquito during
his entire infectious period, in a population (adults and mosquitoes) which is entirely susceptible
assuming there are no children in the population at the DFE. It is clear that R1

0e =
√
K1

ve ·Kev

and R1
0a =

√
K1

va ·Kav.
If we denote R0a = s∗aR

1
0a and R0e = s∗eR

1
0e, we can interpreted R0a, as the weight of the

transmission adult-mosquito-adult dues to the the susceptibility of adults and R0e, as the weight for
the transmission child-mosquito-child dues to the the susceptibility of adults.
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Therefore, using (19), we can rewrite R0 in function of both weights of transmission R0e and
R0a as follows:

R0 =
√
R2

0e +R2
0a (20)

The local stability of the disease-free equilibrium, Xdfe, is governed by the reproductive number
R0. Using standard methods, we can show that the basic reproductive number R0 defined above
acts as a threshold for the stability of the disease-free equilibrium Xdfe; if R0 < 1 then the DFE is
locally asymptotically stable. This means that introduction of a small number of individuals near
the disease free state does not lead a epidemic. Whereas it is unstable if R0 > 1.

In the following subsection, we simplify the writing of R2
0a and R2

0e by writing it in terms ofM∗i ,
i = 1 . . . 8 as follows:

R2
0a =

νv

M∗8
· nas

∗
a · cva ·

1
λv︸ ︷︷ ︸

Kva

× νa

M∗4
· 1
M∗6
· N
∗
v

N∗h
·
(
nacav + nac̃avαa

1
M∗7

)
︸ ︷︷ ︸

Kav

, (21a)

R2
0e =

νv

M∗8
· nes

∗
e · cve ·

1
λv︸ ︷︷ ︸

Kve

× νe

M∗3
· 1
M∗5
· N
∗
v

N∗h
·
(
necev + nac̃avαe

1
M∗7

)
︸ ︷︷ ︸

Kev

. (21b)

3.2 Bifurcation analysis for R0 near one

An endemic equilibrium point is stationary solution of the evolution system (8) where the compo-
nent are positive. In this case, the disease persists in the population. It is difficult to find an explicit
formula of the endemic equilibrium point because the system of equations (8) is complex. Conse-
quently, we give a simple criterion for existence and stability of super and sub-threshold endemic
equilibria for R0 near one. Before stating these results, we first rewrite the equilibrium equations for
model (8) in two dimensions. We recall that the stationary solution is obtained by solving f(x̄) = 0
where f = (f1 . . . f10) from Equation (11).

Lemma 2.1. The stationary system (8) can be reduced to two dimensions in the form :

F (ū) = 0, ū = (̄ia, īe) ∈ Ua × Ue ⊂ R2, (22)

where F ∈ Cm(Ua × Ue,R2), m ≥ 2, Ua =]− δa, δa[ and Ue =]− δe, δe[ with δe, δa ∈]0, 1[.
Moreover by setting U+

a =]0, δa[ and U+
e =]0, δe[, to each solution of Equation F (ū) = 0 belonging

to the set U+
a ×U+

e correspond to a unique solution of initial stationary problem f(x̄(ū)) = 0 where
x̄(ū) ∈ Ω.

F is explicitly given by Equation (39) and all the details of Lemma 2.1 are proved in Appendix
A.2. Next, we denote by U = Ua×Ue. Now in order to carry out a bifurcation analysis, we re-write
(22) in the form

F (ū, λ) ≡ 0, (23)

where λ is a bifurcation parameter introduced. The latest having the following properties
(A1: λ ∈ V ⊂ R where V is a neighborhood of λ = 0.
(A2): R0 > 1⇐⇒ λ > 0 and R0 = 1 for λ = 0.
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(A3): F (0, λ) = 0 for all λ ∈ V.
(A4): DūF (ū, λ), D2

ūF (ū, λ) ∈ C2(U × V ).
From Theorem 2., there exists a unique DFE; hence the point ū = 0 corresponds to xdfe. Let

(udfe, λ) be the disease-free equilibrium for Equation (23) where udfe(ia, ie) = (0, 0). Assumption
(A3) implies that udfe remains a disease-free equilibrium for all values of λ. Next, we denote by A(λ)
the quantity DūF (udfe, λ). We can then derive the following properties for the function F (ū, λ) :

Lemma 2.2. For each λ ∈ V , matrix A(λ) has two simple eigenvalues σ1(λ) and σ2(λ) such that
σ1(0) = 0; σ2(0) < 0 and σ1(λ) 6= 0 if λ 6= 0.

The above lemma is proved in Appendix A.3. Let v and v∗∗ be the positive right and left
eigenvectors of A(0) corresponding to the null eigenvalue, σ1(0) normalized by vT v = v∗∗v = 1. If
we set h = v∗∗D2

ūF (udfe, 0)〈v, v〉, we can state this following result:

Theorem 3. If h 6= 0 then, there exists a neighborhood U ⊂ U of ū = 0 and a neighborhood V ⊂ V
of λ = 0 such that ∀λ ∈ V, the equilibrium equation (23) has a solution ū(λ) ∈ U \ {0}. Moreover,
the solution ū(λ) is strictly positive if and only the product hσ1(λ) is strictly negative.

The proof of this result directly follows from a general bifurcation result stated for instance in
[14, Appendix 2]. We can now investigate the direction of the bifurcating solution ū(λ).

Corollary 3.1. Let

ηc =
cveneνvνes

∗
eM
∗
4M

∗
6

νaλvM∗3M
∗
5M

∗
8

N∗v
N∗h

. (24)

There exists η ∈]0, ηc[ such that

1. If h < 0, then there exists an endemic equilibria x̄ ∈ Ω near the disease-free equilibrium, xdfe

for 1 < R2
0 < 1 + η.

2. If h > 0, then there exists an endemic equilibria x̄ ∈ Ω near the disease-free equilibrium, xdfe

for 1− η < R2
0 < 1.

The proof of the above corollary can be found in Appendix A.5. The threshold parameter
expression h is explicitly derived in Appendix A.4 and follows from heavy computations.

To give a biologically meaningful interpretation of the above result, note that when h < 0,
making R0 slightly greater than 1 by a small changes in parameters gives rise to a positive branch
of equilibrium. But if we decrease R0 slightly less than 1 there is no endemic steady state. This
bifurcation type is often called a supercritical or forward bifurcation. Now, when h > 0, we obtain a
positive branch of equilibrium when R0 is slightly less than one. This bifurcation type is also called
a backward bifurcation or a subcritical bifurcation. To summarize, if we use directly the quantity
R0 to control the malaria, we must lower R0 below 1 to prevent it when h < 0. But when h > 0,
R0 should be less that a quantity, denoted by Rc to prevent the malaria. From Corollary 4.1, we
can expect R2

c ≤ 1 − η for all η ∈ [0, ηc]. We recall that in most epidemic models investigated, the
bifurcation tends to be forward at R0 = 1. Recently some authors have found epidemic models
leading to the subcritical (backward) bifurcation at R0 = 1 and stressed its important consequences
for the control of infectious disease, cf. [14, 15, 17, 25, 24, 29, 9, 42]. Indeed, for a given parameter
set, multiple stable states could exist even if R0 < 1. For small changes in the values of these
parameters, major changes in equilibrium behavior can occur.
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4 Effort required to control malaria

For a disease which is transmitted at least between two host types such as the malaria, Roberts and
Heesterbeek, in [16, 37], showed that R0 defined as an average (via the next generation approach)
would be a bad indicator when the required control effort is aimed to a specific host type. They
suggested an appropriate reproductive number where they introduce the ”type-reproduction number
T” for each host type. It is interpreted in [16] as ” the expected number of cases in individuals of type
1, caused by one infected individual of type 1 in a completely susceptible population, either directly
or indirectly”. The previous models for malaria transmission consider two host types: human and
mosquito. It is clear that the original definition of the reproductive number for malaria coincides
with the type reproduction number T1 if we consider the human population as type host 1. Our
model consider three host types: adults, children and mosquitoes. If we use directly the quantity
R0 to control the malaria, the previous section shows that we must lowers R0 less than 1 (resp.
Rc) to prevent the malaria when h < 0 (resp. h > 0). In each condition required, we need to
target the control simultaneously at all the sub-groups to reduce R0 below 1 or Rc. Given that it
is very difficult and expensive to aim a control to all sub-groups to eliminate the malaria, we ask
the following question: can we prevent malaria through a specific subgroup as adults or children or
mosquitoes?

Using the method developed by Roberts and Heesterbeek [16, 37], we evaluate the type-reproductive
number Te, Ta, Tv, respectively for each host type: child, adult and mosquito. We begin to denote
by ρ(Q) the spectral radius of a matrix Q, the prime denotes the transpose of a vector and I the
3× 3 identity matrix.

By definition, cf. [37], for all l = a, e, v, Tl = E
′
l (K(I − (I − Pl)K)−1El,

where

Pe =

 1 0 0
0 0 0
0 0 0

 , Pa =

 0 0 0
0 1 0
0 0 0

 , Pv =

 0 0 0
0 0 0
0 0 1

 ,

Ee =
(

1 0 0
)
, Ea =

(
0 1 0

)
, Ev =

(
0 0 1

)
,

and K is the next-generation matrix defined in Equation (15). the authors show in [16, 37] that Tl

is well defined if the host types k 6= l (ie. other than host type l) cannot support by themselves an
epidemic. Mathematically, it is shown that Tl is well defined if ρ((I − Pl)K) < 1. Indeed, if Tl is
well defined, reduce Tl below 1 is sufficient to reduce R0 below 1, by only targeting a control to the
specific host l.

Their assumption is valid when the model cannot exhibit a backward bifurcation i.e h < 0. But
when h > 0, we replace the criterion ρ((I − Pl)K) < 1 by ρ((I − Pl)K) < Rc < 1. Using the above
definition, the expressions of Te, Ta and Tv are obtained as follow

Te =
R2

0e

1−R2
0a

and ρ((I − Pe)K) = R0a, (25a)

Ta =
R2

0a

1−R2
0e

and ρ((I − Pa)K) = R0e, (25b)

Tv = R2
0 and ρ((I − Pv)K) = 0. (25c)

Assume h > 0. The same reasoning can be applied when h < 0 by setting Rc = 1.
It is clear that Te is well defined if R0a < Rc. Ta is also well defined if only R0e < Rc. As ρ((I −
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Pv)K) = 0 < 1, Tv is always well defined without condition upon the adults or children. We may
summarize the results as follows:

(i) In area where R0e < Rc and R0a < Rc such as 1 < R0 < Rc

√
2 or 1 < Tv < 2R2

c , it suffices to
target a control to one of the three host types to eliminate the malaria.

(ii) In area where R0e < Rc and R0a > Rc, it is sufficient to target a control to adult or mosquito
host types to eliminate the malaria.

(iii) In area where R0a < Rc and R0e > Rc, it suffices to target a control to child or mosquito host
types to eliminate the malaria.

(iv) In area where R0e > Rc and R0a > Rc, we need to target a control to mosquito or simultane-
ously to adult and child host types.

Assuming that the malaria control program is aimed to reduce the number of susceptible in a
given host type l, l = a, e, v following one of the conditions (i-iv). Recall that the next generation
matrix coefficients, denoted by Kjl, represent the expected number of individuals of host type l
which would be infected by a single infectious host type j. Assuming that the above controls act
linearly on Kjl, one can linearly reduce the number of susceptible host type l with l, j = a, e, v.
A proportion sl > 1 − R2

c/Tl of susceptible host type l need to be protected (by the control) to
eliminate over time the malaria in the three populations (cf. [16, 37] when Rc = 1). For the adults
or children, this control strategy is feasible by using insecticide-treated bed nets or intermittent
prophylactic treatment or a vaccine. Concerning the mosquitoes, the vector control measures such
as indoor residual spraying with insecticides is possible.

In area where the condition (i) is satisfied, it suffices to protect permanently a proportion of
adult greater than 1 − R2

c/Ta or a proportion of children greater than 1 − R2
c/Te, or eliminate a

fraction of mosquitoes greater than 1−R2
c/Tv but smaller than 0.5.

In area where the condition (ii) is satisfied, it suffices to protect permanently a proportion of adults
greater than 1−R2

c/Ta or eliminate a fraction of mosquitoes greater than 1−R2
c/Tv.

In area where the condition (iii) is satisfied, it suffices to protect permanently a proportion of
children greater than 1−R2

c/Te or eliminate a fraction of mosquitoes greater than 1−R2
c/Tv.

In area where the condition (iv) is satisfied, it suffices to eliminate permanently a proportion of
mosquitoes greater than 1−R2

c/Tv at birth to eradicate the malaria or protect simultaneously the
children and the adults.

Now, we will explore the natural fulfilment of conditions (ii) and (iii) depending on the study
area. We need to recall some results: note from Equation (41) that R0e = s∗eR

1
0e and R0a = s∗aR

1
0a

where s∗e = ( Λh
N∗h
p+ λh)/( Λh

N∗h
+ λh), s∗a = ( Λh

N∗h
(1− p))/( Λh

N∗h
+ λh) and s∗e + s∗a = 1.

• Natural fulfilment of the condition (ii).
Consider an area where the per capita birth rate of human, λh, is very low so that it can be neglected.
Only the immigration of people supports the human population. Mathematically if λh −→ 0, then
s∗e −→ p and s∗a −→ 1 − p. It follows that if most of immigrants travel over a long distance by
leaving an endemic area and go to an non-endemic area, then p −→ 0 leading to R0e < 1. We then
must target the control to the adults to prevent the disease. Hence, if a vaccine were available, it
suffices to vaccinate any susceptible immigrant.
• Natural fulfilment of the condition (iii)
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Example 1: R0a might be naturally below 1 following the principle known as transmission-
blocking immunity (cf. [11, 20, 36], which consider that immunity reduces the transmission of
parasite from adult to the mosquito. Hence the probability of transmission from semi-immune
to mosquito is neglected, c̃av ∼ 0 allowing to take KRa

ev = KRa
av ∼ 0. Also the probability of

transmission from a infectious adult to mosquito cav may be become smaller due to the fact that
the adults already acquired an immune memory.

Example 2: Suppose that most of immigrants travel over a long distance. Assuming they leave
an area where there is no malaria (as a part of Europe) and go to an endemic area, then p −→ 1.
Consequently R0a −→ 0 < 1.

Example 3: Assume that the constant immigration rate Λh is very low, s∗e −→ 1 and s∗a −→ 0
and R0a < 1.

Example 4: If the per capita birth rate of human, λh, is very large such that λh � µh + 4µ2hΛh

then N∗h/Λh −→ 0 and s∗a −→ 0 while s∗e −→ 1. It follows that R0a < 1.
These results will be discussed in the last Section.

5 Simulations

In this section, we first give a simple example to prove that our model can exhibit a backward
bifurcation following the criterion derived in Section 3. Furthermore, we explore the behavior of the
malaria model (8).

To illustrate the bifurcation analysis, we have chosen realistic parameter values compatible with
malaria, and such that R0 is close to 1. Specifically, with the set of parameters in Table 3 (area 1)
except Λh, p and ne. The simulations were conducted using Maple. In order to evaluate the criterion
described in Corollary 4.1, we consider two cases: in each case, we set the parameters Λh and p, and
consider λ = ne − nR0 the bifurcation parameter. We denoted by nR0 the value of the parameter
ne for which R0 = 1.

Ro
0,99 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08

ie

0,000

0,001

0,002

0,003

0,004
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0,006

0,007

0,008

0,009

(a) Forward bifurcation

Ro
0,96 0,98 1,00 1,02 1,04 1,06 1,08

ie

0,000

0,002

0,004

0,006

0,008

0,010

0,012

(b) Backward bifurcation

Figure 2: Bifurcation diagram for model (8) showing the endemic equilibrium values for the propor-
tion of infectious, ie. We used the parameters in Table 3 (area 1) except Λh = 0.06, p = 0.5 for a
forward bifurcation and Λh = 0.01, p = 0.30 for a backward ones. The simulations were conducted
using Maple’s implicitplot.
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Figure 3: Initial conditions: se = 0.5838, ee = 0.0000, ea = 0.0000, ie = 0.0025, ia = 0.0001, ra =
0.0916, ev = 0.01, iv = 0.005, Nh = 500, Nv = 12000. The system approaches the endemic equilib-
rium point given in Table 2 for the figure (b). The simulations were conducted using MATLAB’s
ode45.

Λh = 0.01, p = 0.30; for various values of ne between 0.150 and 0.190, R0 varies between 0.96
and 1.10 such that h remains strictly positive i.e. h ∈ [0.909, 0.946]. The set of parameter values
describe a backward bifurcation see Figure (2b). We note in Figure (2b) that when (for example)
we set ne = 0.15473 so that R0 = 0.9800 and h = 0.9434 > 0, we obtain two equilibrium values:
One stable īe = 0.009 and other unstable īe = 0.004. For a given initial condition, Figure (3b)
shows that the system converges toward the stable equilibrium īe = 0.009. Table 1 summarizes the
equilibrium values calculated for all the variables.

Λh = 0.06, p = 0.5; for various values of ne between 0.234 and 0.278, R0 varies between 0.989
and 1.099 such that h remains strictly negative i.e. h ∈ [−0.346,−0.289]. The set of parameter
values describe a forward bifurcation see the figure (2a). The dynamic of the system is given in
Figure (3a) for ne = 0.236, giving R0 = 0.9947 < 1, h = −0.3430 < 0. We see the extinction of the
disease over the time.

To explore the malaria model (8), first we use the set of parameters in Table 3. (area 2)
which corresponds to a stable area of transmission (for example in parts of Africa). Figure 4 (left)
illustrates the behavior of the malaria System (8) showing that the endemic steady state solution
is unique and is locally asymptotically stable. In this area, R0e, R0a > 1. If we want to eliminate
malaria, we must target a control simultaneously on the children and adults or on the mosquitoes
which is very difficult because Tv = 6.4719 and we must eliminate continuously 84.55% of susceptible
mosquitoes at birth (1 − 1/Tv = 0.8455). Now, we use the set of parameters in table 3. (area 1)
with Λh = 0.033, ne = 0.24, na = 0.35 which correspond to a low area of transmission see figure 4
(right). Here, we have R0e, R0a < 1 but R0 > 1. In this area, malaria can be eliminate through a
specific host type. It suffices to protect either a proportion of children greater than 0.465 or adults
greater than 0.835, or eliminate a proportion of mosquitoes greater than 0.297. That will depend
on the feasibility.
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Figure 4: A numerical simulation of the malaria model (8). The left figure is plotted with parameter
values defined in Table 3 (area 2) giving R0e = 2.071 > 1, R0a = 1.477 > 1, R0 = 2.544. The
right figure is obtained with parameter values defined in Table 3 (area 1) except Λh = 0.033, ne =
0.24, na = 0.35 giving R0e = 0.957 < 1, R0a = 0.712 < 1, R0 = 1.193 > 1, Te = 1.869, Ta =
6.076, Tv = 1.424. Initial conditions: se = 0.9, ee = 0.0, ea = 0.0, ie = 0.0, ie = 0.0, ra = 0.0,
ev = 0.0, iv = 0.001, Nh = 500, Nv = 800.

s̄e s̄a ēe ēa īe īa r̄a N̄h

0.5253 0.2859 0.0012 8.1094e-004 0.009 0.0072 0.1706 395.0297
s̄v ēv īv N̄v

0.9990 0.0033 0.0023 12125

Table 1: Equilibrium values for the parameters in table 3 (area 1) except Λh = 0.01, ne = 0.154 and
p = 0.30 giving R0 = 0.9800 < 1.

6 Concluding Remarks

We formulated a compartmental model for malaria transmission involving the human host suscep-
tibility, exposedness and infectivity with variable children, adults and mosquito populations. The
human population is split into seven classes: susceptible, exposed, infectious and semi-immune where
the susceptible humans are divided into two groups based on their susceptibilities; the exposed ones
are divided into two groups according to their incubating period, the infectious ones are divided
into two groups according to their infectivities. We divided the mosquito population into three
classes: susceptible, exposed and infectious. We defined a domain where the malaria model has a
unique globally defined solution which remains in this domain for all nonnegative time. We obtain
explicit formula for the reproductive number, R0, derived from the local stability of the disease-free
equilibrium point, xdfe. We defined the weight of the transmission adult-mosquito-adult, R0a, and
the weight of the transmission child-mosquito-child, R0e, due to transmission child-mosquito-child.
Then the reproductive number for the entire population is a square root of the sum of the square
of these weights for the two interaction types.

We gave a simple criterion for existence of super and sub-threshold endemic equilibria for R0
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near one depending on a parameter h. For the forward bifurcation i.e. h < 0, there are super-
threshold endemic equilibria near the disease-free equilibrium point, xdfe. Further, for a backward
bifurcation i.e. h > 0, there are sub-threshold endemic equilibria near, xdfe. We did not provide
stability results on these equilibria.

We investigated the possibility of a control of malaria through one of the three host type (adults
or children or mosquitoes). We formulated the reproductive number specific to each host type. Our
model suggests that, in an area of low or intermediary transmission, it suffices to target a control
to one of specific host type to eliminate malaria. In an area of high transmission for which, most
of immigrants come from an area where there is no malaria, malaria can be eliminated through the
children. In the same way, in an endemic area where the constant immigration rate Λh is very low
or the per capita birth rate of human, λh, is very large, malaria can be always controlled through
the children. Sometimes epidemics occur in unstable malaria areas where the transmission differs
greatly from year to year. In these areas, if λh is very low, malaria can be eliminated by using
vaccines or by protecting any susceptible immigrant adult or child entering in these areas. On the
basis of our analysis, we conclude that if a vaccine or a simple preventive action were available,
we must research the specific host type to target the control in order to eliminate the malaria. In
area where we cannot target a control towards either child or adult host types to control malaria,
our model shows that, we can always target a control to mosquitoes to eliminate the malaria. It is
a well known result. But elimination of mosquitoes does not appear to be feasible in an endemic
area where the density of mosquitoes is very large. Even if these measures are feasible it is very
difficult and costly. But in an area with a relatively low intensity of transmission, the malaria can
be eradicated with success through the control of mosquitoes density. The typical example is in
Europe where the large-scale application of vector control measures such as indoor residual spraying
with insecticides has strongly lowered the transmission of malaria.

Since, the most vulnerable relate mostly to children, we must begin the control through the
children. This contributes to reduce the morbidity and the mortality. Furthermore, as the fulfilment
of the condition (iii) is frequently obtained, this control could also contribute to eliminate the
malaria over the time.

From the simulations with realistic parameter sets, we know that a backward bifurcation of
endemic steady states is possible for the malaria model (2). Hence, lower R0 below 1 is not always
sufficient to eliminate the malaria. Also, even if the malaria has been eliminated in a given area,
a small disturbance as the ecological changes could re-establish malaria in the three populations
(mosquitoes, children and adults). We must reduce R0 so that it enters the domain where the point
xdfe is globally asymptotically stable.

As we have an explicit formula of h, in a next paper, we will investigate the non-fulfilment of
the criterion h > 0 giving the backward bifurcation. We will analyze the sensibility of both weight
of transmission R0e, R0a. We will formulate a optimal control problem in order to investigate the
selection of a strategy of feasible control (technically and in costly) following the studying area.
We will take into account of semi-immune immigration that could transport an infection from
malaria to non-malarial area. We will model the immune rate, αe, and the recovery rate ρe of
children depending on the force of infection, ke. We will also consider the lost of immunity rate, βa,
depending on the force of infection, ka.
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A Proofs

A.1 Proof of Theorem 2
Let xdfe be the disease free equilibrium with the fraction variables for model (8). It is easy to verify that xdfe

is a solution of the equilibrium system of equations fi = 0, i = 1 . . . 10 for the model (8) in Ω, so xdfe is an
equilibrium point. Reciprocally we know that there is no disease in the human (resp. mosquito) population
if only ee = ea = ie = ia = ra = 0 (resp. ev = iv = 0.). If we substitute these zero values of terms ee, ea, ie,
ia, ra, ev, iv into the equilibrium equations, we find that the only equilibrium point for se in Ω1 from (8a)
is s∗e; the only equilibrium point for Nh in Ω2 from (8i) is N∗

h ; and the only equilibrium point for Nv in Ω2

from (8j) is N∗
v . Then the only equilibrium point on Ω is xdfe.

Let Xdfe be the disease free equilibrium with the original variables for model (2). By substituting xdfe

in (4) after having used (5) to show that s∗a = 1− s∗e and s∗v = 1, we find:
Xdfe(Se, Ee, Ie, Sa, Ea, Ia, Ra, Sv, Ev, Iv) = (S∗e , 0, 0, S

∗
a , 0, 0, 0, S

∗
v , 0, 0), where

S∗e = s∗eN
∗
h , S

∗
a = s∗aN

∗
h and S∗v = N∗

v .

A.2 Proof of Lemma 2.1
We first rewrite the stationary system of equations in two dimensions.
Let x̄ = (s̄e, ēe, ēa, īe, īa, r̄a, ēv, īv, N̄h, N̄v) ∈ Ω the stationary solution of model (8) ie. f(x̄) = dx̄/dt = 0.
Let M̄i, i = 1, . . . 8, the endemic values associated of variables defined in (14). Using (8f), we solve r̄a in
term of īe and īa

r̄a =
αeīe

M̄7 − γeīe
+

αaīa
M̄7 − γeīe

. (26)

From (8d), we solve ēe in term of īe

ēe =
M̄5 − γeīe

νe
· īe. (27)

Solving for ēa in (8e) in term of īe and īa, we find

ēa =
M̄6 − γeīe

νa
· īa. (28)

By adding (8a) and (8b) we solve s̄e in term of ie

s̄e =
νeM̄1 + ρeνeīe + (γeīe − M̄3)(M̄5 − γeīe)̄ie

νe(M̄2 − γeīe)
. (29)

Using (8j), we solve explicitly the positive equilibrium for the total mosquito population as

N̄v =
λv − µv

µ2v
. (30)

We write the positive equilibrium for the total human population, N̄h, in terms of īe from (8i) as

N̄h =
λh − µh − γeīe +

√
(λh − µh − γeīe)2 + 4µ2hΛh

2µ2h
. (31)

Solving from (8h) in terms of ēv we find:
iv =

νv

λv
ēv. (32)

In order to solve ēv in term of īe, we begin to solve k̄e in term of īe by using (8b) and (27),

k̄e =
(M̄3 − γeīe)(M̄5 − γeīe)̄ie

νes̄e
. (33)
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If we substitute the expression of īv from (32) into the expression of k̄e from (6) and identifying with the
expression of k̄e given in (33), we solve ēv in term of īe as

ēv =
(M̄3 − γeīe)(M̄5 − γeīe)̄ie

νeεs̄e
(34)

where

ε(̄ie) = cvene
νv

λv

N̄v

N̄h
. (35)

Consequently we rewrite (32) in term of īe as follows

īv =
(M̄3 − γeīe)(M̄5 − γeīe)̄ie

νeεs̄e

νv

λv
. (36)

The equilibrium inoculation rates defined in (1) rewrites in term of īe and īa as follows:

k̄e(̄ie) = ε(̄ie) · ēv (̄ie), (37a)

k̄a(̄ie) =
cvana

cvene
· k̄e(̄ie), (37b)

k̄v (̄ia, īe) =
(
cavna + c̃avnaαa

1
M̄7 − γeīe

)
īa +

(
cevne + c̃avnaαe

1
M̄7 − γeīe

)
īe. (37c)

Finally, we substitute the terms s̄e(̄ie), ēe(̄ie), r̄a(̄ia, īe), īv (̄ie), N̄h(̄ie) into the equilibrium equations (8c)
and (8g) which only on īa and īe. Therefore

k̄a(̄ie) · (1− s̄e(̄ie)− ēe(̄ie)− ēa(̄ia, īe)− īe − īa − r̄a(̄ia, īe)) + (γeīe − M̄4) · ēa(̄ia, īe) = 0

k̄v (̄ia, īe) ·
(

1− M̄8

λv
· ēv (̄ie)

)
− M̄8 · ēv (̄ie) = 0.

(38)

Let
F1(̄ia, īe) = k̄a(̄ie) · (1− s̄e(̄ie)− ēe(̄ie)− ēa(̄ia, īe)− īe − īa − r̄a(̄ia, īe))

+(γeīe − M̄4) · ēa(̄ia, īe)

F2(̄ia, īe) = k̄v (̄ia, īe) ·
(

1− M̄8

λv
· ēv (̄ie)

)
− M̄8 · ēv (̄ie).

(39)

By setting F (̄ia, īe) = (F1(̄ia, īe), F2(̄ia, īe)), the equilibrium system of equations for model (8) becomes
F (ū) = 0 where ū = (̄ia, īe) ∈ R2.

Next, we show that there exists a neighborhood U ⊂ R2 of ū = (0, 0) such that F at least C2(U,R2),
with respect to ū = (̄ia, īe).

Let us assume ie (resp. ia) is bounded in the interval Ue =] − δe, δe[ (resp. Ua =] − δa, δa[) with
δe, δa ∈]0, 1[. Then, N̄h(̄ie) > 0 from (31) and it follows that 1/N̄h(̄ie), M̄i(̄ie) ∈ Cm(Ua × Ue,R), m ≥ 2,
i = 1 . . . 7. Also, from (27) and (28), it is easy to see that ēe(̄ie) ∈ Cm(Ua × Ue,R), m ≥ 2. Note that
M̄i − γeie > 0, i = 2 . . . 7.
Indeed, Λh+λhN̄h−fh(N̄h)N̄h−γeīeN̄h = 0 from Equation (8i). As N̄h(̄ie) > 0, it follows Λh/N̄h+λh−γeīe =
fh(N̄h) ie. M̄2 − γeīe = fh(N̄h) = µh + µ2hN̄h > 0. We readily obtain the following results:

M̄3 − γeīe = fh(N̄h) + νe > 0, (40a)
M̄4 − γeīe = fh(N̄h) + νa > 0, , (40b)
M̄5 − γeīe = fh(N̄h) + αe + γe + ρe > 0, (40c)
M̄6 − γeīe = fh(N̄h) + αa > 0, (40d)
M̄5 − γeīe = fh(N̄h) + βa > 0. (40e)
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We can conclude respectively from (26), (27), (28),(29), (32), (33), (34), (35), (36), (37a), (37b), (37c), that
r̄a(̄ia, īe), ēe(̄ia, īe), ēa(̄ia, īe), s̄e(̄ia, īe), ēv (̄ia, īe), k̄e(̄ia, īe), k̄a(̄ia, īe), k̄v (̄ia, īe) belong to Cm(Ua × Ue,R),
m ≥ 2. Thus each function Fi ∈ Cm(Ua × Ue,R), m ≥ 2, i = 1, 2, so that F = (F1, F2) ∈ Cm(Ua × Ue,R2),
m ≥ 2. If U is defined by Ua × Ue ⊂ R2, it is clear that U is a neighborhood of ū = (0, 0).

Let us denote by U+
e =]0, δe[, U+

a =]0, δa[ and U+ = U+
a ×U+

e . Since M̄i− γeie > 0, i = 2 . . . 7, it is easy
to verify that for all ū = (̄ia, īe) ∈ U+, there exists x̄(̄ia, īe) = (s̄e, ēe, ēa, īe, īa, r̄a, ēv, īv, N̄h, N̄v) ∈ Ω. This
concludes the proof Lemma 2.1.

A.3 Proof of Lemma 2.2
From Lemma 2.1, F (ū, λ) is continuously differentiable at least twice with respect to ū on U . Therefore we
can compute DūF (udfe, λ).

DūF (udfe, λ) =


−M

∗
4M

∗
6

νa

cvana

cvene

s∗aM
∗
3M

∗
5

νes∗e

nacav + nac̃av.αa
1
M∗

7

λvM
∗
3M

∗
5M

∗
8

cveneνvνes∗e

N∗
h

N∗
v

· (1−R2
0e)

 , (41)

We denote A(λ) = DuF (udfe, λ) and let us evaluate the determinant and the trace of the stability matrix,
A(λ). We find

detA(λ) =
λvM

∗
3M

∗
4M

∗
5M

∗
6M

∗
8

cveneνvνeνas∗e

N∗
h

N∗
v

· (1−R2
0), (42a)

TrA(λ) = −
(
M∗

4M
∗
6

νa
+
λvM

∗
3M

∗
5M

∗
8

cveneνvνes∗e

N∗
h

N∗
v

· (1−R2
0e)
)
. (42b)

The matrix, A(λ), has 2 eigenvalues for all λ. Let σ1(λ) and σ2(λ) be these eigenvalues defined below.

σ1(λ) =
TrA(λ) +

√
(TrA(λ))2 − 4 detA(λ)

2
, (43a)

σ2(λ) =
TrA(λ)−

√
(TrA(λ))2 − 4 detA(λ)

2
. (43b)

λ = 0 ⇐⇒ R0 = 1 ⇐⇒ R0a = 1 − R0e ≥ 0, it follows that detA(0) = 0 and TrA(0) < 0. As an immediate
consequence σ2(0) = TrA(0) < 0 and σ1(0) = 0.We conclude that DūF (udfe, 0) has a simple zero eigenvalue.
As the equilibria are strictly positive, from Lemma 2.1, each equilibrium corresponds to a unique solution of
initial stationary problem f(x̄(ū)) = 0 where x̄(ū) ∈ Ω. We conclude the proof of the corollary.

A.4 Proof of proposition 3.1
To compute h := v∗∗D2

ūF (udfe, 0)〈v, v〉, we first evaluate the right v and left v∗∗ eigenvectors of A(0) checking
vT v = v∗∗v = 1.
x0 = (x1, x2)T respectively x∗∗0 = (x∗∗1 , x

∗∗
2 ) is the right respectively left eigenvectors of A(0) where

x1 = kva ·
νa

M∗
4M

∗
6

, x2 = kve ·
νe

M∗
3M

∗
5

, x∗∗1 = kav, x∗∗2 =
N∗

v

N∗
h

.

Let

v1 =
x1√
x2

1 + x2
2

, v2 =
x2√
x2

1 + x2
2

(44a)

v∗∗1 =

√
x2

1 + x2
2

x∗∗1 x1 + x∗∗2 x2
· x∗∗1 , v∗∗2 =

√
x2

1 + x2
2

x∗∗1 x1 + x∗∗2 x2
· x∗∗2 , (44b)
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then v := (v1, v2)T respectively v∗∗ := (v∗∗1 , v∗∗2 ) is also the right respectively left eigenvectors of A(0)
checking vT v = v∗∗v = 1.

It remains to compute D2
ūF (udfe, λ). Calculations show that

∂2F1

∂i2a
(udfe, λ) =

∂2F2

∂i2a
(udfe, λ) = 0 and

∂2F1

∂ia∂ie
(udfe, λ) =

∂2F1

∂ie∂ia
(udfe, λ) = −cvana

cvene
· M

∗
3M

∗
5

νes∗e

(
M∗

6

νa
+

αa

M∗
7

+ 1
)
− γe

νa
(ξ − 1)(M∗

6 +M∗
4 ),

∂2F2

∂ia∂ie
(udfe, λ) =

∂2F2

∂ie∂ia
(udfe, λ) = − γe

M∗2
7

(ξ − 1) · c̃avnaαa −
M∗

3M
∗
5M

∗
8

ε∗s∗eνe
· Ga

λv
,

∂2F1

∂i2e
(udfe, λ) = −2 · cvana

cvene
· M

∗
3M

∗
5

νes∗e

(
s

(e)
e

s∗e
+
M∗

5

νe
+

αe

M∗
7

+ 1 + (1− s∗e)γe

(
1
M∗

3

+
1
M∗

5

))
,

∂2F2

∂i2e
(udfe, λ) = −2 · γe

M∗2
7

(ξ − 1) · c̃avnaαe − 2 · M
∗
3M

∗
5M

∗
8

ε∗s∗eνe

(
Ge

λv
− γeξN

∗
h

Λh
− s

(e)
e

s∗e
− γe

M∗
3

− γe

M∗
5

)
,

where

ξ =
2Λh

N∗
h

√
(λh − µh)2 + 4µ2hΛh

, s(e)
e =

1
νeM∗

2

(γeνeξ + νeρe −M∗
3M

∗
5 − γeνes

∗
e(ξ − 1)),

Ge = cevne + c̃avnaαe
1
M∗

7

, Ga = cavna + c̃avnaαa
1
M∗

7

, ε∗ = cvene
νv

λv

N∗
v

N∗
h

.

(45)

Finally when λ close to 0,

h = v2

(
2
∂2F1

∂ia∂ie
(udfe, 0)v∗∗1 v1 +

∂2F1

∂i2e
(udfe, 0)v∗∗1 v2 + 2

∂2F2

∂ia∂ie
(udfe, 0)v∗∗2 v1 +

∂2F2

∂i2e
(udfe, 0)v∗∗2 v2

)
.

We rewrite h in the form h = v2(v∗∗1 A+ v∗∗2 B) where

A = 2
∂2F1

∂ia∂ie
(udfe, 0)v1 +

∂2F1

∂i2e
(udfe, 0)v2 and B = 2

∂2F2

∂ia∂ie
(udfe, 0)v1 +

∂2F2

∂i2e
(udfe, 0)v2.

Some algebraic manipulations produce

A = −2v1 ·
{
cvana

cvene
· M

∗
3M

∗
5

νes∗e

(
M∗

6

νa
+

αa

M∗
7

+ 1
)

+
γe

νa
(ξ − 1)(M∗

6 +M∗
4 )
}

−2v2 ·
cvana

cvene
· M

∗
3M

∗
5

νes∗e

{
s

(e)
e

s∗e
+
M∗

5

νe
+

αe

M∗
7

+ 1 + s∗aγe

(
1
M∗

3

+
1
M∗

5

)}
,

(46)

B = −2v1

(
γe

M∗
7

2 (ξ − 1)c̃avnaαa +
M∗

3M
∗
5M

∗
8

ε∗s∗eνe
· Ga

λv

)

−2v2

{
γe

M∗
7

2 (ξ − 1)c̃avnaαe +
M∗

3M
∗
5M

∗
8

ε∗s∗eνe

(
Ge

λv
− γeξN

∗
h

Λh
− s

(e)
e

s∗e
− γe

M∗
3

− γe

M∗
5

)}
,

(47)

and ξ, s(e)
e , Ge, Ga and ε∗ are defined in Equation (45).
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A.5 Proof of Corollary 3.1
We first recall the results obtained in Appendix A.5. The eigenvalues read
σ1(λ) = TrA(λ) +

√
(TrA(λ))2 − 4 detA(λ)/2, and σ2(λ) = TrA(λ)−

√
(TrA(λ))2 − 4 detA(λ)/2, where

detA(λ) =
λvM

∗
3M

∗
4M

∗
5M

∗
6M

∗
8

cveneνvνeνas∗e

N∗
h

N∗
v

· (1−R2
0) and

TrA(λ) = −
(
M∗

4M
∗
6

νa
+
λvM

∗
3M

∗
5M

∗
8

cveneνvνes∗e

N∗
h

N∗
v

· (1−R2
0e)
)
.

From Theorem 3., the bifurcating solution exists for λ ∈ V. Note that for all λ ∈ V and according to
Assumption (A1), we can always find a small η, strictly positive such that R2

0 belongs to the interval
]1 − η, 1 + η[. As we are seeking strictly positive solutions, we have to find parameter values for which the
product σ1(λ)h is strictly negative.

Let us first assume h > 0, then sign(hσ1(λ)) = sign(σ1(λ)). Note that TrA(λ) < 0 is a necessary condition
to have σ1(λ) < 0. As R2

0 = R2
0e +R2

0a ∈]1− η, 1 + η[, then R2
0e < 1 + η.

Note that TrA(λ) = −λvM
∗
3M

∗
5M

∗
8

cveneνvνes∗e

N∗
h

N∗
v

(ηc + 1−R2
0e) where ηc =

cveneνvνes
∗
eM

∗
4M

∗
6

νaλvM∗
3M

∗
5M

∗
8

N∗
v

N∗
h

.

It is clear that for all η ∈]0, ηc[, then TrA(λ) < 0. As an immediate consequence, σ1(λ) < 0 ⇐⇒ 1 − η <
R2

0 < 1. We conclude that there exists an endemic equilibria ū(λ) strictly positive near the disease-free
equilibrium, udfe for 1− η < R2

0 < 1.
Let us now assume h < 0, then sign(hσ1(λ)) = −sign(σ1(λ)). As TrA(λ) < 0 for all η ∈]0, ηc[, it is easy

to check that σ1(λ) > 0⇐⇒ 1 < R2
0 < 1+η. It follows σ1(λ) > 0 and σ2(λ) < 0. Finally, if h < 0, then there

exists an endemic equilibria ū(λ) strictly positive near the disease-free equilibrium, udfe for 1 < R2
0 < 1 + η.
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A.6 Parameter values

Parameters Area 1 Area 2 Range
1.Λh · · · 0.033 0.0027–0.27
2.λh 1.1×10−4 1.1× 10−4 2.7× 10−5 − 1.4× 10−4

3.λv 0.13 0.13 0.020–0.27
4.cve 0.021 0.07 0.01–0.27
5.cva 0.012 0.022 0.01–0.27
6.cev 0.11 0.45 0.072–0.64
7.cav 0.08 0.35 0.072–0.64
8.c̃av 0.008 0.002 0.0072–0.64
9.νe 0.10 0.10 0.067–0.20
10.νa 0.09 0.09 0.067–0.20
11.νv 0.091 0.083 0.029–0.33
12.αa 0.01 0.01 0.0014–0.017
13.αe 0.005 0.001 0.0014–0.017
14.γe 9.0 ×10−5 1.8 ×10−5 0− 4.1× 10−4

15.ρe 0.0083 0.033 0.0033–0.0714
16.βa 5.5 ×10−4 2.7 ×10−3 1.1× 10−2 − 5.5× 10−5

17.µh 1.6×10−5 1.6×10−5 1.0× 10−6 − 1.0× 10−3

18.µ2h 3.0×10−7 3.0×10−7 1.0× 10−8 − 1.0× 10−6

19.µv 0.033 0.033 0.0010–0.10
20.µ2v 8.0×10−6 8.0×10−6 1.0× 10−6 − 1.0× 10−3

21.ne · · · 0.30 0.13–0.47
22.na 0.30 0.40 0.13–0.47
23.p · · · 0.30 0.0–1.0

Table 2: Baseline values and ranges found in the literature for the model’s parameters which the
most is derived from [10, 32, 43] and [44] data. The dimensionless parameters are p, cve, cva, cev,
cav and c̃av. Moreover λh, λv, νe, νv αe αa, γe, ρe, βa, µv, µh, ne and na have as dimension days−1,
Λh and µ2h have as dimension humans−1×days−1 and finally µ2v is in mosquitoes−1×days−1. We
supposed that na ≥ ne because the most vulnerable are tendency to protect her body (for exemple In
[35], Port et al. showed that real children are less exposed than adults to mosquito bites).
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