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Abstract. In this paper we propose an age-structured malaria within-host model taking into
account multi-strains interaction. We provide a global analysis of the model depending upon some
threshold T0. When T0 ≤ 1, then the disease free equilibrium is globally asymptotically stable and
the parasites are cleared. On the contrary if T0 > 1, the model exhibits the competition exclusion
principle. Roughly speaking, only the strongest strain, according to a suitable order, survives while
the other strains go to extinct. Under some additional parameter conditions we prove that the
endemic equilibrium corresponding to the strongest strain is globally asymptotically stable.
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1. Introduction. In this paper we consider an age-structured system of equa-
tions modelling the blood stage of multi-strain malaria infections. We more specifically
focus upon human malaria caused by the protozoa Plasmodium falciparum, the most
widespread within the tropics and particularly in Sub Saharan Africa.

According to Read and Taylor [42] natural parasitic infections are often diverse,
including multiple parasite species and/or distinct genotypes of the same species.
Parasites of the Plasmodium genus are no exception. Human infections of multiple
strains or species have been widely reported [6, 52] and it may be typical in highly
endemic regions [28,30].

Recently, using quantitative PCR methods, Wacker et al [51] prove and quantify
that the interactions between different strains of P. falciparum lead to the competitive
suppression of the weakest one. This feature was already observed for P. chabaudi,
the parasite responsible for rodent malaria (see [6] and the references therein). Such a
competition has a strong influence on the spread of strains and thus on drug-resistance.
According to Wacker et al [51], a deeper understanding of the dynamic of multiple
strain P. falciparum infection can improve the understanding of the role of parasite
interactions in the spread of drug resistant parasites, perhaps suggesting different
treatment strategies.

In this work we shall focus on the blood stage of the parasite where the aforemen-
tioned competitive suppression has been reported. Before going to the mathematical
model, let us briefly review the features of malaria. The life cycle of malaria parasites
inside human body consists in two phases: an exoerythrocytic (the liver stage) and an
erythrocytic phase (the blood stage). After an infective bite, a mosquito injects the
pathogen under the so-called sporozoites form, which rapidly reach the liver cells. An
asymptomatic period follows during which parasites mature and multiply asexually
within the liver cells, yielding to hepatic schizonts. Once hepatic schitzonts rupture
the parasitized cells release the so-called merozoites into the bloodstream, the start-
ing point of the blood stage. During this phase, the merozoites enter uninfected red
blood cells (uRBC) to undergo asexual multiplication. After a sequestration period
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of about 48 hours (for P. falciparum) the rupture of the parasitized red bood cells
(pRBC) occurs releasing 8 to 32 free merozoites into the bloodstream ready to re-
peat the invasion scheme. The blood stage of the parasites is mainly responsible for
the clinical symptoms of the infection. The rupture of pRBC causes clinical fever.
Moreover P. falciparum infection is the most frequent acquired RBC disorders in the
world ( see Buffet et al [3] and the references therein), that may also lead to severe
symptoms such as anaemia or cerebral malaria.

In this paper we consider an age-structured intra-host model for P. falciparum
infection with n different strains for the parasites. The age-structure will allow us
to have a good description of the pRBC rupture and of the merozoites release phe-
nomenon. These parameters play an important role to describe the strength of a
strain and thus have important consequences on spread of the infection. The model
we shall consider is an extension of the model proposed by Iggidr et al in [27] by
taking into account a continuous age structure. It reads as

dx(t)

dt
= Λ− µxx(t)− x(t)

n∑
j=1

βjmj(t);

∂wj(t, a)

∂t
+

∂wj(t, a)

∂a
= −(µj(a) + µx)wj(t, a);

dmj(t)

dt
=

∫ ∞

0

rj(a)µj(a)wj(t, a)da− µm,jmj(t)− δjβjx(t)mj(t);

wj(t, 0) = βjx(t)mj(t); j ∈ {1, 2, · · · , n}.

(1.1)

In (1.1), the RBC population is split into two classes, x(t) denotes the concentra-
tion of uRBC at time t, while wj(t, a) denotes the age-specific concentration of pRBC
at time t and parasitized since a time a by a specific j-strain. Finally mj(t) denotes
the concentration of free specific j-merozoites in the blood stream. We briefly sketch
the interpretation of the parameters arising in (1.1). Parameters µx, µm,j respectively
denotes the natural death rates for uRBC and for free specific j-merozoites. Func-
tion µj(a) denotes the additional death rate of pRBC due to the j-parasites at age
a and leading to the rupture. The rupture of pRBC at age a results in the release
of an average number rj(a) of specific j-merozoites into the blood stream; so that
pRBC infected by a specific j-strain then produce, at age a, j-merozoites with the
rate rj(a)µj(a). Together with this description, the quantity

∫∞
0

rj(a)µj(a)wj(t, a)da
corresponds to the number of specific j-merozoites produced by pRBC at time t. Fi-
nally the parameter βj describes the contact rate between uRBC and free specific
j-merozoites while Λ denotes the recruitment rate of uRBC from the bone marrow.
In the literature the parameter δj takes the values δj = 0 when the loss of merozoites
when they enter a RBC is ignored or takes the value δj = 1 when this loss is not
ignored. System (1.1) is supplemented together with initial data those properties will
described below.

There has been numerous works on pathogen within-host dynamics describing P.
falciparum infection. The pioneer work of Anderson et al [2], focused on describing
parasitaemia, has been further developed in several direction including in particu-
lar immune response and oscillations [14, 21–23, 31, 39]. We also refer to the survey
paper of Molineaux and Dietz in [41] and the references therein. However all these
works do not take into account an important characteristic of P. falciparum which
is sequestration of merozoites within the pRBC and their ruptures. Such an issue
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has been considered using discrete age-structured systems of equations (see for in-
stance [15–17, 38]) with constant RBC population assumption. We finally refer to
Iggidr et al. [27] for a mathematical study of a discrete age-structured model with
varying RBC concentration. Note that in this latter work multi-strain competitive
interaction is also considered and the authors derived the so-called competitive exclu-
sion principle. In an other context, let us mention that the one-strain System (1.1)
(namely with n = 1) has been rigorously and recently studied by Huang et al [24] in
the context HIV infection model (and with δ = 0).

Here we will extend these results to (1.1) by proving that this problem exhibits
the competitive exclusion principle. This work is organized as follows. In Section 2,
we describe the main results that will be proved in this work. Section 3 is devoted
to deriving preliminary results and remarks that will be used to study the long term
behaviour of the problem. Section 4 is concerned with the proof of the first part of
Theorem 2.2 below, that roughly speaking states that when some threshold (explicitly
expressed using the parameters of the system) T0 ≤ 1, then all the strains asymp-
totically die out and the parasites cannot survive. Finally Section 5 deals with the
proof of the second part of Theorem 2.2, that roughly speaking say that when T0 > 1
and under some additional assumptions on the different strains, then the competitive
exclusion principle holds true, that is that only the strongest strain (using a suitable
order) is asymptotically surviving.

2. Main results. In this section we will state the main results of this work.
In order to deal with system (1.1) we first provide a parameter reduction by in-

troducing the following unknown functions yj(t, a) = wj(t, a)e
∫ a
0

µj(l)dl. Therefore,

by introducing the vector valued functions y(t, a) = (y1(t, a), .., yn(t, a))
T
, m(t) =

(m1(t), ..,mn(t))
T
as well as the matrices

β = diag (β1, .., βn) , δ = diag (δ1, .., δn) , En = (1, .., 1)T ∈ Rn,

µm = diag (µm,1, .., µm,n) , ρ(a) = diag (ρ1(a), .., ρn(a)) ,

System (1.1) re-writes as

dx(t)

dt
= Λ− µxx(t)− x(t)ET

n βm(t);

∂ty(t, a) + ∂ay(t, a) = −µxy(t, a);

y(t, 0) = βx(t)m(t);

dm(t)

dt
=

∫ ∞

0

ρ(a)y(t, a)da− µmm(t)− δβx(t)m(t);

(2.1)

supplemented together with initial data

y(0, .) = y0(.) ∈ L1
(
0,∞;Rn

+

)
; x(0) = x0 ≥ 0; m(0) = m0 ∈ Rn

+, (2.2)

and wherein we have set ρj(a) = rj(a)µj(a)e
−

∫ a
0

µj(l)dl for j = 1, .., n. In (2.2), Rn
+

denotes the positive orthant, namely Rn
+ = {(x1, .., xn)

T ∈ Rn : xi ≥ 0, ∀i = 1, .., n}.
In what follow we shall discuss the asymptotic behaviour of System (2.1)-(2.2)

and we will make use the following assumption.
Assumption 2.1. We assume that, for each j ∈ {1, 2, · · · , n} functions ρj belong

to L∞
+ (0,∞,R+) while Λ > 0, µx > 0, µm,j > 0, δj ∈ {0, 1} and βj > 0.
As mentioned in the introduction we shall focus on the competitive exclusion

principle generated by (2.1). Roughly speaking, to achieve such a goal we will provide
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an order to separate the different strains of the parasite. Hence let us introduce, for
each strain, the quantity T i

0 defined by

T i
0 =

βiΛ

µxµmi

(∫ ∞

0

ρi(a)l(a)da− δi

)
, (2.3)

as well as T0 = max
1≤i≤n

T i
0 and where function l ≡ l(a) is defined by

l(a) = e−µxa. (2.4)

As it will be seen below (see Theorem 2.2) the situation when T0 ≤ 1 is rather
simple because the infection asymptotically dies out. When T0 > 1 the situation
is much more involved. We expect that System (2.1)-(2.2) exhibits the competition
exclusion principle, that, roughly speaking, say that in presence of multiple strains
only the strongest can asymptotically survive. The parameters

{
T i
0

}
i=1,..,n

(see (2.3))

will be used to quantify the strength of the different strain-specific infection. We will
now introduce some definitions. Let us first of all define the set of strains that can
potentially survive S defined by

S =

{{
i ∈ {1, .., n} : T i

0 > 1
}

if T0 > 1

∅ if T0 ≤ 1
. (2.5)

On the set of index {1, .., n} we define an order relation by

iE j ⇔ T i
0 ≤ T j

0 and iC j ⇔ T i
0 < T j

0 .

We would like to emphasize that when parameter δj are non-zero, the set of threshold{
T i
0

}
i=1,..,n

is different from the set of the different strain specific basic reproduc-

tion numbers. Indeed the strain i−specific basic reproduction number reads as (see
Appendix A for the computation):

Ri
0 = 1 +

µm,i

µm,i + δiβixf

(
T i
0 − 1

)
with xf =

Λ

µx
. (2.6)

Hence, when δ 6= 0, the above described order may be different from the one induced
by the strain specific basic reproduction numbers.

We also denote by maxC the maximum operator associated to the order E. Note
that in general the operator maxC is multi-valued and is defined by

maxC{i, j} =


i if T i

0 > T j
0

j if T j
0 > T i

0

{i, j} if T i
0 = T j

0

A subset {i1, .., ip} ⊂ {1, .., n} := Nn is said to be strictly ordered if there exists
a permutation σ of {1, .., p} such that iσ(1) C .. C iσ(p). Let us notice that on a
strictly ordered set, the operator maxC becomes a single-valued map. Let us also
mention that for biological reason, since we aim to deal with competitive exclusion
principle for our multi-strain model, it is relevant to assume that the different strain
is distinguishable. Hence we shall assume in most parts of this work that, the species
that can potentially survive are distinguishable, that is re-formulated by assuming
the set {i ∈ Nn : T i

0 > 1} is strictly ordered.
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Before stating our main result let us introduce further notations that correspond
to the stationary states of (2.1) (see Proposition 3.4): xf = Λ

µx
and for each k ∈ S

(when S 6= ∅) :

xk
e =

xf

T k
0

; mk
e =

µx(T k
0 − 1)

βk
(δi,k)

n
i=1 ; yk

e (a) = βix
k
ee

−µxamk
e , (2.7)

wherein δi,j denotes the usual Kronecker symbol.
For technical reason in relation to some computations we shall assume some re-

lation between the parameters. The set S (when S 6= ∅) satisfies condition (Q) if(
T i
0 − 1

)
δiβixf ≤ T i

0 µmi, ∀i ∈ S. (2.8)

Let us first notice that the above condition is always satisfied when δi = 0. When
δi > 0 then the above parameter condition can re-written in term of a limitation of the
strain specific basic reproduction numbers (see (2.6)). Indeed, if one sets γi =

δiβixf

µmi

then condition (Q) re-writes as

Ri
0 ≤ max

(
1 +

1

1 + 2γi
; 1 +

1 +
√
1 + 4γi
2γi

)
, ∀i ∈ S.

Using the above notations the main result of this work reads as
Theorem 2.2. Let Assumption 2.1 be satisfied. Let x0 ≥ 0, m0 ∈ Rn

+ and
y0 ∈ L1

(
0,∞;Rn

+

)
be a given initial data and let us denote by (x(t),m(t),y(t, .)) the

solution of (2.1)-(2.2). Then the following holds true:
(i) If J := S ∩

{
k ∈ {1, .., n} : m0,k +

∫∞
0

y0,k(a)da > 0
}
= ∅ then

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xf , 0Rn , 0L1(0,∞;Rn)

)
,

wherein the above convergence holds for the topology of R×Rn×L1 (0,∞;Rn).
(ii) Let us assume that the set S is strictly ordered and satisfies the parameter

condition (Q). If J 6= ∅ then, setting i = maxC J and recalling (2.7) one has

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xi
e,m

i
e,y

i
e(.)
)
,

for the topology of R× Rn × L1 (0,∞;Rn).
The first part of this result applies in particular when S = ∅, namely T0 ≤ 1. In

that case all the strains asymptotically die out and the parasites cannot persist. Let
us notice that the condition T0 ≤ 1 can be re-written in term of basic reproduction
R0 := max

{
Ri

0, i ∈ Nn

}
as R0 ≤ 1. The second part of the above theorem says

that when different strains are sufficiently strong to survive, then only the strongest
present strain (with respect to the order E) is surviving in the long term.

Remark 2.3. The parameter condition (Q) seems to be only a technical condition
that we cannot overcome. From numerical computations, the equilibrium associated
to the strongest strain continue to be globally stable even if condition (Q) is violated.

We now provided some numerical simulations to illustrate the dynamics of Sys-
tem (1.1) in the case of two strains interactions (n = 2) and using the parameter set
described in Table 2.1. They highlight the principle of competitive exclusion. Ac-
cording to [7] the sequestration period for the i-strain satisfies τi ∈ [44; 52](hours).
For numerical simulations we set τ1 = 48 and τ2 = 50 h while µi ≡ µi(a) is set
(following [45]) to

µi(a) := 0 if a < τi and 0.98 if a ≥ τi.
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Using contact rate β1 = β2 = 0.02/24, Fig. 1 (left) represents the super-imposition
of the time evolution of two strains alone, that is without interaction while Fig.1
(right) corresponds to the time evolution of competitive interactions between the two
strains. Since the sequestration period for strain 1 is smaller then strain 1 becomes
the strongest and it competitively suppresses strain 2. Let us also notice that the
shape of these curves are qualitatively close to the experimental situations recently
obtained by Wacker et al in [51]. Let us finally emphasis that using the parameter
set described in Table 2.1 and 2.2, the weakest strain, namely strain 2, is quickly
suppressed after 20 days. This duration plays an important role on the transmission
of gametocytes to mosquitoes. Note that such a conclusion has been reached without
taking into account the interactions of the different strains during the liver stage of
the disease. This could have an influence on the time needed to suppress the weakest
strain during the blood stage and thus on the spread of the different strains. This
will be studied in a forthcoming work.
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Figure 1: On the left hand-side super-imposed time evolution of the density of mero-
zoites for strain 1 and 2 alone; on the right hand-side competitive suppression of
strain 2 when the two strains are mixed. Parameter set for (1.1) is described in Table
2.1 while initial distributions are given in Table 2.2. Here one has R1

0 = 4.79 and
R2

0 = 3.95.

Table 2.1
Parameter set for (1.1)

Parameters Description Value and Range References
Λ Production rate of RBC 1.73× 106 cell.h−1.ml−1 [1]
β1; β2 Infection rate of uRBC 0.02/24 ml.cell−1.h−1 [1]
µx Natural death rate of uRBC 0.00833/24 h−1 [1]
µm1;µm2 Decay rates of malaria parasites 48/24 h−1 [22]
r1; r2 Merozoite mean rate produce by pRBC 16 [1]

Table 2.2
Initial values in model (1.1)

Variables Description Initial Values References
x(0) Population of uRBC 5× 109 cell.ml−1 [1, 4, 22,38]

w1(0, .); w2(0, .) Population of pRBC 0 cell.ml−1 [1, 4, 22,38]
m1(0); m2(0) malaria parasite 107 parasite.ml−1 [1, 4, 22,38]

3. Preliminaries. The aim of this section is to derive preliminary remarks
on (2.1)-(2.2). These results include the existence of the unique maximal semiflow
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bounded dissipative associated to this system. The second part of this section relies
on technical material that will be used to prove our stability results.

3.1. Existence of semiflow and basic properties. In this section we shall
deal with (2.1)-(2.2) using an integrated semigroup approach. This approach has been
introduced by Thieme in [46] in the context of age-structured equations. We also refer
to [12,29,33,35,36] and [47,49] (see also the references cited therein).

Let us introduce the Banach space X̂ := Rn ×L1(0,∞;Rn) as well as its positive

cone X̂+ = Rn
+ × L1(0,∞;Rn

+) and the linear operator Â : D(Â) ⊂ X̂ → X̂ defined
by

D(Â) = {0Rn} ×W 1,1 (0,∞;Rn) , Â

(
0Rn

ϕ

)
=

(
−ϕ(0)

−ϕ′ − µxϕ

)
. (3.1)

Next consider the Banach space X and its positive cone X+ defined by

X = R× Rn × X̂ and X+ = R+ × Rn
+ × X̂+,

endowed with the usual product norm. Let A : D(A) ⊂ X → X be the linear operator
defined by

D(A) = R× Rn ×D
(
Â
)
, A = diag

(
−µx,−µm, Â

)
. (3.2)

Note that the domain of operator A is not dense in X because of the identity

D(A) = R× Rn × {0Rn} × L1(0,∞;Rn) 6= X.

Finally let us introduce the nonlinear map F : D(A) → X defined by

F
(
(x,m, 0Rn ,y)

T
)
=

(
Λ− xET

n βm,

∫ ∞

0

ρ(a)y(a)da− δβxm, βxm, 0L1(0,∞;Rn)

)T

.

By identifying u(t) together with (x(t),m(t), 0Rn ,y(t, .))
T
and by setting u0 = (x0,m0, 0Rn ,y0(.))

T
,

one obtains that System (2.1)-(2.2) re-writes as the following non-densely defined
Cauchy problem:

du(t)

dt
= Au(t) + F (u(t)) t ≥ 0 and u(0) = u0 ∈ D(A) ∩X+. (3.3)

We first derive that the above abstract Cauchy problem generates a unique glob-
ally defined and positive semiflow. We set X0 = D(A) and X0+ = X0 ∩X+ and the
precise result is the following:

Theorem 3.1. Let Assumption 2.1 be satisfied. Then there exists a unique
strongly continuous semiflow {U(t) : X0+ → X0+}t≥0 such that for each u0 ∈ X0+,
the map u ∈ C ([0,∞) : X0+) defined by u = U(.)u0 is a mild solution of (3.3), namely
it satisfies∫ t

0

u(s)ds ∈ D(A) and u(t) = u0 +A

∫ t

0

u(s)ds+

∫ t

0

F (u(s))ds, ∀t > 0.

Furthermore {U(t)}t≥0 satisfies the following properties:
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(i) Let U(t)u0 = (x(t),m(t), 0Rn ,y(t, .))
T
, then the following Voletrra integral

formulation holds true

y(t, a) =

{
y0(a− t)e−µxt if a ≥ t

βx(t− a)m(t− a)e−µxa if a < t
,

coupled with the x(t) and m(t) equations of (2.1).
(ii) For each u0 ∈ X0+ one has for all t ≥ 0:

x(t) +

∫ ∞

0

ET
n y(t, a)da ≤ x0 + ||ET

n y0||L1 +
Λ

µx
,

ET
nm(t) ≤ ET

nm0 +
1

µmin
m

(
x0 + ||ET

n y0||L1 +
Λ

µx

)
‖ρ‖max.

wherein we have set µmin
m = min

16j6n
µm,j and ‖ρ‖max = max

16j6n
‖ρj‖L∞ .

(iii) The semiflow {U(t)}t≥0 is bounded dissipative and asymptotically smooth.
Proof. The proof of this result is rather standard. Indeed it is easy to check that

operator A satisfies the Hille-Yosida property. Then standard methodologies apply to
provide the existence and uniqueness of mild solution for System (2.1)-(2.2). (see for
instance [33,35,36,47,49]).

Next the Voletrra integral formulation is also standard in the context of age-
structured equation and we refer to [26, 53] and the references cited therein for more
details.

Estimates stated in (ii) directly follow from the system of equations. Let us as-
sume for a moment that y0 ∈ W 1,1(0,∞;Rn) then adding-up the x-equation together
with the yi−equations yields

d

dt

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
= Λ− µx

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
;

from where one deduces the first estimate of (ii) when y0 is smooth enough. Then
a usual density argument coupled with the continuity of the semiflow with respect
to the initial data yields to the conclusion for y0 ∈ L1(0,∞;Rn

+). Then the second
estimate directly follows from the first one applied to the mi−equations.

It remains to prove (iii) and let us notice that the bounded dissipativity of
the semiflow {U(t)}t≥0 is a direct consequence of (ii). To prove the asymptotically
smoothness, let B be a forward invariant bounded subset of X0+. According to the
results in [43] it is sufficient to show that the semiflow is asymptotically compact on
B.

Let us consider a sequence of solutions
{
up = (xp;mp, 0,yp)

T
}
p≥0

that is equi-

bounded in X0+ and let consider a sequence {tp}p≥0 such that tp → +∞. Let us
show that the sequence {up(tp)}p≥0 is relatively compact in X0+. To do so, we con-
sider the sequence of map {wp(t) = up(t+ tp)}p≥0. Since xp and mp are uniformly
bounded in the Lipschitz norm, Arzela-Ascoli theorem implies that, possibly along a
sub-sequence, one may assume that xp(t + tp) → x̂ and mp(t + tp) → m̂(t) locally
uniformly for t ∈ R. It remains to deal with the sequence {yp(tp, .)}p≥0. Let us

denote by ỹp(t, .) = yp(t+ tp, .). Using the Volterra integral formulation one gets

ỹp(t, a) =

{
y0(a− t+ tp)e

−µx(t+tp) if a ≥ t+ tp

βxp(t− a+ tp)mp(t− a+ tp)e
−µxa if a < t+ tp

, (3.4)
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Finally sine βxp(t− a+ tp)mp(t− a+ tp)e
−µxa convergences as p → ∞ towards some

function ξ(t, a) = βx̂(t− a)m̂(t− a)e−µxa locally uniformly, one easily concludes that

yp(tp, .) = ỹp(0, .) → βx̂(−.)m̂(−.)e−µx. in L1 (0,∞;Rn) .

The result follows.
Now in order to deal with sub-system, it will be also convenient to introduce for

each J ⊂ Nn the closed subspaces XJ ⊂ X and XJ
0 ⊂ X0 defined by

XJ =

{
(x,m, α;y)T ∈ X : mi +

∫ ∞

0

yi(a)da = 0, ∀i ∈ J

}
and XJ

0 = XJ ∩X0.

We also introduce XJ
0+, the positive cone of XJ

0 defined by XJ
0+ = XJ

0 ∩ X0+. If
J = ∅ then XJ = X, XJ

0 = X0 and XJ
0+ = X0+. Recalling definition (3.2), note that

A(D(A) ∩XJ
0 ) ⊂ XJ . In the sequel we shall denote by AJ : D(AJ) ⊂ XJ → XJ the

linear Hile Yosida operator defined by

D(AJ) = D(A) ∩XJ
0 , AJx = Ax, ∀x ∈ D(A) ∩XJ

0 . (3.5)

For each i ∈ Nn we also consider

M i
0 =

{
(x,m, α;y)T ∈ X0+ : mi +

∫ ∞

0

yi(a)da > 0

}
.

Then the following lemma holds true
Lemma 3.2. For each J ⊂ Nn and each i ∈ Nn, the subsets XJ

0+ ⊂ X0+ and M i
0

are both positively invariant under the semiflow {U(t)}t≥0; in other words

U(t)M i
0 ⊂ M i

0 and U(t)XJ
0+ ⊂ XJ

0+ ∀t ≥ 0.

Proof. To prove the above result, let i ∈ Nn be given. Let u0 := (x0;m0; 0Rn ;y0) ∈
M i

0 be given and let us denote for each t ≥ 0, U(t)u0 := (x(t);m(t); 0Rn ,y(t, .))
T
the

orbit passing through u0. Let us set pi(t) = mi(t) +

∫ ∞

0

yi(t, a)da. It comes that

p′i(t) ≥ −max(µx, µmi)pi(0). That is

mi(t) +

∫ ∞

0

yi(t, a)da ≥ e−max(µx,µmi)t

(
m0i +

∫ ∞

0

y0i(a)da

)
.

This complete the fact that U(t)M i
0 ⊂ M i

0.
Now, let u0 ∈ ∂M i

0. Using the Volterra formulation we easily find that mi(t) = 0 for
all t ≥ 0 and∫ ∞

0

yi(t, a)da = β1

∫ t

0

x(t− a)mi(t− a)e−µxada+ e−µxt||y0i||L1 = 0.

Therefore U(t)∂M i
0 ⊂ ∂M i

0 for all t ≥ 0. This ends the proof of the lemma.
Then coupling Theorem 3.1 together with the results of Hale [18, 19], Hale et

al. [20] , one obtains the following proposition:
Proposition 3.3. Let J ⊂ Nn be given. There exists a non-empty compact set

AJ ⊂ XJ
0+ such that
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(i) AJ is invariant under the semiflow
{
UJ(t) := U(t)|XJ

0+

}
t≥0

.

(ii) The subset AJ attracts the bounded sets of XJ
0+ under the semiflow UJ .

Next the following proposition describes the equilibria of the model.
Proposition 3.4. Let Assumption 2.1 be satisfied. Assume furthermore that

the set S is strictly ordered. Then System (2.1) (or semiflow {U(t)}t≥0 provided by
Theorem 3.1) has exactly 1 + card S stationary states:
(i) The disease free equilibrium defined by

u∗
0 =

(
xf ; 0Rn ; 0Rn , 0L1(0,∞;Rn)

)T ∈ XNn
0+ , xf =

Λ

µx
,

is an equilibrium of U and it is the only one when S = ∅.
(ii) When S 6= ∅ the semiflow U has exactly card S endemic stationary states defined

for each k ∈ S by

u∗
k =

(
xk
e ,m

k
e , 0Rn ,yk

e

)T ∈ X
Nn\{k}
0+ ∩Mk

0 ,

wherein the above quantities are defined in (2.7).
The proof of this result follows from straightforward algebra. The details are left

to the reader.

3.2. Technical materials. In this subsection we establish some properties of
the entire solutions of System (2.1). These properties will be useful later to derive
the asymptotic behaviour of (2.1) especially when S 6= ∅.

Our first result is concerned with spectral properties of the linearized semiflow
UJ := U |XJ

0+
for some given subset J ⊂ Nn at an given stationary point u∗ ∈ ∂MJ

0 .

Let u∗ = (x∗,m∗, 0Rn ,y∗)
T ∈ XJ

0+ be a given stationary state of the semiflow UJ .
The associated linearized equation at the point u∗ reads as

du(t)

dt
= (AJ +Bu∗)u(t);

where AJ is the linear operator defined in (3.5) while Bu∗ ∈ L
(
XJ

0 , X
J
)
is the

bounded linear operator defined by:

Bu∗


x
m
0Rn

y

 =


−x∗ET

n βm− xET
n βm

∗∫∞
0

ρ(a)y(a)da− δβ(x∗m+ xm∗)

x∗βm+ xβm∗

0L1(0,∞,Rn)


Lemma 3.5. Let J ⊂ Nn be given. Let us set Ω = {λ ∈ C : Re (λ) > −µx}.

Then the spectrum σ (AJ +Bu∗) ∩ Ω only consists in point spectrum and one has

σ (AJ +Bu∗) ∩ Ω =
{
λ ∈ Ω : ∆J(λ, u∗) = 0

}
,

where function ∆J(., u∗) : Ω → C is defined by

∆J(λ, u∗) =
∏

i∈Nn\J

χi(λ, x
∗),
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while for each i ∈ Nn and each x ∈ R, function χi(., x) : Ω → C is defined by

χi(λ, x) = 1− βix

λ+ µmi

[∫ ∞

0

ρi(a)e
−(λ+µx)ada− δi

]
. (3.6)

Proof. Let J ⊂ Nn be given. Let us denote by A0J the part of AJ in XJ
0 . Then

it is the infinitesimal generator of a C0−semigroup on XJ
0 denoted by {TA0J

(t)}t≥0.
Next it is easy to check that the essential growth rate of this semigroup satisfies
ω0,ess (A0J) ≤ −µx. Then since operator Bu∗ is compact, the results in [11,49] apply
and provided that the essential growth rate of

{
T(AJ+Bu∗ )0

(t)
}
t≥0

, the C0−semigroup

generated by the part of (AJ +Bu∗) in XJ
0 satisfies ω0,ess ((AJ +Bu∗)0) ≤ −µx.

Applying the result in [36] (see also [13] and [54]), the latter inequality ensures that
Ω ∩ σ (AJ +Bu∗) is only composed of point spectrum of (AJ +Bu∗).

It remains to derive the characteristic equation. However this part is also standard
and we refer for instance to [5, 32,37].

Our next result relies on properties of the entire solutions of System (2.1)

Lemma 3.6. Let
{
u(t) = (x(t),m(t), 0Rn ,y(t, .))

T
}
t∈R

be a given entire solution

of the semiflow U . Then x satisfies

inf
t∈R

x(t) > 0. (3.7)

Furthermore the following properties holds true:
(i) If there exist i ∈ Nn and t0 ∈ R such that u(t0) ∈ M i

0 then mi(t) > 0, ∀t ∈ R
and yi(t, a) > 0 for any (t, a) ∈ R× [0,∞).

(ii) Assume that S 6= ∅ and assume there exist i ∈ S and t0 ∈ R such that
u(t0) ∈ M i

0. If u(t) → u∗ as t → ∞ where u∗ is an equilibrium point of U .
Then one has u∗ ∈

{
u∗
j : iE j

}
.

(iii) For each i ∈ Nn there exist a constant Mi > 1 such that

m−
i (t)

Mi
e−µxa ≤ yi(t, a) ≤ Mie

−µxa; ∀(t, a) ∈ R× [0,∞),

wherein we have set m−
i (t) = infs≤t mi(s).

Proof. Let us first notice that since u is an entire solution then

y(σ, a) = βx(σ − a)m(σ − a)e−µxa ∀(σ, a) ∈ R× [0,∞). (3.8)

This expression directly follows from the Volterra integral formulation in Theorem
3.1.

From the estimates provided in Theorem 3.1 and the x-equation there exists some
constant C > 0 such that for each s ∈ R and t ≥ 0 one has

x(s)e−Ct + Λ

∫ t

0

e−C(t−l)dl ≤ x(t+ s) ≤ x(s) +
Λ

µx
. (3.9)

This implies that inft∈R x(t) > 0 and complete the proof of (3.7).
We now turn to the proof of (i). Let us argue by contradiction by assuming that
there exists t1 ∈ R such that mi(t1) = 0. Then from the mi−equation we deduce
that mi(t) = 0 for all t ≤ t1. Next we infer from (3.8) that

∫∞
0

yi(t, a)da = 0 for any

t ≤ t1. Hence mi(t) +
∫∞
0

yi(t, a)da ≡ 0, a contradiction with the existence of t0. On
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the other hand, due to (3.9) and (3.7), if there exists (t1, a1) ∈ R × [0,∞) such that
yi(t1, a1) = 0 then mi(t1 − a1) = 0 and the first part of the argument applies.

Let us now prove (ii). Let us first notice that since mi(t0) +
∫∞
0

yi(t0, a)da > 0,
(i) implies that mi(t) > 0 for all t ∈ R and yi(t, a) > 0 for all (t, a) ∈ R× [0,∞). Next
consider the function Γi(a) =

∫∞
a

ρi(s)e
µx(a−s)ds and note that Γi ∈ L∞(0,∞,R)

and satisfies Γ′
i(a)− µxΓi(a) + ρi(a) = 0 a.e. a ≥ 0. Let us introduce the functional

Φi[u](t) =

∫ ∞

0

Γi(a)yi(t, a)da+mi(t),

that satisfies (recalling Definition (2.3))

dΦi[u](t)

dt
= µmimi(t)

[
T i
0

x(t)

xf
− 1

]
, ∀t ∈ R. (3.10)

Using this computation we will obtain a contradiction by assuming that u(t) → u∗
j

as t → ∞ for some j C i. Indeed for j = 0 then u(t) → u∗
0 as t → ∞ implies that

x(t) → xf as t → ∞. Then since T i
0 > 1 then function t 7→ Φi[u](t) is not decreasing

for t large enough. Hence there exists t0 ∈ R such that Φi[u](t) ≥ Φi[u](t0) for all
t ≥ t0. Since Φi[u](t0) > 0, this prevents the component (yi,mi) to converge to
(0, 0L1) as t → ∞. A contradiction with u(t) → u∗

0.
The same argument holds for j ∈ S with j C i. Indeed in such a case x(t) → xj

e as
t → ∞ and since [

T i
0

xj
e

xf
− 1

]
=

T i
0

T j
0

− 1 > 0,

the same arguments apply. This completes the proof of (ii).
Finally note that (iii) directly follows from (3.7) and (3.8). This ends the proof

of Lemma 3.6.
Our next lemma is a computation result will be used in the sequel to perform

Lyapunov arguments.
Lemma 3.7. Let us assume that the same assumptions of Lemma 3.6 are satisfied.

Let h : (0,∞) → [0,∞) be the function defined by

h(s) = s− 1− ln s. (3.11)

Let us assume that there exists i0 ∈ S such that

lim inf
t→−∞

mi0(t) > 0. (3.12)

Then;
(i) For each t ∈ R one has[∫ ∞

.

ρi0(s)l(s)ds

]
h

(
yi0(t, .)

yi0ei0(.)

)
∈ L1(0,∞,R). (3.13)

(ii) Consider now the map Vi0 [u] : R → [0,∞) defined by

Vi0 [u](t) := Wi0(t) +

p∑
j=1;j 6=i0

∫ ∞

0

fj(a)yj(t, a)da+

p∑
j=1;j 6=i0

djmj(t), (3.14)
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wherein we have set Wi0(t) = Vx(t) + Vyi0
(t) + Vmi0

(t) and

Vx(t) = h

(
x(t)

xi0
e

)
; Vyi0

(t) =

∫ ∞

0

αi0(a) h

(
yi0(t, a)

yi0ei0(a)

)
da; Vmi0

(t) = di0 h

(
mi0(t)

mi0
ei0

)
and

di0 =
βi0m

i0
ei0

µmi0

; dj =
βj

µmj
, with j 6= i0; (3.15)

fj(a) =
βj

µmj

∫ ∞

a

ρj(s)e
−µx(s−a)ds; and αi0(a) =

β2
i0
xi0
e mi0

ei0

µmi0

∫ ∞

a

ρi0(a)l(a)da.

(3.16)
Then function t 7→ Vi0 [u](t) is of the class C1 on R and we have

V̇i0 [u](t) = − Θi0

xi0
e x(t)

(
x(t)− xi0

e

)2
+

x(t)

xi0
e

p∑
j=1;j 6=i0

(
T j
0

T i0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

µmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

m1
ei0

yi0(t, 0)

)]
da;

with

Θi0 = µx − δi0
β2
i0
xi0
e mi0

ei0

µmi0

. (3.17)

Proof. (i) Let us first remark that (3.13) follows from the estimate provided by
Lemma 3.6 (iii) as well as (3.12). Indeed function a 7→

∫∞
a

ρi0(s)l(s)ds satisfies∫ ∞

0

a

∫ ∞

a

ρi0(s)l(s)dsds < ∞.

(ii) Next note that function t 7→ Vi0 [u](t) is also well defined for each t ∈ R because
of (3.7), Lemma 3.6 (i) and finally because of fj ∈ L∞(0,∞) (see Definition (3.16)).

It now remains to compute the derivation of t 7→ Vi0 [u](t) (that is obviously of
the class C1 on R since u is an entire solution).
Firstly one has

V̇x(t) =
Λ

xi0
e

+ µx − µx
x(t)

xi0
e

− Λ

x(t)
− βi0m

i0
ei0

yi0(t, 0)

yi0ei0(0)
+ βi0mi0(t)

+

(
1− x(t)

xi0
e

) p∑
j=1;j 6=i0

βjmj(t).

(3.18)

Secondly using the yi0−equation and integration by parts, simple algebra leads to

V̇yi0
(t) = αi0(0)h

(
yi0(t, 0)

yi0ei0(0)

)
+

∫ ∞

0

α′
i0(a)h

(
yi0(t, a)

yi0ei0(a)

)
da.

Moreover we infer from the definition of αi0 (see (3.16))

V̇yi0
(t) =

∫ ∞

0

β2
1x

i0
e mi0

ei0

µmi0

ρi0(a)l(a)

[
h

(
yi0(t, 0)

yi0ei0(0)

)
− h

(
yi0(t, a)

yi0ei0(a)

)]
da. (3.19)
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Next one can also check that

V̇mi0
(t) =

∫ ∞

0

di0δi0βi0x
i0
e ρi0(a)l(a)

yi0(t, a)

yi0ei0(a)
da− di0µmi0

mi0
ei0

mi0(t)

− di0δi0βi0x
i0
e

yi0(t, 0)

yi0ei0(0)
− di0

mi0(t)

∫ ∞

0

ρi0(a)yi0(t, a)da

+ di0δi0βi0x(t) + di0µmi0 .

(3.20)

Using the fact that∫ ∞

0

β2
i0
xi0
e mi0

ei0

µmi0

ρi0(a)l(a)da− βi0m
i0
ei0

− di0δi0βi0x
i0
e = 0,

we infer from (3.18)-(3.20) that

Ẇi0(t) =
Λ

xi0
e

+ µx + di0µmi0 − 2
β2
i0
xi0
e mi0

ei0

µmi0

Ki0 + (di0δi0βi0x
i0
e − µx)

x(t)

xi0
e

+

(
Ki0β

2
i0
xi0
e mi0

ei0

µmi0

− Λ

xi0
e

)
xi0
e

x(t)
+

(
1− x(t)

xi0
e

) p∑
j=1;j 6=i0

βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

µmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

mi0
ei0

yi0(t, 0)

)]
da.

Since EEi0 is an equilibrium of system (2.1) one gets

Ẇi0(t) =− Θi0

xi0
e x(t)

(
x(t)− xi0

e

)2
+

(
1− x(t)

xi0
e

) p∑
j=1;j 6=i0

βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

µmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

mi0
ei0

yi0(t, 0)

)]
da,

with Θi0 defined in (3.17). Using the fact that f ′
j(a) − µxfj(a) + djρj(a) = 0 for all

a ≥ 0 and δjdj +
1

xf
− fj(0) =

1− T j
0

xf
, one has

V̇i0 [u](t) = − Θi0

xi0
e x(t)

(
x(t)− xi0

e

)2
+

x(t)

xi0
e

p∑
j=1;j 6=i0

(
T j
0

T i0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

µmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

m1
ei0

yi0(t, 0)

)]
da.

This ends the proof of the lemma.

4. Proof of Theorem 2.2 (i). The aim of this section is to prove the first part
of Theorem 2.2. By using all the above introduced definitions and notations, this
result can be reformulated as follows:

Proposition 4.1. Let Assumption 2.1 be satisfied. Then the following holds
true:

lim
t→∞

US(t)x = u∗
0,
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for each x ∈ XS
0+ and where US denotes the restriction semiflow U at XS

0+.
Remember that if S = ∅, namely T0 ≤ 1 then XS

0+ = X0+ and US ≡ U . This
remark means that when T0 ≤ 1 then the disease free equilibrium is globally attractive.

The proof of this result relies on the construction of a suitable Lyapunov functional
on the entire solution of US .

Proof. Let us consider AS ⊂ XS
0+ the global compact attractor of US provided by

Proposition 3.3. Let x ∈ AS be given and let {u(t)}t∈R ⊂ AS be an entire solution of
US such that u(0) = x. Recalling that from Lemma 3.6 (iii), inf

t∈R
x(t) > 0, one may

consider the functional V defined for each entire solutions by

V [u](t) = h

(
x

xf

)
+

n∑
j=1

∫ ∞

0

fj(a)yj(a)da+
n∑

j=1

djmj ,

where the positives constants dj and the functions fj are defined respectively by (3.15)
and (3.16) while function h is given in (3.11).

Next using System (2.1) we obtain

d V [u](t)

dt
= −µx

(x(t)− xf )
2

x(t)
−

n∑
j=1

(djµmj − βj)mj(t)−
n∑

j=1

(
δjdj +

1

xf

)
βjx(t)mj(t)

+

n∑
j=1

dj

∫ ∞

0

ρj(a)yj(t, a)da−
n∑

j=1

∫ ∞

0

fj(a)e
−µxa(∂ayj(t, a)e

µxa + µxe
µxayj(t, a))da.

Integrating by part the last integral of the previous equality, using the yj−boundary
condition of (2.1) together with f ′

j(a)−µxfj(a)+djρj(a) = 0 for all a ≥ 0, one obtains

recalling {u(t)}t∈R ⊂ XS
0+ that

d V [u](t)

dt
= −µx

(x(t)− xf )
2

x(t)
− x(t)

∑
j∈Nn\S

1− T j
0

xf
βjmj(t). (4.1)

Hence we infer from the definition of S that t 7→ V [u](t) is decreasing along the entire
solutions of US . To conclude our proof let {tn}n≥0 be an increasing sequence tending
to −∞ as n → ∞ and consider the sequence of map un(t) = u(t+ tn). Note that one
has V [un](t) = V [u](t+ tn). Up to a subsequence one may assume that un(t) → û(t)
as n → ∞ locally uniformly for t ∈ R where {û(t)}t∈R ⊂ AS is an entire solution of
US . Since V is decreasing, one obtains that

V [û] (t) ≡ lim
t→−∞

V [u](t) = sup
t∈R

V [u](t).

By setting û = (x̂, m̂, 0, ŷ)
T
, (4.1) yields to x̂(t) ≡ xf while the x−equation provides

that m̂(t) ≡ 0 so that ŷ(t, .) ≡ 0. Hence V [û] (t) ≡ 0 and 0 ≤ V [u](t) ≤ 0 for t ∈ R
and u(t) ≡ u∗

0. This completes the proof of Proposition 4.1.

5. Proof of Theorem 2.2 (ii). The aim of this section is to prove Theorem 2.2
(ii). For this reason, we will assume throughout this section that S 6= ∅. The proof of
this result will follow an induction argument. To be more specific we will study the
behaviour of the semiflow US\J for each subset J ⊂ S using card J ∈ {1, .., card S}
as the induction parameter.
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The precise result we will prove in the following:
Theorem 5.1. Let us assume that the assumptions of Theorem 2.2 are satisfied.

Assume that S 6= ∅. Then for each J ⊂ S the semiflow
{
US\J(t)

}
t≥0

satisfies for

each x ∈ X
S\J
0+ :

(i) if J (x) := J ∩
{
i ∈ Nn : x ∈ M i

0

}
= ∅ then x ∈ XS

0+ and

lim
t→∞

US\J(t)x = u∗
0,

(ii) If J (x) 6= ∅ we set i = maxC J (x) and one has

lim
t→∞

US\J(t)x = u∗
i .

Let us first notice that point (i) in the above theorem is a direct consequence of
Theorem 2.2 (i) (see Proposition 4.1). As a consequence, it is sufficient to prove (ii)
and let us notice that Theorem 2.2 (ii) corresponds to Theorem 5.1 with J = S. As
mentioned above, the proof of this result relies on an induction argument on card J .
In the sequel we shall investigate the case where card J = 1 and we will then show
how such a property is inherited.

5.1. Case card J = 1. Let i ∈ S be given. For notational simplicity we consider

the set Y0+ = X
S\{i}
0+ and let us denote by

{
V (t) := US\{i}(t)

}
t≥0

. We also consider

the sets

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0 = XS

0+.

Before constructing a suitable Lyapunov function to study the asymptotic be-
haviour of V (t)x for some x ∈ N0 let us first collect in the following lemma some
properties of the semiflow {V (t)}t≥0 :

Lemma 5.2. Under the assumption of Theorem 5.1, the semiflow {V (t)}t≥0

satisfies the following properties:
(i) It is bounded dissipative and asymptotically smooth; N0 and ∂N0 are both

positively invariant under V .
(ii) For each x ∈ ∂N0 one has V (t)x → u∗

0.
(iii) The semiflow V is uniformly persistent with respect to the pair (N0, ∂N0) in

the sense that there exists ε > 0 such that for each x ∈ N0:

lim inf
t→∞

d (U(t)x; ∂N0) ≥ ε.

Proof. Note that (i) directly follows from Theorem 3.1 (ii), (iii) and Lemma 3.2
while (ii) directly follows from Theorem 5.1 (i). It remains to prove (iii). To do so
we will apply Theorem 4.2 in [20]. Let us first notice that u∗

0 is an unstable stationary
state with respect to the semiflow V . Indeed as an application of Lemma 3.5 we know
that the eigenvalues in Ω of the linearized semiflow V at u∗

0 are given the resolution
of the equation ∆S\{i}(λ, u∗

0) = 0. On the other hand these eigenvalues contain the
roots of the equation χi(λ, u

∗
0) = 0 (see (3.6)). Note that function χi(., u

∗
0) satisfies

χi(0, u
∗
0) = 1− T i

0 < 0 and lim
λ→∞

χi(λ, u
∗
0) = 1,

that ensures the existence of a strictly positive eigenvalue. The instability of u∗
0 with

respect to V follows.
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Applying Theorem 4.2 in [20] to complete the proof of Lemma 5.2 (iii) it is
sufficient to show that W s ({u∗

0})
⋂
N0 = ∅ wherein we have set W s({u}) = {v ∈

Y0+ : lim
t→+∞

V (t)v = u}. To prove this assertion, let us argue by contradiction by

assuming that there exists x ∈ W s ({u∗
0})
⋂
N0. Then using the same computations

as in Lemma 3.6 (ii), since T i
0 > 1 one obtains that the function

Φ [V (t)x] :=

∫ ∞

0

Γi(a)yi(t, a)da+mi(t) with Γi(a) :=

∫ ∞

a

ρi(s)e
a−sds,

is increasing for t large enough. This prevents the function (yi(t, .),mi(t)) to converge
to (0L1 , 0) and provides a contradiction together with the definition x. This completes
the proof Lemma 5.2.

As a consequence of Lemma 5.2 and Theorem 3.7 in [34](see also the monograph
[44]) there exists B0 a compact subset of N0 which is a global attractor for the semiflow
{V (t)}t≥0 in N0. To complete the proof of Theorem 5.1 (ii) in the case J = {i} it
remains to prove that B0 = {u∗

i }. This will be achieved by constructing a suitable
Lyapunov functional on B0. This idea has been used by Magal et al [37] and Thieme
[48].

Let
{
u(t) = (x(t),m(t), 0Rn ,y(t, .))

T
}
t∈R

⊂ B0 be a given entire solution of V .

We claim that

Claim 5.3. Function mi satisfies inft∈R mi(t) > 0.

Before proving this claim let us complete the proof of Theorem 5.1 for J = {i}.
Using Claim 5.3 and Lemma 3.7, one can consider the functional Vi[u] defined in
Lemma 3.7. Defining Θi as in (3.17) one has

V̇i[u](t) =− Θi

xi
ex(t)

(
x(t)− xi

e

)2
+

x(t)

xi
e

∑
j∈Nn\S

(
T j
0

T i
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i x

i
em

i
ei

µmi
ρi(a)l(a)

[
h

(
yi(t, a)m

i
ei

yiei(a)mi(t)

)
+ h

(
mi(t)y

i
ei(0)

m1
eiyi(t, 0)

)]
da.

Recalling condition (Q) one obtains that Θi ≥ 0 so that t 7→ V [u](t) is a bounded and
decreasing map. Finally arguing similarly as the end of the proof of Theorem 2.2 (i)
yields to u(t) ≡ u∗

i .

It now remains to prove Claim 5.3.

Proof. [Proof of Claim 5.3] Let us argue by contradiction by assuming that
inft∈R mi(t) = 0. Note that due to Lemma 3.6 (i), one has mi(t) > 0. Hence let
us for instance assume that lim inft→−∞ mi(t) = 0. Consider a sequence {tn}n≥0

tending to −∞ as n → ∞ such that mi(tn) → 0 as n → ∞. Consider the se-
quence of maps {un(t) := u(t+ tn)}n≥0. Then up to a subsequence, one may assume
that un(t) → û(t) locally uniformly wherein û is an entire solution of V such that
m̂i(0) = 0. Lemma 3.6 (i) ensures that (m̂i(t), ŷi(t, .)) ≡ (0, 0L1) This prevents û
to belong to N0, a contradiction. A similar argument holds true if one deals with
lim inft→+∞ mi(t) = 0. This completes the proof of Claim 5.3.

5.2. Case card S ≥ 2 and 2 ≤ card J ≤ card S. In this section we assume that
card S ≥ 2. Note that the proof of Theorem 5.1 (ii) follows from the above section
when card S = 1. Let J ⊂ S be a given subset such that card J ≥ 2. Our induction
hypothesis is concerned with the validity of Theorem 5.1 for each subset J ′ ⊂ S such
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that card J ′ < card J . Consider now the set Y0+ = X
S\J
0+ as well as the semiflow

V := US\J on Y0+. Let us denote i = maxC(J) and let us consider

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0.

Let us first notice that to prove Theorem 5.1 (ii) for J , it is sufficient to show that

lim
t→∞

V (t)x = u∗
i , ∀x ∈ N0. (5.1)

Indeed, if x ∈ ∂N0 then x ∈ X
S\J′

0+ with J ′ = J \ {i}. Since J ′ ⊂ S and card J ′ <
card J then V (t)x = US\J′(t)x and the asymptotic behaviour follows from the induc-
tion hypothesis.

The proof of this section is rather similar to the one provided in the preceding
section. The only difference relies on the proof of the uniform persistence of the
semiflow V with respect to the pair (N0, ∂N0) because of the dynamics of the semiflow
on the boundary ∂N0. Hence to complete the proof of Theorem 5.1 (ii) for J we will
only prove the following lemma. The details are left to the reader.

Lemma 5.4. The semiflow V is uniformly persistent with respect to the pair
(N0, ∂N0).

Proof. The proof of this result is an application of Theorem 4.2 in [20] with a
non-trivial dynamics for the boundary semiflow. Let us denote by J ′ = J \ {i}. Then
note that V |∂N0 = US\J ′ . According to Proposition 3.3 let us consider A∂ := AS\J ′

the global attractor of the semiflow V |∂N0 . Note that according to the induction
hypothesis the following holds true:⋃

x∈A∂

ω(x) = {u∗
0} ∪

⋃
j∈J′

{
u∗
j

}
.

Here for each x ∈ Y0+, ω(x) denotes the omega-limit set of the point x with respect
to the semiflow V . The application of Theorem 4.2 in [20] relies on some properties

of the set Â∂ defined by

Â∂ = {u∗
0} ∪

⋃
j∈J ′

{
u∗
j

}
.

Let us first claim:
Claim 5.5. For each j ∈ J ′ ∪{0} the stationary point u∗

j is unstable with respect
to the semiflow V .

Proof. [Proof of Claim 5.5] The proof of the above claim relies on Lemma 3.5.
Let us notice that for each j ∈ J ′ ∪ {0}, function χi(., u

∗
j (see (3.6)) satisfies

χi(0, u
∗
j ) =

{
1− T i

0 if j = 0,

1− T i
0

T j
0

if j ∈ J ′.

Hence since i = maxC J , χi(0, u
∗
j ) < 0 and since χi(λ, u

∗
j ) → 1 as λ → ∞, for each

j ∈ J ′ ∪ {0} function χi(., u
∗
j ) has a strictly positive root. The result follows.

Then we claim that:
Claim 5.6. For each (j, k) ∈ J ′ ∪ {0} then if {u(t)}t∈R is a non-trivial (that

non-constant) entire solution of V such that

lim
t→−∞

u(t) = u∗
j and lim

t→∞
u(t) = u∗

k,
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then j C k.
Proof. [Proof of Claim 5.6] The proof of this claim relies on the application of

Lemma 3.6 (ii) as well as a Lyapunov functional like argument.
Let us first consider the case where j ∈ J ′. Then applying Lemma 3.6 (ii) we know
that j E k. It is therefore sufficient to show that there is no homoclinic connection at
u∗
j . Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗
j .

Then applying once again Lemma 3.6 (ii) we obtain that for each k ∈ J ′ such that
k B j:

yk(t, .) ≡ 0 and mk(t) ≡ 0, ∀k ∈ J ′ B j.

Then consider the functional

Vj [u](t) = Vx(t) + Vyj
(t) + Vmj

(t) +
n∑

p=1;p 6=j

∫ ∞

0

fp(a)yp(t, a)da+
n∑

p=1;p 6=j

dpmp(t).

Using similar arguments and computations (see Lemma 3.7) as the ones provided in
the preceding section and using the fact that for each k ∈ S \J ′ and each k ∈ J ′ such
that k B j

yk(t, .) ≡ 0 and mk(t) ≡ 0,

one obtains that u(t) ≡ u∗
j , a contradiction.

It remains to consider the case j = 0 and to show that there is no homoclinic
connection at u∗

0. Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗
0.

Then let us notice that due to Lemma 3.6 (ii) one has

yk(t, .) ≡ 0 and mk(t) ≡ 0, ∀k ∈ S.

Then by considering the map

V0[u](t) = h

(
x

xf

)
+

n∑
j=1

∫ ∞

0

fj(a)yj(a)da+
n∑

j=1

djmj ,

as well as computations and arguments similar to the proof of Proposition 4.1 one
concludes that

u(t) ≡ u∗
0,

a contradiction that completes the proof of Claim 5.6.
As a consequence of Claim 5.5 and Claim 5.6, the set Â∂ is isolated and has an

acyclic covering. Hence since the semiflow is bounded dissipative and asymptotically
smooth, Theorem 4.2 in [20] applies and to complete the proof of Lemma 5.4, it is
sufficient to show that N0 ∩ W s

({
u∗
j

})
= ∅ for each j ∈ J ′ ∪ {0}. Similarly to the

proof in Section 5.1 this latter property directly follows from the functional

Φ [V (t)x] :=

∫ ∞

0

Γi(a)yi(t, a)da+mi(t) with Γi(a) :=

∫ ∞

a

ρi(s)e
a−sds.
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This completes the proof of Lemma 5.4.

Appendix A. Basic reproduction rate of system (1.1). Here we follow
the methodology of Diekmann and Heesterbeek [8, 9] and Inaba [25] (see also the
references cited therein). Let bj(t) be the density of newly produced j− merozoites
at time t. Then from (1.1) one has

bj(t) =

∫ ∞

0

r(a)µj(a)wj(t, a)da.

Since wj is given by the resolution of the linearized system (1.1) at the disease free
equilibrium, the Volterra formulation of the transport equation yields

bj(t) = βjxf

∫ t

0

ρj(a)l(a)mj(t− a)da+

∫ ∞

t

ρy,j(a)wj(0, a)da.

On the other hand, it follows from the mj component of the linearized system (1.1)
at the DFE that

ṁj(t) = bj(t)− (µm,j + δjβjxf )mj(t),

that re-writes as

mj(t) =

∫ t

0

e−(µm,j+δjβjxf )(t−s)bj(s)ds+mj(0)e
−(µm,j+δjβjxf )t.

As a consequence bj satisfies the following renewal equation:

bj(t) = βjxf

∫ t

0

(∫ a

0

e−(µm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
bj(t− a)da

+βjxfmj(0)

∫ t

0

ρj(a)l(a)e
−(µm,j+δjβjxf )(t−a)da+

∫ ∞

t

rj(a)µj(a)wj(0, a)da.

Due to the above formulation, the j−strain specific basic reproduction number Rj
0 is

calculated as

Rj
0 = βjxf

∫ ∞

0

(∫ a

0

e−(µm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
da;

that is

Rj
0 =

βjxf

µm,j + δjβjxf

∫ ∞

0

ρj(a)l(a)da.

Now let us notice that sgn
(
Rj

0 − 1
)
= sgn

(
T j
0 − 1

)
. Indeed it is easy to check that

Rj
0 − 1 =

µm,j

µm,j + δjβjxf

(
T j
0 − 1

)
.

Moreover one can notice that when δj = 0 then Rj
0 = T j

0 .
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