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In this paper, we construct a model to describe the evolutionary epidemiology of spore

producing asexual plant pathogens in a homogeneous host population. By considering the

evolution in the space of the pathogen phenotypic values, we derive an integro-differential
equation with nonlocal mutation terms. Our first main result is concerned with the exis-

tence and uniqueness of the endemic steady state of the model. Next assuming that the
mutation kernel depends on a small parameter ε > 0 (the variance of the dispersion into

the space of the pathogen phenotypic values), we investigate the concentration proper-
ties of the endemic steady state in the space of phenotypic values. In the context of this
work, several Evolutionary Attractors (as defined in classical adaptive dynamics) may
exist. However, in rather general situations, our results show that only one Evolutionary

Attractor persists when the populations are at equilibrium and when ε is small enough.
Our analysis strongly relies on a refined description of the spectral properties of some

integral operator with a highly concentrated kernel. We conclude the paper by presenting
some numerical simulations of the model to illustrate this concentration phenomenon.
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1. Introduction

The objective of this paper is to analyse the concentration property, in the space

of phenotypic values, of the steady state solutions of an integro-differential model

representing the evolutionary epidemiology of spore producing plant pathogens,

typically fungal leaf pathogen. Fungi are the most frequent agents of plant disease

in natural ecosystems and major causal agents of crop damage 37.

The inspiration of the current model was motivated by the emergence, during

the last decade, of a trend in mathematical epidemiology aiming to integrate in

the same modelling framework previously separate approaches dedicated, on one

side, to model epidemic and, on the other side, to model evolution (35). This ap-

proach was first proposed by Day and Proulx in 5 and re-explained in different

contexts by Day and Gandon in 4. Essentially, this analytical framework is inspired

by quantitative genetics. It can be used to monitor the simultaneous dynamics of

epidemics and dynamics of evolution of any pathogen life-history trait of interest.

This is a major issue for public health policies but also for plant health management

in agro-ecosystems. Indeed, similarly to Darwinian medicine (35), the sustainable

management of plant disease has two distinct but interdependent goals : ”an im-

mediate epidemiological one of reducing the incidence, severity and frequency of

disease epidemics and a longer-term evolutionary one of reducing the rate of evolu-

tion of new patho-types” (43). The longer-term evolutionary goal aims for example

to preserve the efficiency of disease resistance genes used in cultivated plant varieties

(cultivar).

In this work, we use a system of integro-differential equations to model both

the epidemiological and the evolutionary dynamics of spore-producing pathogens

in a homogeneous host population. The host population is subdivided into two

compartments, Susceptible or healthy host tissue (S) and Infected tissue (i). Healthy

tissue is transformed into infected tissue with the arrival and successful germination

of a single fungal spore from the spore pool compartment (A). The host population

does not represent individual plants, but rather leaf area densities (leaf surface area

per m2). The leaf surface is viewed as a set of individual patches corresponding to

a restricted host surface area that can be colonized by a single pathogen individual
18.

The model considers a continuum of different pathogen strains. It allows for

example to tackle the issue of pathogen adaptation to quantitative resistance. This

is important as up to now, most theoretical works deal with the adaptation of plant

pathogen to qualitative resistance (see for example 29,40,31,14,11,12,34). On quanti-

tatively resistant hosts, parasite exhibit a continuous distribution of their disease

phenotype (24,39): all the pathogen strains cause infection but each with its own

level of quantitative pathogenicity 23,43. From the pathogen side, the adaptation to

quantitative resistance is thus characterized by a gradual increase of the pathogenic-

ity levels. From the host side, this process leads to a gradual erosion of the efficiency

of quantitative resistance 24. More specifically, in the model, each pathogen strain
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is characterized by its phenotypic value which affects the life-history traits of the

pathogens expressed during the basic steps of the host-pathogen interaction: (i)

infection efficiency (probability that a spore deposited on a receptive host surface

produces a lesion), (ii) latent period (time interval between infection and the on-

set of sporulation), (iii) sporulation rate (amount of spore produced per lesion and

per unit time) and (iv) infectious period (time from the beginning to the end of

sporulation). We consider an asexually reproducing pathogen: the evolution in the

space of phenotypic values is thus modeled with an integral operator with kernel

m describing mutations from a pathogen strain with phenotypic value y ∈ RN to

another one with phenotypic value x ∈ RN .

The model we shall consider in this work reads as the following non-local age

structured system of equations posed for t > 0, age since infection a > 0 and

phenotypic value x ∈ RN , for some integer N ≥ 1,

∂tS(t) = Λ− µS(t)− S(t)

∫
RN

β(y)A(t, y)dy,

(∂t + ∂a) i(t, a, x) = −µi(t, a, x),

i(t, 0, x) = β(x)S(t)A(t, x),

∂tA(t, x) =

∫
RN

∫ ∞
0

m(x− y)r(a, y)i(t, a, y)dady − δA(t, x).

(1.1)

Here S(t), i(t, a, x) and A(t, x) respectively denote the density of healthy tissue,

the density of infected tissue since the time a > 0 by the pathogen with phenotypic

value x ∈ RN , and the density of airborne spores of pathogens with phenotypic

value x. The parameters Λ > 0, µ > 0 and δ > 0 respectively represent the influx

of new healthy host tissue, the death rate of the host tissue and the deposition

rate of spores. The function m stands for the mutation kernel and describes the

dispersion into the space of phenotypic values at each pathogen generation. The

function β = β(x) describes the infection efficiency of the pathogen while the age

specific function r = r(a, x) combines the life-history traits describing host-pathogen

interaction: the sporulation rate, the latent period and the infectious period. The

precise assumptions on these functions will be specified latter. Typically it takes

the form

r(a, x) = p(x)1[τ(x),τ(x)+l(x)](a),

where p, τ and l denote the strain specific sporulation rate, latent period and

infectious period respectively. Here 1[τ(x),τ(x)+l(x)] is the indicator function such

that r(a, x) = p(x), if a ∈ [τ(x), τ(x) + l(x)] and 0 elsewhere.

The formulation of Problem (1.1) assumed that there is no disease induced

mortality of infected lesions. As it will be discussed further below, this model is

particularly well adapted for the description of biotrophic host-pathogen interac-

tions, for which the pathogens require a living host for their development. But, a

more general model formulation including disease induced mortality will also be

discussed in Section 3.
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Model (1.1) appears, in a slightly different form, in 18 where the authors studied

the evolutionary adaptation of a pathogen to quantitative resistance.

In this work we shall focus on the study of the stationary states of (1.1). We shall

more specifically investigate the concentration properties in the space of phenotypic

values of these stationary states when the mutation kernel m depends on a small

parameter ε > 0 and is highly concentrated. We shall more specifically assume that

it takes the form

m(x) = mε(x) := ε−Nm
(x
ε

)
, ∀x ∈ RN . (1.2)

Here the small parameter ε models the small variance of the dispersion into the

space of phenotypic values. Note also that this does not imply that mutations are

rare since they arise at each life cycle of the pathogen.

The formal limiting system with ε = 0 fully uncouples the different locations in

the phenotypic trait space and it takes the form

∂tS(t) = Λ− µS(t)− S(t)

∫
RN

β(y)A(t, y)dy,

(∂t + ∂a) i(t, a, x) = −µi(t, a, x),

i(t, 0, x) = β(x)S(t)A(t, x),

∂tA(t, x) =

∫ ∞
0

r(a, x)i(t, a, x)da− δA(t, x).

Under specific assumptions on the model parameters, that will be provided in As-

sumptions 2.1 and 2.2 below, the above system of equations may admit an infinite

number of endemic stationary states, in particular if the following threshold condi-

tion is satisfied

T 0
0 :=

Λ

µ
‖Ψ‖∞ > 1,

with

Ψ(x) =
β(x)

δ

∫ ∞
0

r(a, x)e−µada. (1.3)

This function Ψ will be referred below as the fitness function. Here we will show that,

under suitable conditions, when ε > 0, then the coupling in the phenotypic trait

space is sufficiently strong to ensure the uniqueness of an endemic stationary state.

Moreover, when ε is small enough, this endemic stationary state concentrates, in

the trait space, on the points maximizing the fitness function Ψ. And, more deeply,

we shall show that, under biologically reasonable assumptions, this concentration

property selects a single trait (that will be characterized) even if the maximal fitness

is achieved at several trait locations.

Let us mention that concentration properties for continuously structured mod-

els with small mutation in evolutionary dynamics have attracted a lot of interest

in the last decade. Diekmann et al. in 8 introduced a Hamilton-Jacobi approach,

roughly based on a suitable time rescaling argument and a change of unknown (usu-

ally called WKB ansatz), to study such concentration property in the phenotypic
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values space for a resource-consumer problem. Such an approach has been fruit-

fully used to deeply understand the dynamical behaviour of concentration points

for various problems, including non-local competition logistic equation and chemo-

stat problem, involving small mutation parameter. We refer for instance to 6,27,28,32

and the references cited therein. We also refer to 2 and the references therein for

some results on the long time behaviour concentration for some non-local logistic

like equation. Let us also mention the work of Calsina et al. in 3 where the authors

formulate and study a selection mutation equation with a continuous phenotypic

evolutionary trait and a non-local mutation operator. In this work, the authors

prove a concentration property for the steady state solutions of their problem when

the mutation rate is a small parameter, that is when the time scale for mutations

is slower than the selection phenomena. They provide a refined description of the

asymptotic profile for these steady states and show that their asymptotic profile is

a Cauchy distribution. Note that the context of the aforementioned work is rather

different from the one considered in this note. Indeed, as mentioned above, we do

not assume a slow time scale for the mutation processes but a small variance of the

dispersion into the phenotypic values space due to mutations at each life cycle of

pathogens. In Gudelj et al. 15, the authors study the effect of small mutation on the

phenotypic evolution of a pathogen population, modelled by a diffusion, coupled

with the host heterogeneity. Depending on the trade-off relationship between the

transmission rates on two host populations, using formal asymptotics expansions,

the authors determine the maximum number of phenotypes a pathogen population

can support in the long term.

In this work, our analysis of the steady states of Problem (1.1) relies on the

spectral properties of the integral operator (involving the fitness function Ψ)

Lϕ(x) =

∫
RN

m(x− y)Ψ(y)ϕ(y)dy, (1.4)

and a refined analysis of its counterpart with small parameter ε, that reads as

the same operator with m replaced by mε. Such study follows some arguments

proposed by Helffer and Sjöstrand in 17 (see also 21,36 and the references therein).

Let us mention here that we will not assume that the mutation kernel has very fast

decay at infinity. We allow fat tail’s dispersion with fractional exponential decay

rate restriction (see Assumption 2.4 (i) below). In that setting, one of the key point

argument relies on the derivation of the fast decay estimates for the eigenvectors of

some integral operator.

This manuscript is organized as follows. In Sections 2-3 we state and discuss the

main results that will be obtained in this work. Section 4 is devoted to the derivation

of simple conditions ensuring the existence of a principal eigenvalue for some non-

local operator. Section 5 investigates preliminary spectral estimates. Section 6 is

devoted to the derivation of eigenvector decay estimates. Finally Section 7 completes

the proof of the main results of this work, that deal with the asymptotic expansion of

some principal eigenvalue and the concentration property of the associated principal
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eigenvector.

2. Main results

In this section we state the main results that will be proved in this work.

Our first main result is concerned with the existence and uniqueness of

the endemic steady state of (1.1). Let us observe that (S, i, A) ∈ (0,∞) ×
L1

+

(
(0,∞)× RN

)
× L1

+(RN ) is a stationary state of (1.1) iff it satisfies
∫
RN

m(x− y)Ψ(y)A(y)dy =
1

S
A(x),

Λ− µS = S

∫
RN

β(y)A(y)dy and i(a, x) = β(x)SA(x)e−µa.
(2.1)

Hence, the term 1
S appears as an eigenvalue of the linear integral operator L given

by the left hand side of the first equation of (2.1), namely defined as in (1.4) and

where the fitness function Ψ is defined by (1.3).

Therefore the study of the stationary states of (1.1) strongly relies on the spectral

properties of the operator L defined by (1.4).

Before stating our existence result, we shall first state the set of assumptions

that will be needed to study the existence of stationary states for (1.1).

Assumption 2.1. (Fitness function) We assume that Λ, µ and δ are given pos-

itive parameters. The functions β = β(x) and r = r(a, x) respectively belong to

L∞+
(
RN
)

and L∞+
(
(0,∞)× RN

)
. And, the function Ψ : RN → R+, defined in

(1.3), is assumed to be continuous on RN . It furthermore satisfies Ψ 6≡ 0 and

lim
‖x‖→∞

Ψ(x) = 0.

Assumption 2.2. (Mutation kernel) The mutation kernel m : RN → R satisfies

(i) m ∈ L1(RN ) ∩ L∞(RN ) is non-negative, symmetric with respect to the ori-

gin, that is m(−x) = m(x) a.e. in RN and it has a unit mass, that is∫
RN m(x)dx = 1.

(ii) The function m is almost everywhere strictly positive.

(iii) For each R > 0 the function MR : x 7→ sup
‖y‖≤R

m (x+ y) belongs to L1(RN ).

In order to state our existence result for an endemic stationary state, let us

introduce further notation. We set

Ω =
{
x ∈ RN : Ψ(x) > 0

}
and Θ(x) ≡ Ψ

1
2 (x), (2.2)

and we introduce the functional ρ = ρ[m] defined by

ρ[m] = sup
ϕ∈L2(Ω)
‖ϕ‖L2(Ω)=1

∫∫
Ω×Ω

Θ(x)Θ(y)m(x− y)ϕ(x)ϕ(y)dxdy. (2.3)

Together with this notation, the first main result reads as follows.
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Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied. Define the number T0 by

T0 =
Λ

µ
ρ[m]. (2.4)

When T0 ≤ 1, then System (1.1) has a unique equilibrium point
(
S0, i0, A0

)
defined

by (
S0, i0, A0

)
=

(
Λ

µ
, 0, 0

)
.

When T0 > 1, then System (1.1) has two different equilibrium points
(
S0, i0, A0

)
defined as above and (S∗, i∗, A∗), where the components satisfy

0 < S∗ < S0, A∗ ∈ L1(RN ) ∩ L∞(RN ) with A∗ > 0 a.e.,

and i∗(a, x) = β(x)S∗A∗(x)e−µa.

As mentioned above, the proof of Theorem 2.1 is strongly relies on the spectral

properties of the operator L. The set of assumptions stated above will, in particular,

ensure the existence of a principal eigenpair for the operator L. In view of the

definition of the threshold T0 and System (2.1), we shall also prove that the quantity

ρ[m] corresponds to the principal eigenvalue of the operator L.

We now assume that the mutation kernel m depends upon a small parameter

0 < ε << 1. It is now denoted by mε and takes the form of (1.2).

We aim at describing the behaviour as ε → 0 of the endemic equilibrium point

(S∗ε , i
∗
ε, A

∗
ε) of System (1.1) when m is replaced by mε. We shall more specifically

be interested in describing the concentration properties of the function A∗ε, that

arises as the principal eigenvector of the linear operator Lε defined by

Lεϕ(x) =

∫
RN

mε(x− y)Ψ(y)ϕ(y)dy. (2.5)

The behaviour, as ε→ 0, of the endemic steady state of System 1.1 will follow from

a detailed analysis of the principal eigenpair of the above linear integral operator,

as ε → 0. We will first collect some results related to the principal eigenpair of

operator Lε. Note that the existence and basic properties of the principal eigenpair

will be ensured by Theorem 4.1 below. Then, as a corollary, we shall describe the

behaviour of the endemic equilibrium of System (1.1) as ε→ 0.

To perform our analysis we shall need to impose more assumptions than the ones

stated in Assumptions 2.1 and 2.2. In addition to these assumptions, we assume that

Assumption 2.3. In addition to Assumption 2.1, we assume that

(i) The function Θ = Ψ
1
2 is of the class C∞ on RN .

(ii) There exists a finite number of points
{
x0

1, .., x
0
M

}
⊂ RN such that{

x ∈ RN : Ψ(x) = ‖Ψ‖∞
}

=
{
x0

1, .., x
0
M

}
,

and for all k = 1, ..,M , the Hessian matrix −D2Θ
(
x0
k

)
is positive definite.
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Assumption 2.4. In addition to Assumption 2.2, the kernel function m arising in

(1.2) satisfies the following properties:

(i) There exist some constants M0 > 0, η0 > 0 and γ0 ∈ (0, 1) such that

m(x) ≤M0 exp (−η0‖x‖γ0) , a.e. x ∈ RN .

(ii) The covariance matrix Σ[m] of the probability measure m(x)dx is positive

definite. Here recall that Σ[m] = (Σi,j)i,j=1,..,N is defined by

Σi,j =

∫
RN

yiyjm(y)dy, i, j = 1, .., N.

Let us observe that Assumption 2.4 (i) implies in particular that Assumption 2.2

(iii) is satisfied. Moreover this assumption means that the dispersion decays rather

fast at infinity but without being a thin tail kernel. This assumption allows a class

of fat tail dispersal kernel. As a consequence, the Fourier transform of the kernel m

cannot be analytically extended on a complex strip around the real axis, namely of

the form {z ∈ C : |=(z)| ≤ ν} for some positive ν. This prevents us from using the

methodology developed in 30,22,36 to derive Agmon type decay of the eigenvectors.

As discussed above we are concerned with properties of the principal eigenpair

(see Theorem 4.1 below) of the operator Lε for small 0 < ε << 1, that is of the

solution of the problem

Lεψε(x) = λεψε(x) with ψε ∈ L1(RN ) ∩ L∞(RN ) and ψε > 0 a.e. (2.6)

Now we shall observe that, due to Assumption 2.4, one may reduce (and simplify)

our next statements and computations to the case where the covariance matrix of

the mutation kernel reads as 2IN , where IN denotes the N × N -identity matrix.

Indeed if (λε, ψε) denotes a solution of (2.6), then the pair (ρε, ϕε), with

ρε =
1

‖Ψ‖∞
λε and ϕε(x) = ψε

(√
2

2
Σ[m]

1
2x

)
,

becomes a solution of the following linear problem
1

εN

∫
RN

m̂

(
x− y
ε

)
Ψ̂(y)ϕε(y)dy = ρεϕε(x), a.e. x ∈ RN ,

ϕε ∈ L1(RN ) ∩ L∞(RN ) and ϕε > 0 a.e..

Here, setting Σ = Σ[m] for notational simplicity, we have set

m̂(x) = 2−
N
2

√
det(Σ)m

(√
2

2
Σ

1
2x

)
and Ψ̂(x) =

1

‖Ψ‖∞
Ψ

(√
2

2
Σ−

1
2x

)
. (2.7)

Therefore the pair (ρε, ϕε) corresponds to a principal eigenpair of the operator Lε

with m and Ψ respectively replaced by m̂ and Ψ̂.

Observe furthermore that m̂ satisfies all the conditions stated in Assumptions 2.2

and 2.4 with Σ [m̂] = 2IN while the function Ψ̂ satisfies the conditions described
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in Assumptions 2.1 and 2.3 together with ‖Ψ̂‖∞ = 1. In addition the set of points

{x0
j : j = 1, ..,M} becomes{

x̂0
j : j = 1, ..,M

}
=
{

Ψ̂ = 1
}

with x̂0
j =
√

2Σ
1
2x0

j , j = 1, ..,M. (2.8)

Our first result is concerned with the asymptotic expansion, as an asymptotic

series, of the principal eigenvalue λε as ε→ 0. In order to state our result, we need

to introduce further notation. Define for each j = 1, ..,M the (Hessian) matrix Aj
by

Aj = −D2Θ̂
(
x̂0
j

)
with Θ̂(x) = Ψ̂(x)

1
2 . (2.9)

Also denote by Pj , for j = 1, ..,M , the elliptic operator defined by

Pj := −∆ +
∥∥∥A 1

2
j x
∥∥∥2

, (2.10)

and we define, for any j = 1, ..,M , the function ϕ0,j by

ϕ0,j(x) = (2π)−
N
2

√
det(A

1
2

j ) exp

−‖A 1
2
j x‖2

2

 . (2.11)

Observe that ‖ϕ0,j‖L2(RN ) = 1 and Pjϕ0,j = tr
(
A

1
2
j

)
ϕ0,j for all j = 1, ..,M .

In addition to these notation and definitions, one defines, for any j = 1, ..,M ,

the sequences {ϕk,j}k≥0 ⊂ L2(RN ) and {λk,j}k≥0 ⊂ R by the following recurrence

relation:

ϕ0,j is defined in (2.11) and λ0,j = −tr
(
A

1
2
j

)
,

and for k ≥ 1

ϕk,j ⊥ ϕ0,j and (Pj + λ0,j)ϕk,j = −
k−1∑
p=0

λk−p,jϕp,j +

k−1∑
p=0

Dj,k−pϕp,j . (2.12)

Here the symbol ⊥ is used to refer to orthogonality with respect to the usual

L2(RN )-inner product while the symbols Dj,p ∈ R [x, ∂x] denote, for any j = 1, ..,M

and p ≥ 1, a differential operator that will be specified in (5.9) below. However, at

this stage, let us mention that these operators take the form

Dj,p =
∑

(α,β,γ)∈Ip

a
(α,β,γ)
j xα∂γ +

∑
(α,β)∈Jp

b
(α,β)
j xα, (2.13)

wherein the different coefficients can be expressed in terms of the derivatives of Θ̂ at

x̂0
j as well as different moments of the kernel m̂. The sets of summation index, Ip and

Jp, depend on p but are independent of the point j. It is easy to see, using Fredholm

solvability condition, that the above defined sequence is uniquely determined.

Using the sequences {λk,j}k≥0 for j = 1, ..,M , we shall define an order relation

on the set {1, ..,M}. For that purpose, let us recall that the set of real sequences
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RN can be endowed by the usual (total) lexicographical order, denoted by �, and

defined as follows: for any pair of sequences {an}n≥0 and {bn}n≥0 one has

{an}n≥0 � {bn}n≥0 ⇔


either a0 < b0,

either ∃k ≥ 0, ap = bp ∀p = 0, .., k and ak+1 < bk+1,

or ap = bp, ∀p ≥ 0.

This total order for real sequences allows us to define the following total order E
on the set {1, ..,M} as follows: for any i, j ∈ {1, ..,M} one has

i E j ⇔ {λk,i}k≥0 � {λk,j}k≥0 . (2.14)

Consider the set M⊂ {1, ..,M} defined by

M = max ({1, ..,M},E) . (2.15)

Observe that M 6= ∅ since {1, ..,M} is finite and M is not necessarily reduced to

a single point. However, let us observe that if i 6= j belongs to M then λk,i = λk,j
for all k ≥ 0.

We are now able to state our next main result that is concerned with the asymp-

totic expansion of the principal eigenvalue of the operator Lε. Our precise result

reads as follows.

Theorem 2.2. Let Assumptions 2.1, 2.2, 2.3 and 2.4 be satisfied. Let λε denote

the principal eigenvalue of operator Lε. Then λε admits the following asymptotic

series expansion as ε→ 0, for any j ∈M,

λε ∼ ‖Ψ‖∞

(
1 +

∞∑
k=0

ε1+kλ2k,j

)
, (2.16)

in the sense that, for any p ≥ 0 one has

1

‖Ψ‖∞
λε = 1 +

p∑
k=0

ε1+kλ2k,j +O
(
εp+2

)
as ε→ 0.

Our next result is concerned with a concentration property of the principal

eigenvector ψε of Lε as defined in (2.6). Our result reads as follows.

Theorem 2.3. Let Assumptions 2.1, 2.2, 2.3 and 2.4 be satisfied. Let us assume

that M = {i}. Consider the principal eigenvector ψε of Lε normalized so that

‖ψε‖L1(RN ) = 1. Then, for each ν ∈ (0, γ0), there exists η > 0 such that the following

concentration property holds true:∫
RN\B(x0

i ,ε
ν)
ψε(x)dx = O

(
exp

(
−ηεν−γ0

))
as ε→ 0.

In particular, one gets ψε → δx0
i

as ε→ 0 for the narrow topology. This means that

for any continuous function f ∈ C
(
RN
)

one has

lim
ε→0

∫
RN

f(x)ψε(x)dx =

∫
RN

f(x)δx0
i

(dx) = f
(
x0
i

)
.
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We are now able to come back to the study of the stationary states of System

(1.1) with m = mε given by (1.2). In that setting, the threshold quantity T0 depends

upon the small parameter ε. In order to emphasize such a dependence, we shall

denote it by T ε0 . Now recall that, according to Theorem 2.1, if T ε0 > 1 then System

(1.1) has a unique endemic equilibrium point, denoted by (S∗ε , i
∗
ε, A

∗
ε). Then the

above theorems, namely Theorem 2.2 and Theorem 2.3, can be applied to obtain

the following information on the asymptotic shape of the endemic stationary state

of Problem (1.1) as ε→ 0.

Corollary 2.1. Let Assumptions 2.1, 2.2, 2.3 and 2.4 be satisfied. Then the thresh-

old T ε0 satisfies

lim
ε→0
T ε0 = T 0

0 :=
Λ

µ
‖Ψ‖∞.

We furthermore assume that T 0
0 > 1 and that the function β is continuous on RN .

If M = {i} then the endemic steady state (S∗ε , i
∗
ε, A

∗
ε), that is well defined for any

ε > 0 small enough, satisfies the following asymptotic behaviour as ε→ 0:

lim
ε→0

S∗ε =
1

‖Ψ‖∞
,

and for any continuous function f ∈ C(RN ), we also have

lim
ε→0

∫
RN

f(x)A∗ε(x)dx =
T 0

0 − 1

µβ (x0
i )
f
(
x0
i

)
,

and

lim
ε→0

∫
RN

f(x)i∗ε(a, x)dx =
T 0

0 − 1

µ
f
(
x0
i

)
e−µa in L1(0,∞) ∩ L∞(0,∞).

Remark 2.1. Assume that the trait is one-dimensional, namely N = 1 and that the

fitness function Ψ is symmetric. If M = {i, j} with i 6= j then, since the principal

eingevector is also symmetric, the endemic stationary state (equally) concentrates

on these two points and this yields a dimorphic steady state.

In order to comment the above let us assume that N = 1. In that case it is easy

to check that i, j ∈M if and only if

Θ(n)
(
x0
j

)
= Θ(n)

(
x0
i

)
, ∀n ∈ N.

From a biological point of view, if M = {i}; then in that case, when the disper-

sal in the phenotypic trait space is small, namely ε << 1, the unique (endemic)

steady state of (1.1) concentrates on a single trait, i.e. the equilibrium population

is basically monomorphic.
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3. Discussion

In this section, we first introduce the notion of singular strategies and discuss some

numerical simulations of the model. These simulations illustrate how to use the

model to monitor the evolutionary epidemiology of spore producing plant pathogens

as introduced in 4,5. We also discuss (i) the link between the pathogen fitness func-

tion Ψ and the well known basic reproduction number R0 in the context of epidemi-

ology and (ii) how the model can encompassed the major trophic modes encountered

in fungal parasitism. Throughout this discussion we consider the term strategy to

be a synonym for phenotypic value.

Singular strategies. In order to introduce some vocabulary from the adaptive

dynamics literature, we shall consider a slightly simplified version of System (1.1).

Here we omit the age structure and we assume that the evolution of the density of

airborne spores is a fast process. In that context we re-write (1.1) as follows
∂tSε(t) = Λ− µSε(t)− Sε(t)

∫
RN

β(y)Aε(t, y)dy,

∂tIε(t, x) = β(x)Sε(t)Aε(t, x)−
(
µ+

1

l(x)

)
Iε(t, x),

Aε(t, x) =
1

δ

∫
RN

mε(x− y)p(y)Iε(t, y)dy.

(3.1)

Here we take into account the (strain-specific) duration of the sporulation period,

denoted by l(x), while p(x) denotes the (strain-specific) sporulation rate.

For the above model the fitness function Ψ takes the form

Ψ(x) =
β(x)p(x)

δ(µ+ 1/l(x))
,

and, the results presented in the previous section for (1.1) also hold true for the

above slightly different system of equations.

Here we assume that N = 1 (i.e. x ∈ R). Then it follows from classical adap-

tive dynamics 8,13,25 that the growth rate of a rare mutant strategy, y, in the

resident x−population is given by the so-called invasion exponent defined by

fx(y) :=
(
µ+ 1

l(y)

)
(SxΨ(y)− 1). Herein Sx denotes the stationary solution of (3.1)

when ε→ 0 and the pathogen population is assumed to be monomorphic (see (3.2)

below). To see this, note that formally taking the limit ε→ 0 into (3.1), this system

becomes 
∂tS(t) = Λ− µS(t)− S(t)

δ

∫
R
β(y)p(y)I(t, y)dy,

∂tI(t, x) =

(
µ+

1

l(x)

)
[S(t)Ψ(x)− 1] I(t, x),

so that with a monomorphic pathogen population, I(t, x) = I(t)δx, the previous
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system further simplifies and yields
∂tS(t) = Λ− µS(t)− β(x)p(x)

δ
S(t)I(t),

∂tI(t) =

(
µ+

1

l(x)

)
[S(t)Ψ(x)− 1] I(t).

(3.2)

Hence the invasion of mutant strategy y into a resident x−population is given by

the following linearized equation with growth rate fx(y):

∂tIy(t) = fx(y)Iy(t).

Now the evolution of a trait x is then governed by the selection gradient defined

by

D(x) :=
∂fx
∂y

∣∣∣∣
y=x

=

(
µ+

1

l(x)

)
SxΨ′(x).

Equilibrium points of the adaptive dynamics (also called singular strategies) are

solutions of D(x∗) = 0. The classification of singular points involves second order

derivatives of the invasion exponent fx(y) by computing the following coefficients

(see 8,10,13,25 and references therein):

c22 :=
∂2

∂y2
fx∗(x

∗); c12 = c21 :=
∂2

∂x∂y
fx∗(x

∗) and c11 := −(c22 + 2c12).

According to 13,25, a singular point x∗ is called Evolutionary Stable Strategy (ESS)

if c22 < 0 and Convergent Stable Strategy (CSS) if c12 + c22 < 0. Evolutionary

Attractor (EA) is then a strategy that is both ESS and CSS.

Coming back to (3.1), singular points are the solutions of D(x) = 0, that is

SxΨ′(x) = 0. Hence the singulars points are critical points of the fitness function

Ψ.

Now recalling the non-degeneracy hypothesis in Assumption 2.3, the points – glob-

ally – maximizing the fitness function Ψ are then EA, so that the set of global

maximum points of the fitness function Ψ is contained in the EA-set. Indeed,

note that we have c22 =
(
µ+ l(x∗)−1

)
Sx∗Ψ

′′(x∗) < 0 and, since Sx = Ψ(x)−1,

c12 =
[
l′(x∗)Ψ(x∗)l(x∗)−2 −

(
µ+ l(x∗)−1

)
Ψ′(x∗)

]
Ψ(x∗)−2Ψ′(x∗) = 0, for any

points x∗ such that Ψ(x∗) = ‖Ψ‖∞.
In the context of this work, several evolutionary attractors (as defined above)

may exist. However, in rather general situations, our results show that only one EA

persists (at least at equilibrium) when ε is small enough. This persistence property

is described by using the set M (see (2.15)). For this reason, the points in M will

be referred throughout this discussion as Globally Stable Evolutionary Attractor

(GSEA for short).

Basic reproduction number. The basic reproduction number (usually de-

noted by R0 ) is one of the most important concepts in epidemiology, 9,42. When

there are no ’interactions’ in the phenotypic space of pathogens (i.e. without muta-

tions in Model (1.1): ε = 0 ) and using the next generation operator approach as in
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7,19 we find the basic reproduction number. More specifically, the basic reproduc-

tion number R0(x) of the pathogen strain with phenotypic value x is related to the

fitness function Ψ(x) given in (1.3) as follows

R0(x) :=
Λ

µ
Ψ(x) =

Λ

µ
× β(x)p(x)e−µτ(x)

δµ

[
1− e−µl(x)

]
.

The above expression ofR0(x) aggregates all the quantitative traits of pathogenicity

of the disease cycle: infection efficiency (β(x)), latent period (τ(x)), sporulation rate

(p(x)) and infectious period (l(x)). It is a useful function combining these basic life-

history traits into a single fitness metric 41,26. In particular R0 can be used to

measure and compare the fitness of pathogens with different quantitative traits,

especially with different latent period. This is an important point in the context of

agricultural system as pointed in 23. Generally, by assuming that there is only one

pathogen strain x∗ which maximizesR0, it’s well known that x∗ will be the strongest

(or dominant) strain. We refer for example to 7 and references therein. However,

the situation becomes more complicated to characterise the strongest strain when

at least two pathogen strains maximize R0. By taking into account the mutation in

the space of the pathogen strains, the results obtained in this note allow us to do

so. Roughly speaking, by introducing a mutation kernel describing the dispersion

into the space of phenotypic values of pathogens, we provide a characterization of

the dominant strain even in the case of multiple strains maximizing R0. To end

this paragraph, we emphasize that the decay of the mutation kernel considered

here (namely Assumption 2.4 (i)) allows us to also consider some class of fat-tailed

mutation kernel. This assumption is interesting in biological context where mutant

offsprings can be significantly different from their progenitors at the first mutation

generation. See for example 20, where this point is also discussed.

Description of the model numerical simulation. Let us consider a field

where a pathogen population has become monomorphic (concentrated around the

phenotypic value x0) because, for example, a single plant cultivar has been sown

for a very long time. The simulations will describe the epidemiological and evolu-

tionary dynamics following the deployment of a new plant cultivar in that field at

time t = 0. Typically, this new cultivar is bearing a quantitative resistance. The

function Ψ describes the fitness of the pathogen population on the cultivar con-

sidered. We set Ψ := πG(x1, σ1) + (1 − π)G(x2, σ2) where G(xj , σj) states for the

Gaussian function with expected value xj , with variance σ2
j and π ∈ (0, 1). This

implies that the pathogen population is essentially constituted of two groups with

dominant phenotypes x1 and x2 mixed in proportion π (see Figure 1). It defines an

adaptive landscape with two local fitness peaks regrouping each individuals with

close combinations of life-history traits.

From here, the simulations of the evolutionary epidemiology dynamics of the

model are divided in two parts: the case of single maximum for Ψ and the case

of at least two maximum points for Ψ. For all the simulations, the variance of the

dispersion into the space of phenotypic values is fixed to ε = 0.04.
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Dynamics with a single global maximum point for the fitness function

Ψ. Here the fitness function Ψ is maximized by a single phenotypic value x2, but

a local maximum fitness also exists around x1 and is close to Ψ(x2) (Figure 2 (a)).

In this case x2 is the GSEA value (as defined in the Singular strategies section of

the Discussion). Accordingly, the simulation shows that the pathogen population

is concentrated around this phenotypic value x2 as the time becomes large (see

Figure 2 (b)). But, the transient dynamics before reaching the GSEA value is also

interesting: the pathogen population lives during certain time around the initial

dominant phenotypic value x0 and then shifts by mutation and lives for a relatively

long time around the local maximum fitness x1. In our applied case study, the

duration of the transient dynamics is the time length needed for the complete erosion

of the quantitative resistant cultivar. It measures the durability of the quantitative

resistance gene considered. Said another way, this is the time length during which

the quantitative resistant cultivar introduced at t = 0 still reduce epidemic relatively

to epidemic intensity before its deployment.

Dynamics with at least two global maximum points for the fitness

function Ψ. Here, the fitness function is maximized by two phenotypic values x1

and x2 (Figure 3 (a)). The natural question is: where will be the concentration in

the space of phenotypic values of the pathogens with the long time dynamics? In

other words, among these two EAs, which one will asymptotically persist? In the

configuration described in Figure 3 (a), the phenotypic values x1 and x2 differ by

their respective second derivative of the fitness function. Namely, we have Ψ′′(x2) >

Ψ′′(x1). According to the order defined in (2.14) on the set of maximum points of

the fitness function, x2 is the GSEA value. The simulation shows the concentration

around x2 in the large time behaviour (Figure 3 (b)). Before reaching the GSEA

value, the pathogen population lives during certain time around the initial dominant

phenotypic value x0 and then shift by mutation and lives for a relatively long time

around the EA value x1. Notice that the time needed to reach the GSEA value is

longer than the previous case of a single maximum point for the fitness function

(see Fig. 2 (c) compared to Fig. 3 (c)). Indeed, the phenotypic value x1 is much

more ’close’ to the GSEA value x2 than previously in the sense that here we have

Ψ(x1) = Ψ(x2), which was not the case before.

Another configuration is the case where we cannot ’classify’ the two global max-

imum points x1 and x2 of the fitness function by using their second derivative,

namely Ψ′′(x1) = Ψ′′(x2). In this situation, we have to compute the higher order

derivatives of the fitness function to determine the GSEA values using the total

order provided by (2.14).

In the case of symmetric configuration of the fitness function with respect to the

phenotypic values x1 and x2, the system admits two GSEA values and, in that

special case, the pathogen population equally concentrates on these two GSEA val-

ues and leading to a dimorphic pathogen population (see Figure 4 and also Remark

2.1). In the more general setting with non-symmetric configuration and two GSEAs,

we are not able to describe the concentration property of the solutions. We suspect
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that the pathogen population may be dimorphic with, possibly, different proportion

for each GSEA.

Disease induced mortality of infected host tissue. Plant pathogens can

be classified by their feeding relationships with their host: necrotrophs, biotrophs

and hemibiotrophs 16. The necrotrophs have to kill host tissues and then obtain

food from the dead plant material. The biotrophs require a living host for nutrition

and to successfully complete their life cycle. The hemibiotrophs combine both a

biotrophic and a necrotrophic mode of nutrition. Typically there is a relatively

short biotrophic phase followed by necrotrophy and the development of necrotic

lesions.

Our model formulation in (1.1) assumed that there is not disease induced mor-

tality of infected lesions, i.e. the pathogen considered is essentially biotrophs. But,

notice that the model can encompass the other major trophic modes (necrotrophs

and hemibiotrophs) encountered in fungal parasitism by taking into account the

disease induced mortality. Actually, the i-equation of Model (1.1) can be written as

(∂t + ∂a) i(t, a, x) = −(µ+ d(a, x))i(t, a, x);

wherein d(a, x) is the disease induced mortality of the infected tissue by pathogen

with phenotypic value x and which is infected since the time a. By taking into

account the disease induced mortality of the infected tissue, the preceding results

of this note remain true with the following fitness function

Ψ(x) =
β(x)

δ

∫ ∞
0

r(a, x) exp

(
−µa−

∫ a

0

d(σ, x)dσ

)
da.

0

Phenotypic distance (x)

F
it
n

e
s
s
 f

u
n

c
ti
o

n
 (
Ψ

(x
))

x
1

x
2

π

Fig. 1. An adaptive landscape with two local fitness peaks. The fitness function Ψ of the pathogen
population is described by a Gaussian mixture model: Ψ := πG(x1, σ1)+(1−π)G(x2, σ2), wherein

G(xj , σj) states for the Gaussian function with expected value xj , with variance σ2
j and π ∈ (0, 1).

This implies that the pathogen population is essentially constituted of two groups with dominant

phenotypes x1 and x2 mixed in proportion π.
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Fig. 2. Epidemiological and evolutionary dynamics of a spore producing pathogen with a single

global maximum point for the fitness function. (a) The fitness function Ψ and the density of

pathogen population at time t = 0 with respect to the phenotypic value space. The fitness function
is maximized by a single phenotypic value x2 and has a local maximum at x1. In this case,

x2 is the GSEA (Globally Stable Evolutionary Attractor) value. (b) Joint epidemiological and

evolutionary dynamics of infectious tissues with respect to the phenotypic value space. Initially
(at t = 0), the pathogen population is essentially concentrated around the phenotypic value x0.

Then the graph displays how the density of infected tissue and the phenotypic composition of the
pathogen population change jointly on the same time scale. The long time dynamics illustrates

the concentration of the pathogen population around the GSEA value x2. Before reaching the

phenotypic value x2, the pathogen population lives during certain time around the initial dominant
phenotypic value x0 and then shifts by mutation and lives for a relatively long time around the

local maximum fitness x1. (c) Same as for (b) but without logarithmic time scale.

Fig. 3. Epidemiological and evolutionary dynamics of a spore producing pathogen with two global

maximum points for the fitness function. (a) The fitness function Ψ and the density of pathogen
population at time t = 0 with respect to the phenotypic value space. The fitness function is max-

imized by two EAs (Evolutionary Attractors) x1 and x2. The phenotypic values x1 and x2 differ

by their respective second derivative of the fitness: Ψ′′(x2) > Ψ′′(x1). According to the order
defined in (2.14) on the set of maximum points of the fitness function, x2 is the GSEA (Globally

Stable Evolutionary Attractor) value. (b) Joint epidemiological and evolutionary dynamics of in-
fectious tissues with respect to the phenotypic value space. Evolutionary epidemiology dynamics

of infectious tissues with respect to the phenotypic value space. Initially (at t = 0), the pathogen

population is essentially concentrated around the phenotypic value x0. The long time dynamics
illustrates the concentration of the pathogen population around the GSEA value x2. Before reach-

ing the phenotypic value x2, the pathogen population lives during certain time around the initial

dominant phenotypic value x0 and then shifts by mutation and lives for a relatively long time
around the phenotypic value x1. (c) Same as for (b) but without logarithmic time scale. Observed

that, the time to reach the GSEA value is longer than the case of Figure 2 with a single maximum

point for the fitness function.
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Fig. 4. Epidemiological and evolutionary dynamics of a spore producing pathogen in the case of
symmetric configuration of the fitness function. (a) The fitness function Ψ and the density of

pathogen population at time t = 0 with respect to the phenotypic value space. We have a sym-
metric configuration of the fitness function with respect to the phenotypic values x1 and x2. Thus,

according to the order defined in (2.14) on the set of maximum points of the fitness function,

both phenotypic values x1 and x2 are GSEA (Globally Stable Evolutionary Attractor) values. (b)
Joint epidemiological and evolutionary dynamics of infectious tissues with respect to the pheno-

typic value space. Evolutionary epidemiology dynamics of infectious tissues with respect to the

phenotypic value space. Evolutionary epidemiology dynamics of infectious tissues with respect to
the phenotypic value space. Initially (at t = 0), the pathogen population is essentially concentrated

around the phenotypic value x0. With the long-time dynamics, the pathogen population equally

concentrates around the phenotypic values x1 and x2 leading to a dimorphic population.

4. Preliminaries and proof of Theorem 2.1

In this section we study some spectral properties of the linear operator L defined

in (1.4), acting on Lebesgue spaces, and we prove Theorem 2.1.

To proceed, for each p ∈ [1,∞) we denote by Lp the linear operator L act-

ing on the Lebesgue space Lp(RN ). Let us observe that since the kernel operator

m ∈ L1(RN ) ∩ L∞(RN ), the operator Lp is a bounded linear operator. Using this

notation, we shall split this section into two parts. We first study the existence of

a principal eigenvalue of the operators Lp for any 1 ≤ p < ∞. And, using this

property, we then turn to the proof of Theorem 2.1.

4.1. Principal eigenpair of operator Lp

As mentioned above, this section is devoted to the study of the principal eigenpair

for the linear bounded operator Lp for p ∈ [1,∞). We refer to 1 and the references

therein for results about generalized principal eigenvalue for some non-local opera-

tors. In view of our applications, we prove in this section that Assumptions 2.1 and

2.2 are sufficient to ensure the existence of the principal eigenpair. The main result

of this section reads as follows.

Theorem 4.1. Let Assumptions 2.1 and 2.2 be satisfied. Then the following hold

true:

(i) For each p ∈ [1,∞), the linear operator Lp is compact on Lp(RN ) and,
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its spectral radius, denoted by r (Lp), satisfies r (Lp) > 0. Moreover there

exists a function φp ∈ Lp(RN ) such that

φp > 0 a.e. and Lpφp = r (Lp)φp.

Furthermore, if φ ∈ Lp+(RN ) \ {0} satisfies for some α ∈ R the equality

Lpφ = αφ, then φ > 0 a.e., φ ∈ span (φp) while α = r (Lp).

(ii) One has r (Lp) = r (Lq) and φq ∈ Lp
(
RN
)

for all p, q ∈ [1,∞).

(iii) Recalling the definition of ρ[m] in (2.3), the common value of these spectral

radius is characterized as r (Lp) = ρ[m] for any p ∈ [1,∞).

In order to prove this result we shall make use of the so-called Frobenius theorem,

that generalizes the well known Krein-Rutmann theorem for positive, irreducible

and compact linear operators in Banach lattices. Its precise statement can be found

in Corollary 4.2.15 in 33 (see also the references therein).

Recall that the open set Ω is defined in (2.2). Let us first observe that when

Ω 6= RN then, for any p ∈ [1,∞), the operator Lp may not be irreducible on

Lp(RN ). To be more precise, if RN \ Ω has a non empty interior, consider any

function φ ∈ Lp+(RN ) \ {0} such that φ(x) = 0 a.e. for x ∈ Ω. Then (Lp)
n
φ = 0 for

all n ≥ 1 and the operator Lp is not irreducible.

Hence, despite the compactness of Lp we cannot directly apply the aforementioned

result. To proceed, let us notice that by extending functions by zero outside Ω one

may identify for each exponent p ∈ [1,∞) the space Lp(Ω) as a closed subspace of

Lp(RN ). In addition, with such an identification, one may also consider, for each

p ∈ [1,∞), the restriction operator Lp|Lp(Ω) defined as a bounded linear operator

from Lp(Ω) into Lp(RN ) but also the operator Mp ∈ L (Lp(Ω)) defined, for any

u ∈ Lp(Ω), by

Mp[u](x) =

∫
Ω

m(x− y)Ψ(y)u(y)dy =
(
Lp|Lp(Ω)

)
[u](x), a.e. x ∈ Ω. (4.1)

Despite the operator Lp is not irreducible in general, the operator Mp is irreducible.

Hence our proof of Theorem 4.1 relies on the study on the spectral properties of

the operator Mp.

Throughout this section, for any p ∈ [1,∞], we shall denote by p′ the conjugated

exponent of p, namely 1
p + 1

p′ = 1.

Proof. [Proof of Theorem 4.1] The proof is split into several steps.

First step: In this first step we shall show that, for any p ∈ [1,∞), the operator

Lp is compact in Lp
(
RN
)
.

To that aim let us denote, for each h ∈ RN and each function f : RN → R, by τhf

the translation of f by h, defined by τhf(x) = f(x+ h) for all x ∈ RN .

Let p ∈ [1,∞) be given. Let u ∈ Lp(RN ) and h ∈ RN be given. Then one has

‖τhLp[u]− Lp[u]‖pLp(RN ) =

∫
RN

∣∣∣∣∫
RN

[τhm(x− y)−m(x− y)]Ψ(y)u(y)dy

∣∣∣∣p dx.
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Then Young inequality yields

‖τhLp[u]− Lp[u]‖Lp(RN ) ≤ ‖τhm−m‖L1(RN )‖Ψ‖∞‖u‖Lp(Ω).

Since ‖τhm−m‖L1(RN ) → 0 as h→ 0 one gets that

lim
h→0

τhLp[u] = Lp[u] in Lp(RN ),

wherein the above convergence holds uniformly on bounded sets on Lp(RN ).

On the other hand, let u ∈ Lp(RN ) and s > 0 be given. Then one has∫
‖x‖>s

|Lp[u](x)|p dx ≤
∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|dy
]p

dx. (4.2)

Let R > 0 be given. Consider a smooth and nonnegative function χR such that

0 ≤ χR ≤ 1, χR(y) = 1 if |y| ≤ R and χR(y) = 0 if |y| ≥ R + 1. Then, there exists

some constant C = Cp > 0, such that Equation (4.2) becomes∫
‖x‖>s

|Lp[u](x)|p dx ≤Cp
∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|χR(y)dy

]p
dx

+Cp

∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|(1− χR(y))dy

]p
dx.

Now observe that there exists some constant C > 0 independent of u (and R) such

that one has∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|χR(y)dy

]p
dx

≤ C‖m‖p−1
∞ ||u||p

Lp(RN )

∫
‖x‖>s

[
sup

‖x−y‖≤R+1

m(y)

]
dx.

Moreover, since ‖m‖L1(RN ) = 1, Young inequality ensures that∫
‖x‖>s

[∫
RN

m(x− y)Ψ(y)|u(y)|(1− χR(y))dy

]p
dx ≤ sup

‖y‖≥R
|Ψ(y)|p||u||p

Lp(RN )
.

Now, setting Bp(1) the unit ball in Lp(RN ), one obtains from Assumption 2.2 (iii)

that for all R > 0

lim sup
s→+∞

sup
u∈Bp(1)

∫
‖x‖>s

|Lp[u](x)|p dx ≤ Cp sup
‖y‖≥R

|Ψ(y)|p.

Finally recalling the last condition in Assumption 2.1, namely that Ψ(x) → 0 as

‖x‖ → ∞, one obtains

lim
s→+∞

sup
u∈Bp(1)

‖Lp[u]‖Lp({‖x‖≥s}) = 0.

Therefore the Fréchet-Kolmogorov theorem applies and ensures that Lp is a compact

operator on Lp(RN ).

Second step: In this second step we shall prove that the spectral radius of the

operator Lp is positive. As mentioned above, the operator Lp is not irreducible, in
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general. This difficulty is overcome by using the operator Mp ∈ L (Lp(Ω)) defined in

(4.1). Let us first observe that the operator Mp can be re-written as Mp = rp◦Lp◦jp,
wherein the bounded linear operators jp : Lp(Ω) → Lp(RN ) and rp : Lp(RN ) →
Lp(Ω) are defined by

jp[u](x) =

{
u(x) a.e. x ∈ Ω

0 else
and rp[u](x) = u|Ω(x) a.e. x ∈ Ω.

As a consequence of the first step Mp is a compact operator on Lp(Ω).

Moreover, due to the definition of Ω in (2.2), and since m > 0 a.e., the operator

Mp is irreducible on Lp(Ω). We deduce from this discussion that Frobenius theo-

rem (see Theorem 4.2.13 and Corollary 4.2.15 in 33) applies and ensures that its

spectral radius r (Mp) is positive and it is a simple eigenvalue of Mp associated to

an eigenvector ψp > 0 a.e. in Ω. Moreover if α ∈ R is an eigenvalue Mp associated

to an eigenvector ψ ∈ Lp+(Ω) \ {0} then α = r (Mp) and ψ > 0 a.e. in Ω.

As a consequence, if ψ ∈ Lp(Ω) is a principal eigenvector ofMp, then the function

φ ∈ Lp(RN ), defined by

φ(x) =

{
ψ(x) if x ∈ Ω,

1
r(Mp)

∫
Ω
m(x− y)Ψ(y)ψ(y)dy if x 6∈ Ω,

satisfies Lpφ = r (Mp)φ so that 0 < r(Mp) ≤ r(Lp).
As a consequence of the positivity of the spectral radius r(Lp) (see Lemma

4.2.10 in 33) there exists φ ∈ Lp+(RN ) \ {0} such that Lpφ = r(Lp)φ. Hence the

function ψ := φ|Ω ∈ L
p
+(Ω) \ {0} is such that Mpψ = r (Lp)ψ. Therefore because

of the properties of the spectral eigenpair stated above for the operator Mp, one

concludes that

r(Mp) = r(Lp) and φ > 0 a.e. in RN .

This argument coupled with the properties of the operator Mp completes the proof

of Theorem 4.1 (i).

Third step: In this step we complete the proof of Theorem 4.1 (ii). By the first

item (i) with p = 1, there exists a function φ1 ∈ L1(RN ) with φ1 > 0 a.e. such

that r(L1)φ1 = L1φ1. Now, let q ≥ 1 be given. Because of (i), in order to show

that r(Lq) = r(L1), it is sufficient to show that φ1 ∈ Lq(RN ). However note that

this follows from Young inequality. Indeed since φ1 ∈ L1(RN ) and m ∈ L1(RN ) ∩
L∞(RN ), then the convolution product m ∗ (Ψφ1) ∈ L1(RN ) ∩ L∞(RN ) and the

result follows.

Fourth step: We now complete the proof of Theorem 4.1 by proving (iii).

To that aim, because of the result of (ii) and by the proof of the second step, it

is sufficient to show that ρ[m] = r (M2), where the operator M2 is defined in (4.1)

with p = 2. Let ψ ∈ L2(Ω) with ψ > 0 a.e. be a principal eigenvector of M2. Then,

recalling the function Θ defined in (2.2) as Θ = Ψ
1
2 , it satisfies∫

Ω

m(x− y)Θ(y)ϕ(y)dy = r(M2)ψ(x), ∀x ∈ Ω, with ϕ(x) := Θ(x)ψ(x).
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Hence multiplying the above equation by Θ(x) yields

Θ(x)

∫
Ω

m(x− y)Θ(y)ϕ(y)dy = r(M2)ϕ(x), ∀x ∈ Ω.

Next consider the linear bounded operator M̂ on the Hilbert space L2(Ω) defined

by

M̂ [ϕ](x) = Θ(x)m ∗ (Θϕ) (x), ∀x ∈ Ω, ∀ϕ ∈ L2(Ω).

Then observe that using similar arguments as the ones developed for the study

of M2, the positive linear operator M̂ is compact and irreducible. Since φ(.) =

Θ(.)ψ(.) ∈ L2(Ω) with φ > 0 a.e., one deduces that

r (M2) = r
(
M̂
)
.

Finally, due to the symmetry hypothesis on the mutation kernel m, the operator

M̂ is self-adjoint and then, the Rayleigh quotient formulation for the principal

eigenvalue of M̂ ensures that

r (M2) = r
(
M̂
)

= ρ[m].

This completes the proof of (iii) and also completes the proof of Theorem 4.1.

Remark 4.1. From the above proof, we have obtained that if (r, φ) ∈ (0,∞) ×
L1(RN ) is a principal eigenpair of L1 (and thus of Lp for any p ≥ 1) then

(
r, φ|Ω

)
(resp.

(
r,Θφ|Ω

)
) is a principal eigenpair of Mp (resp. M̂). One may also observe

that if (r, ϕ) ∈ (0,∞) × L2(Ω) is a principal eigenpair of M̂ , then the function

ψ = ϕ
Θ ∈ L

2(Ω) and the pair (r, ψ) is a principal eigenpair of M2 (and thus of Mp

for any p ≥ 1). From the construction of the second step of the proof above, the

pair (r, φ), where the function φ is defined by

φ(x) =
1

r

∫
Ω

m(x− y)Θ(y)ϕ(y)dy, x ∈ RN ,

is a principal eigenpair of L2, thus of Lp for any p ≥ 1.

This remark provides a correspondence between the principal eigenpairs of the three

types of operators Lp, Mp and M̂ . This will be used in the sequel.

4.2. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. For that purpose, let us observe

that the trivial stationary state
(
S0, i0, A0

)
:=
(

Λ
µ , 0, 0

)
is an equilibrium of (1.1)

whatever the value of the threshold T0. In order to prove Theorem 2.1, it is sufficient

to study System (2.1). Hence we look for non-trivial solution (S, i, A) ∈ (0,∞) ×
L1

+

(
(0,∞)× RN

)
× L1

+(RN ) satisfying (2.1). Here non-trivial means that A 6≡ 0.
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Note that using the notation of the previous section, (2.1) re-writes as
L1[A](x) =

1

S
A(x), x ∈ RN ,

Λ− µS = S

∫
RN

β(y)A(y)dy and i(a, x) = β(x)SA(x)e−µa.
(4.3)

Because of Theorem 4.1 (i), one obtains that r(L1) = 1
S and A ∈ span (φ1), wherein

φ1 ∈ L1(RN ) ∩ L∞(RN ) denotes the principal eigenfunction of L1 normalized by

‖φ1‖L1(RN ) = 1 and such that φ1 > 0 a.e.. We write A = λφ1 for some unknown

constant λ > 0. Plugging this expression into the S−equation of Problem (4.3) one

obtains that

Λ− µ

r(L1)
=

λ

r(L1)

∫
RN

β(y)φ1(y)dy.

Hence, since the right hand side of the above equality is positive and recalling that

due to Theorem 4.1 one has r(L1) = ρ[m], the condition T0 > 1 is a necessary

condition for the existence of a non-trivial stationary state.

On the other hand, if T0 > 1, then System (4.3) admits a unique solution that

is given by

S =
1

r(L1)
, A(x) =

Λr(L1)− µ∫
RN β(y)φ1(y)dy

φ1(x) and i(a, x) = β(x)A(x)e−µa.

(Here recall that since Ψ 6≡ 0, then β 6≡ 0 so that the integral arising in the

expression of A is positive) This completes the proof of Theorem 2.1.

5. Preliminary spectral estimates and quasi-modes

This section is concerned with the derivation of preliminary asymptotic expansions

of the eigenvalues of some linear operators.

For notational simplicity, throughout this section we write m, Ψ, Θ and x0
i , for

i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0
i for i = 1, ..,M defined in (2.7) and (2.8).

5.1. Asymptotic spectral estimates

We shall analyse the limiting behaviour as ε → 0 of the principal eigenvalue (or

spectral radius) associated to the linear operator Lε defined in (2.5). We denote the

spectral radius of Lε by λε i.e. λε = r (Lε). Because of Remark 4.1, it is also given

as the principal eigenvalue of the symmetric linear operator Mε acting on L2(RN )

and defined by

Mε[u](x) = Θ(x)

∫
Ω

mε(x− y)Θ(y)u(y)dy, x ∈ RN . (5.1)

Thus we shall analyse the spectral properties as ε→ 0 of the linear operator Mε on

the Hilbert space L2(RN ). Observe that, using the same arguments as in the proof

of Theorem 4.1, for each ε > 0, the operator Mε is self-adjoint, compact but may
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not be irreducible if Ω 6= RN . However its spectrum coincides with the one of its

restriction to L2(Ω), that is an irreducible operator.

Our analysis of the spectrum of Mε relies on a suitable comparison between the

linear operator Mε and the so-called harmonic operators P εj defined around each

point of the set
{
x0
j

}
j=1,..,M

given in Assumption 2.3 (ii). Here to be more precise,

the linear operators P εj , for j = 1, ..,M and ε > 0, are defined on L2(RN ) by

P εj = −ε2∆ + Vj(x) with Vj(x) =
∥∥∥A 1

2
j

(
x− x0

j

)∥∥∥ . (5.2)

Now for any j = 1, ..,M , let us denote by ωj = (ωj,1, .., ωj,N )
T

with ωj,l > 0

the vector of eigenvalues of the positive definite (see Assumption 2.3 (ii)) matrix

A
1
2
j =

(
−D2Ψ

(
x0
j

)) 1
2 . Then the spectrum of P εj is given byσ
(
P εj
)

=
{
εeα,j : α ∈ NN

}
,

with eα,j = 2α · ωj + tr
(
A

1
2
j

)
, ∀α ∈ NN .

(5.3)

In the above formula, the symbol · denotes the inner Euclidean product in RN .

In order to state our first result related to the spectrum of the operator Mε, we

reorder the set {
eα,j : j = 1, ..,M, α ∈ NN

}
= {e1, e2, ..., en, ...},

with e1 ≤ e2 ≤ e3 ≤ ... ≤ en ≤ ...

Here the elements appearing in the above sets are computed with multiplicity. Let

us also note that, if we consider the linear operator P ε :=
⊕M

j=1 P
ε
j acting on⊕M

j=1 L
2(RN ), then its spectrum is given, for any ε > 0, by

σ (P ε) =
{
εeα,j : j = 1, ..,M, α ∈ NN

}
.

Also notice that the normalized eigenfunction of the operator P εj associated to the

eigenvalue εeα,j is given by

gεα,j(y) = ε−N/4hα

(
y − x0

j√
ε

)
exp

(
− 1

2ε

∣∣∣∣∣∣A 1
2
j (y − x0

j )
∣∣∣∣∣∣2) , α ∈ NN ; (5.4)

where hα = hα1
⊗· · ·⊗hαN while hl denotes the one-dimensional Hermite polynomial

hl(y) =
(−1)l√
2ll!π1/4

ey
2

(
d

dy

)(l)

e−y
2

.

With this notation, our first result reads as follows.

Proposition 5.1. Let Assumptions 2.1, 2.2, 2.3 and 2.4 be satisfied. Let us denote

by E1(ε) > E2(ε) ≥ ... ≥ En(ε) ≥ ..., the eigenvalues of Mε. Then for each n ≥ 1,

the following expansion holds true:

En(ε) = 1− εen +O
(
ε6/5

)
for 0 < ε << 1.
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The proof of this proposition is classical and based on the Rayleigh quotient

formulation for the eigenvalues. The proof is omitted and we refer the reader to 38

and 36.

5.2. Construction of quasi-modes and properties of the sequences

{λk,j}k≥0

In this section we shall construct suitable quasi-modes for the operator Mε around

x0
j for some fixed index j ∈ {1, ..,M} and we shall study properties of the sequences

{λk,j}k≥0 defined in (2.12).

To that aim we consider the unitary operators Uεj defined on L2(RN ) by

Uεj [u](x) := ε−
N
4 u
(
ε−

1
2

(
x− x0

j

))
.

Here note that
(
Uεj
)−1

[u](x) = ε
N
4 u
(
ε

1
2x+ x0

j

)
. Next observe that one has

(1−Mε) [u](x) =

∫
RN

(u(x)− u(x+ εy))Kε(x, y)dy + Vε(x)u(x),

wherein we have set{
Kε(x, y) = Θ(x)Θ(x+ εy)m(y),

Vε(x) = 1− Θ(x)
2

∫
RN [Θ(x+ εy) + Θ(x− εy)]m(y)dy.

(5.5)

Note also that one has

Mε
j [u](x) :=

((
Uεj
)−1 ◦ (1−Mε) ◦ Uεj

)
[u](x)

=

∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy + Vε

(
ε

1
2x+ x0

j

)
u(x).

(5.6)

Recalling the definition of the sequence {(λp,j , ϕp,j)}p≥0 in (2.12), the following

proposition holds true:

Proposition 5.2. Let n ≥ 2 be given. Let us define uε,n by

uε,n =

n∑
p=0

ε
p
2ϕp,j .

Then one has for ε << 1:

Mε
j [uε,n] = −

(
n∑
p=0

ε1+ p
2 λp,j

)
uε,n +O

(
ε
n+1

2

)
in L2

(
RN
)
.

Remark 5.1. Using the above proposition one may already prove Theorem 2.2 in

the special case where

card

{
i = 1, ..,M, tr

(
A

1
2
i

)
= min
j=1,..,M

tr
(
A

1
2
j

)}
= 1. (5.7)
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Indeed in that case, because of Proposition 5.1, there exists a unique i ∈ {1, ..,M}
such that

E1(ε) = 1− εtr
(
A

1
2
i

)
+O

(
ε

6
5

)
,

while for any j ≥ 2 one has

lim
ε→0

1

ε
(1− Ej(ε)) 6= tr

(
A

1
2
i

)
.

However, since Mε is self-adjoint, note that for each n ≥ 2, Proposition 5.2 ensures

that

dist

(
1 +

n∑
p=0

ε1+ p
2 λp,i;σ (Mε)

)
= O

(
ε
n+1

2

)
.

Hence since λ0,i = −tr
(
A

1
2
i

)
, one obtains that

E1(ε) = 1 +

n∑
p=0

ε1+ p
2 λp,i +O

(
ε
n+1

2

)
,

and Theorem 2.2 follows from Lemma 5.1 below in the particular case where (5.7)

holds true.

Before going to the proof of Proposition 5.2, let us first observe that the functions

ϕp,j for p ≥ 0 take the form of a polynomial multiplied by ϕ0,j (see (2.11)). Hence

for each p ≥ 0 and each multi-index α ∈ NN , there exist some constant Cp,α > 0

and some integer Np,α ∈ N such that

|∂αϕp,j(x)| ≤ Cp,α
(
1 + ‖x‖Np,α

)
exp

−‖A 1
2
j x‖2

2

 , ∀x ∈ RN .

Next, the proof of the above proposition is based on the following estimate:

Claim 5.1. For each integer m ≥ 0, n ≥ 0 and r ≥ 0, there exists some constant

Cm,n,r > 0 such that for all ε ∈ [0, 1] one has

∥∥∥∥∥∥‖.‖n
∫
RN
‖.+ ε

1
2 y‖r exp

−‖A
1
2
j

(
.+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

∥∥∥∥∥∥
L2(RN )

≤ Cm,n,r.
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Proof. Let us observe that, for any ε ∈ (0, 1], one has for all x ∈ RN :

‖x‖n
∫
RN
‖x+ ε

1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
∫
RN

(
‖x+

√
εy‖+

√
ε‖y‖

)n ‖x+ ε
1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
n∑
k=0

(
n

k

)
ε
n−k

2

∫
RN
‖x+

√
εy‖r+k exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖n−k+mm(y)dy.

By setting, for each integer k ≥ 0, mk the function defined by

mk(y) = ‖y‖km(y),

and recalling that ε ∈ (0, 1], one gets for any x ∈ RN :

‖x‖n
∫
RN
‖x+ ε

1
2 y‖r exp

−‖A
1
2
j

(
x+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

≤
n∑
k=0

(
n

k

)‖.‖k+r exp

−‖A 1
2
j .‖2

2

 ∗ (ε−N2 mk

(
.

ε
1
2

))
(x).

Finally, using Young convolution inequality, one obtains∥∥∥∥∥∥‖.‖n
∫
RN
‖.+ ε

1
2 y‖r exp

−‖A
1
2
j

(
.+ ε

1
2 y
)
‖2

2

 ‖y‖mm(y)dy

∥∥∥∥∥∥
L2(RN )

≤
n∑
k=0

(
n

k

)∥∥∥∥∥∥‖.‖k+r exp

−‖A 1
2
j .‖2

2

∥∥∥∥∥∥
L2(RN )

‖mk‖L1(RN ) ,

and the claim follows for any ε ∈ (0, 1] and also for ε = 0 because of Fatou lemma.

Proof. [Proof of Proposition 5.2] Recalling that Ψ = Θ2 and setting u = uε,n, let

us observe that one has∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy

=
∑

β≥0, α≥0
|α|+2|β|≤n

ε
|α|
2 +|β|aα,βj xα

∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
yβm(y)dy +Rε[u](x),

wherein we have set

aα,βj =
∂βΘ(x0

j )∂
αΨ(x0

j )

(β + α)!
, (5.8)
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while the remainder satisfies that there exists some constant Cn > 0 such that for

all ε ∈ (0, 1]:

|Rε[u](x)| ≤ Cnε
n+1

2

(
1 + ‖x‖n+1

) ∫
RN
|u(x)− u

(
x+ ε

1
2 y
)
|
(
1 + ‖y‖n+1

)
m(y)dy.

Hence because of Claim 5.1 one obtains that

Rε[u] = O
(
ε
n+1

2

)
as ε→ 0 in L2(RN ).

Using once again Claim 5.1 we get

−
∫
RN

(
u(x)− u(x+ ε

1
2 y)
)
Kε

(
ε

1
2x+ x0

j , y
)

dy

=
∑

α,β∈NN , |γ|≥1, p≥0
p+|α|+|γ|+2|β|≤n

εp+
|α|+|γ|

2 +|β|a
(α,β,γ)
j xα∂γϕp,j(x) +O

(
ε
n+1

2

)
,

wherein we have set

a
(α,β,γ)
j =

1

γ!
aα,βj

∫
RN

yγ+βm(y)dy.

As a consequence we obtain

−Mε
j [uε,n] =

∑
α,β∈NN , |γ|≥1, p≥0
p+|α|+|γ|+2|β|≤n

εp+
|α|+|γ|

2 +|β|a
(α,β,γ)
j xα∂γϕp,j

+
∑

k≥0, |α|+|β|≥1
k+|α|+2|β|≤n

ε
k+|α|

2 +|β|b
(α,β)
j xαϕk,j +O

(
ε
n+1

2

)
,

with

b
(α,β)
j =

1 + (−1)|β|

2

∂αΨ
(
x0
j

)
∂βΘ

(
x0
j

)
(α+ β)!

∫
RN

yβm(y)dy.

Now recalling that Ψ(x0
j ) = Θ(x0

j ) = 1 and ∇Ψ(x0
j ) = ∇Θ(x0

j ) = 0, straightforward

computations yields

−Mε
j [uε,n] = −ε (Pj + λ0,j)ϕ0,j+ε

n−2∑
p=1

ε
p
2

(
− (Pj + λ0,j)ϕp,j +

p−1∑
k=0

Dj,pkϕk,j

)
+O

(
ε
n+1

2

)
,

where Pj is the operator defined in (2.10) and the differential operators Dj,p are

defined by

Dj,p =
∑

|α|+2|β|+|γ|=2+p, |γ|≥1

a
(α,β,γ)
j xα∂γ +

∑
|α|+2|β|=2+p

b
(α,β)
j xα. (5.9)

Finally recalling (2.12) completes the proof of Proposition 5.2.
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We now give some further properties of the sequences {λk,j}k≥0 for j ∈
{1, ..,M}. To that aim recall that functions ϕk,j are given by a polynomial multi-

plied by ϕ0,j , defined in (2.11). We now write, for each k ≥ 0 and j ∈ {1, ..,M}:

ϕk,j = Qk,jϕ0,j with Qk,j ∈ R[X1, .., XN ].

The next lemma ensures that the formal series
∑∞
k=0 ε

k
2 λk,j does not contain any

1
2 -degree terms.

Lemma 5.1. Let j ∈ {1, ..,M} be given and fixed. Then the polynomials Qk,j
satisfy

Qk,j(−X) = (−1)kQk,j(X),

and the sequence {λk,j}k≥0 satisfies

λk,j = 0 if k = 1 mod 2.

Proof. During this proof, since the index j is fixed we write Qk and λk respectively

instead of Qk,j and λk,j . To prove this result, let us observe that the sequence

{Qk}k≥0 satisfies the following equation for all X = (X1, .., XN )T :

ϕ−1
0,j (Pj + λ0,j) [ϕ0,jQk] =

(
−∆ + 2A

1
2
j X · ∇

)
Qk

= −
k−1∑
p=0

λk−pQp +

k−1∑
p=0

ϕ−1
0,jDj,k−p [ϕ0,jQp] .

Next let us write R[X1, .., XN ] = E+ ⊕ E− with

E± = {P ∈ R[X1, .., XN ] : P (−X) = ±P (X)}.

Next observe that
(
−∆ + 2A

1
2
j X · ∇

)
E± ⊂ E± and that

ker
(
−∆ + 2A

1
2
j X · ∇

)
= {P ∈ R[X1, .., XN ] : P = P (0)} = R ⊂ E+.

Next we shall prove, using an induction argument for k ≥ 0, that

Q2p ∈ E+, Q2p+1 ∈ E− and λ2p+1 = 0, ∀p ∈ {0, .., k}. (5.10)

Step k = 0: Let us first observe that Q0(X) = 1 and that the function ϕ1,j = Q1ϕ0,j

satisfies the equation

(Pj + λ0,j)ϕ1,j = −λ1ϕ0,j +Dj,1 [ϕ0,j ] .

Recall that Dj,1 is defined in (5.9), and reads as

Dj,1 =
∑

|α|+2|β|+|γ|=3, |γ|≥1

a
(α,β,γ)
j xα∂γ +

∑
|α|+2|β|=3

b
(α,β)
j xα

=
∑
|γ|=3

a
(0,0,γ)
j ∂γ +

∑
|α|=3

b
(α,0)
j xα +

∑
|α|=1, |β|=1

b
(α,β)
j xα.
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Now looking at the definition of the coefficients a
(α,β,γ)
j and b

(α,β)
j above and recall-

ing that m is symmetric, we get

Dj,1 =
∑
|α|=3

b
(α,0)
j xα.

Thus the equation for ϕ1,j reduces to

(Pj + λ0,j)ϕ1,j = −λ1ϕ0,j +
∑
|α|=3

b
(α,0)
j xαϕ0,j .

Now Fredholm alternative ensures that

−λ1ϕ0,j +
∑
|α|=3

b
(α,0)
j xαϕ0,j ⊥ ϕ0,j ⇒ λ1 = 0,

so that ϕ1,j and Q1 respectively solve

(Pj + λ0,j)ϕ1,j =
∑
|α|=3

b
(α,0)
j xαϕ0,j and

(
−∆ + 2A

1
2
j X · ∇

)
Q1 =

∑
|α|=3

b
(α,0)
j xα ∈ E−.

This ensures that Q1 ∈ R ⊕ E− while the condition ϕ1,j ⊥ ϕ0,j ensures that

Q1(0) = 0. This re-writes as Q1 ∈ E− and this completes the first step for k = 0.

Step from k to k + 1: Here we assume that (5.10) holds for some k ≥ 0 and we shall

prove that it also holds true for k + 1. To that aim let us first observe that

2k+1∑
p=0

λ2k+2−pQp =

k∑
p=0

λ2k+2−2pQ2p ∈ E+.

On the other hand observe that

2k+1∑
p=0

ϕ−1
0,jDj,2k+2−p [ϕ0,jQp] =

∑
|α|+2|β|=4+2k−p

b
(α,β)
j XαQp

+

2k+1∑
p=0

∑
|α|+|γ|=2(2+k−|β|)−p

|γ|≥1

a
(α,β,γ)
j ϕ−1

0,jX
α∂γ (ϕ0,jQp) .

However for each |α| = p mod 2 one gets XαQp ∈ E+ while, for each |α|+ |γ| = p

mod 2 we have ϕ−1
0,jX

α∂γ (ϕ0,jQp) ∈ E+. Hence this yields(
−∆ + 2A

1
2
j X · ∇

)
Q2k+2 ∈ E+ and Q2k+2 ∈ E+.

Now, using the same argument as above, let us show that Q2k+3 ∈ E−. First note

that

2k+2∑
p=1

λ2k+3−pQp =

k∑
p=0

λ2k+3−(2p+1)Q2p+1 ∈ E−.
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Next note that

2k+2∑
p=0

ϕ−1
0,jDj,2k+3−p [ϕ0,jQp] =

∑
|α|+2|β|=5+2k−p

b
(α,β)
j XαQp

+

2k+2∑
p=0

∑
|α|+|γ|=1+2(2+k−|β|)−p

|γ|≥1

a
(α,β,γ)
j ϕ−1

0,jX
α∂γ (ϕ0,jQp) .

Now note that for each |α| = 1 + p mod 2 one gets XαQp ∈ E− while, for each

|α|+ |γ| = 1 + p mod 2 we have ϕ−1
0,jX

α∂γ (ϕ0,jQp) ∈ E−. Thus we get(
−∆ + 2A

1
2
j X · ∇

)
Q2k+3 = −λ2k+3 +R with R ∈ E−.

Hence because of Fredholm solvability condition one gets

−λ2k+3

∫
RN

ϕ2
0,j(x)dx+

∫
RN

R(x)ϕ2
0,j(x)dx = 0.

Next since R ∈ E− the second integral in the above solvability condition vanishes

that ensures that λ2k+3 = 0. Moreover since
(
−∆ + 2A

1
2
j X · ∇

)
Q2k+3 ∈ E− we

obtain that Q2k+3 ∈ R⊕ E−. Finally since ϕ0,j ⊥ ϕ2k+3,j = Q2k+3ϕ0,j , this yields

Q2k+3 = 0 and Q2k+3 ∈ E−. This completes the proof of the induction step and

thus the proof of the proposition.

6. Spectral properties with a single peak

As in the previous section, for notational simplicity, throughout this section we

write m, Ψ, Θ and x0
i , for i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0

i for i = 1, ..,M

defined by (2.7) and (2.8).

We shall work around a single peak of the fitness function Ψ. To proceed we fix

i ∈ {1, ..,M} and a radius r > 0 such that

Ψ > 0 on B
(
x0
i , r
)

and Ψ(x) < ‖Ψ‖∞ ∀x ∈ B
(
x0
i , r
)
\ {x0

i }.

Now we consider the linear operator Mε,r
i defined on L2

(
B(x0

i , r)
)

by

Mε,r
i [u](x) = u(x)−Θ(x)

∫
B(x0

i ,r)

mε(x− y)Θ(y)u(y)dy, x ∈ B(x0
i , r). (6.1)

The aim of this section is to study some spectral properties of this self-adjoint

operator. Let us denote by {Fi,k(ε)}k≥1 its sequence of eigenvalues ordered such

that

Fi,1(ε) < Fi,2(ε) ≤ · · · ≤ Fi,k(ε) ≤ · · ·

Now let us mention that the asymptotic expansion derived in Proposition 5.1 also

holds true for this operator. This means, in this context, that one has

Fi,k(ε) = εeik +O
(
ε

6
5

)
,
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wherein the sequence
{
eik
}
k≥1

denotes the increasing rearrangement of the set

{eα,i, α ∈ NN} as defined in (5.3). We also would like to mention here that the

construction of quasi-modes in the previous section for the operator Mε is also

valid for operator Mε,r
i . Hence, since we work around as single peak x0

i , we deduce

that the lowest eigenvalue Fi,1(ε) of this operator has an asymptotic series. More

precisely one has

Fi,1(ε) ∼
∞∑
k=0

ε1+kλ2k,i. (6.2)

In this section we establish Agmon like decay estimates for the eigenvectors of the

operator Mε,r
i defined above in (6.1). The main result of this section reads as follows.

Theorem 6.1 (Decay estimates). Let Assumptions 2.1, 2.2, 2.3 and 2.4 be

satisfied. Fix R0 > 0 large enough so that [0, εR0]∩σ (Mε,r
i ) 6= ∅ for all ε > 0 small

enough. Recalling the definition of γ0 in Assumption 2.4 (i), then there exist η1 > 0

small enough and some constant C > 0 such that for all 0 < ε << 1 small enough

and each uε ∈ L2
(
B(x0

i , r)
)
), normalized (in L2) eigenfunction of Mε,r

i associated

to some eigenvalue E ∈ [0, εR0], the following holds true:∥∥∥∥exp

(
η1
‖x0

i − ·‖
εγ0

)
uε(·)

∥∥∥∥
L2(B(x0

i ,r))

≤ C for all ε > 0 small enough. (6.3)

Proof. For notational simplicity, without loss of generality, we assume that x0
i = 0

and we write Mε,r
i ≡Mε,r.

Recalling the definition of the function Kε in (5.5), we define for η > 0 the

non-negative function V εη on B(0, r) by

V εη (x) :=

∫
B(−x, rε )

[
cosh

( η

εγ0
(‖x‖ − ‖x+ εy‖)

)
− 1
]
Kε(x, y)dy. (6.4)

Next we claim that:

Claim 6.2. There exist η1 > 0 and some constant C > 0 such that, for any ε ∈ (0, 1),

one has

0 ≤ V εη1
(x) ≤ Cε1−γ0 , ∀x ∈ B(0, r).

Proof. [Proof of Claim 6.2] In order to prove this estimate, let us first observe

that, for any x ∈ B(0, r), any y ∈ B
(
−x, rε

)
and any ε > 0, one has, due to the

triangular inequality,

η

εγ0
|‖x‖ − ‖x+ εy‖| ≤ ηε1−γ0‖y‖.

Now note that, since cosh t− 1 ≤ |t|e|t|, for all t ∈ R, it comes, for any x ∈ B(0, r)

and y ∈ B
(
−x, rε

)
, that

cosh
( η

εγ0
(‖x‖ − ‖x+ εy‖)

)
− 1 ≤ηε1−γ0‖y‖ exp

(
ηε1−γ0‖y‖

)
.
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Recalling that Kε(x, y) ≤ ‖Θ‖2∞m(y), this yields, for any x ∈ B(0, r),

V εη (x) ≤ Lε1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
ηε1−γ0‖x− z‖

)
m(x− z)dz,

wherein we have set L = ‖Θ‖2∞η. Now due to the decay estimate in Assumption

2.4 (i) it follows that, for any x ∈ B(0, r), one has

V εη (x) ≤M0Lε
1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
ηε1−γ0‖x− z‖ − η0‖x− z‖γ0

)
dz. (6.5)

On the other hand, for any x ∈ B(0, r) and z ∈ B
(
0, rε
)
, one has

ηε1−γ0‖x− z‖ − η0‖x− z‖γ0 ≤
(
ηε1−γ0‖x− z‖1−γ0 − η0

)
‖x− z‖γ0

≤
(
r1−γ0η (1 + ε)

1−γ0 − η0

)
‖x− z‖γ0 .

(6.6)

Now let us fix η1 > 0 such that for all 0 < ε < 1

r1−γ0η1 (1 + ε)
1−γ0 ≤ η0

2
.

So we infer from the above estimates, namely (6.5) and (6.6), that for all ε ∈ (0, 1)

V εη1
(x) ≤M0η1‖Θ‖2∞ε1−γ0

∫
B(0, rε )

‖x− z‖ exp
(
−η0

2
‖x− z‖γ0

)
dz.

This completes the proof of Claim 6.2.

Equipped with Claim 6.2 we are able to deal with the last step of the proof of

Theorem 6.1.

Recalling the definition of the function Vε in (5.5) and since B(0, r) is bounded,

there exists some constant C1 > 0 such that for all ε small enough one has

C1ε
1−γ0 ≥ C1ε ≥ Vε(x)− V0(x) ≥ −C1ε ≥ −C1ε

1−γ0 , ∀x ∈ B(0, r),

with V0(x) = 1 − Ψ(x). Now since V0(x) > 0 for any x ∈ B(0, r) \ {0} and since

x0
i = 0 is a non-degenerate minimum of V0, there exist some constants C2 > 0 and

C3 > 0 such that C2‖x‖2 ≤ V0(x) ≤ C3‖x‖2 for all x ∈ B(0, r). Hence we infer from

Claim 6.2 that

C3‖x‖2 ≥ V0(x)− V εη1
(x) ≥ C2‖x‖2 − Cε1−γ0 , ∀x ∈ B(0, r).

Thus, we deduce that for any ε > 0 small enough one has

Vε(x)− V εη1
(x) ≥ C2‖x‖2 − [C1 + C] ε1−γ0 ,

Vε(x)− V εη1
(x) ≤ C3‖x‖2 + C1ε

1−γ0 ,
∀x ∈ B(0, r).

Now, let b ∈ [0, R0] be given and define the sets

Xε,b
− :=

{
x ∈ B(0, r) : Vε(x)− V εη1

(x)− εb < 0
}

and Xε,b
+ = B(0, r) \Xε,b

− .

Then, observe that

Xε,b
− ⊂

{
x ∈ B(0, r) : ‖x‖2 ≤ ε1−γ0C4

}
, with C4 =

C + C1

C2
.
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Next define the functions R± : B(0, r)→ [0,∞) by

R+(x) :=
√
ε1−γ01{‖x‖2≤ε1−γ0C4}(x) +

(
Vε(x)− V εη1

(x)− εb
)
1Xε,b+

(x),

R−(x) :=
√
ε1−γ01{‖x‖2≤ε1−γ0C4}(x)−

(
Vε(x)− V εη1

(x)− εb
)
1Xε,b−

(x).

With this notation, in order to complete the proof of Theorem 6.1, we claim that:

Claim 6.3. Consider the function Φε defined by

Φε(x) = exp

(
η1‖x‖
εγ0

)
. (6.7)

By setting R := R+ +R− > 0, the following holds true for any ε > 0 small enough,

any b ∈ [0, R0] and any u ∈ L2 (B(0, r)):

‖RΦεu‖2L2(B(0,r)) ≤ 4

∥∥∥∥ 1

R
Φε (Mε,r − εb)u

∥∥∥∥2

L2(B(0,r))

+ 8 ‖R−Φεu‖2L2(B(0,r)) . (6.8)

Before proving this claim, we first complete the proof of Theorem 6.1. To that

aim observe that

R2
+(x)−R2

−(x) ≡ Vε(x)− V εη1
(x)− εb.

Now note that there exists some constant C5 > 0 (independent of b ∈ [0, R0] and

ε) such that

R := R+ +R− ≥ C5ε
1−γ0

2 and R− ≤ C5ε
1−γ0

2 . (6.9)

As a consequence one gets for any u ∈ L2(B(0, r)):
‖RΦεu‖2L2(B(0,r)) ≥ C

2
5ε

1−γ0 ‖Φεu‖2L2(B(0,r)) ,∥∥∥∥ 1

R
Φε (Mε,r − εb)u

∥∥∥∥2

L2(B(0,r))

≤ C−2
5 ε−(1−γ0) ‖Φε (Mε,r − εb)u‖2L2(B(0,r)) ,

‖R−Φεu‖2L2(B(0,r) ≤ C
2
5ε

1−γ0 ‖u‖2L2(B(0,r)) .

Coupling the above estimates with the estimate provided by Claim 6.3 ensures that

there exists some constant C6 > 0 such that for all u ∈ L2(B(0, r)), all ε > 0 small

enough and b ∈ [0, R0]:

‖Φεu‖2L2(B(0,r)) ≤ C6

[
ε−2(1−γ0) ‖Φε (Mε,r − εb)u‖2L2(B(0,r)) + ‖u‖2L2(M0)

]
.

Choosing u = uε ∈ L2(B(0, r)) \ {0} and b = bε such that Mε,ruε = εbεu
ε and

inserting into the above estimate completes the proof of Theorem 6.1.

Finally, it remains to prove Claim 6.3.

Proof. [Proof of Claim 6.3]. Notice that by the definition of Kε in (5.5), we have

for all nonnegative functions ψ1, ψ2 ∈ L2(RN ),∫
RN×RN

ψ1(x+ εy)ψ2(x)Kε(x, y)dydx =

∫
RN×RN

ψ1(x)ψ2(x+ εy)Kε(x, y)dydx.
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Then, by applying successively Lemmas 2.1 and 2.3 in 22, (6.8) follows and this

ends the proof of Claim 6.3.

7. Proof of Theorem 2.2, Theorem 2.3

This section is devoted to the proof of the asymptotic expansion stated in Theorem

2.2 and of the concentration result stated in Theorem 2.3.

As in the previous sections, for notational simplicity, throughout this section we

write m, Ψ, Θ and x0
i , for i = 1, ..,M , instead of m̂, Ψ̂, Θ̂ and x̂0

i for i = 1, ..,M

defined by (2.7) and (2.8).

Let s0 := minj 6=k ||x0
j −x0

k||2 denote the minimum distance over all two different

points x0
l , l = 1, . . . ,M . Then for any s ∈ (0, s0) and j = 1, ..,M , the ball of radius

s centred at x0
j , denoted by B(x0

j , s), satisfies x0
k /∈ B

(
x0
j , s
)

for k 6= j. Let us

consider the set N ⊂ {1, ..,M} defined by

N =

{
j ∈ {1, ..,M} : λ0,j = max

p=1,..,M
λ0,p

}
=

{
j ∈ {1, ..,M}, tr

(
A

1
2
j

)
= min
p=1,..,M

tr
(
A

1
2
p

)}
.

Let us observe that if cardN = 1, then Remark 5.1 already provides a proof of

Theorem 2.2. Here we will prove Theorem 2.2 in the more general situation where

N is not reduced to a single peak and we also prove Theorem 2.3.

Recalling the definition of the set M in (2.15), observe that M ⊂ N . In the

sequel we set K := cardN and assume that N = {1, ..,K}.
Now recall that E1(ε) > E2(ε) ≥ .. ≥ Ek(ε) ≥ .. denotes the sequence of

eigenvalues of the operator Mε as defined in (5.1). Next, due to Proposition 5.1

there exists some constant κ > 0 such that for all 0 < ε << 1 one has

dist ({E1(ε), .., EK(ε)} ;σ (Mε) \ {E1(ε), .., EK(ε)}) ≥ κε.

For j = 1, . . . ,K, we also denote by ψεj ∈ L2
(
RN
)

the normalized eigenvector of

the operator Mε associated to the eigenvalue Ej(ε).

Now fix s ∈ (0, s0) small enough such that

B
(
x0
j , s
)
⊂ Ω, ∀j ∈ N .

And, for each j ∈ N let us consider F1,j(ε) ∈ R and uεj ∈ L2
(
B(x0

j , s)
)

the principal

eigenvalue and the normalized (in L2) principal eigenvector of the operator Mε,s
j as

defined in (6.1). For notational simplicity we write Fj(ε) instead of F1,j(ε).

Then our next result reads as follows:

Theorem 7.1. For each ε > 0 small enough, there exists a bijection bε from

{E1(ε), .., EK(ε)} into {F1(ε), .., FK(ε)} such that we can find σ > 0 with

bε(λ) = 1− λ+O
(
e−

σ
εγ0

)
.
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Before proving Theorem 7.1, let us observe that as a consequence of this result,

E1(ε) = 1−
K

min
j=1

Fj(ε) +O
(
e−

σ
εγ0

)
.

Recalling the asymptotic expansion of Fj(ε) obtained in (6.2), this ensures that

Fj(ε) = Fk(ε) +O (ε∞) , ∀j, k ∈M,

and

E1(ε) ∼ 1 +

∞∑
k=0

ε1+kλ2k,j , ∀j ∈M.

Finally recalling that λε, the principal eigenvalue of Lε, coincides with E1(ε) (see

Section 4). This completes the proof of Theorem 2.2 by recalling that the above

computations are performed with Ψ̂ = Ψ/‖Ψ‖∞.

We shall now focus on proving Theorem 7.1. This proof will follow from several

steps.

For each j ∈ N , let us denote by χsj the characteristic function of the ball

B
(
x0
j , s
)
. Next our first lemma reads as follows

Lemma 7.1. There exists η > 0 such that, for all j ∈ N and ε > 0 small enough

one has:

(1−Mε)
(
χsju

ε
j

)
= Fj(ε)

(
χsju

ε
j

)
+ rj , a.e. x ∈ RN ,

where the remainder rj satisfies

‖rj‖L2(RN ) = O
(

exp
(
− η

εγ0

))
. (7.1)

Proof. Note first that one has

(1−Mε)
(
χsju

ε
j

)
(x) = χsj(x)Mε,s

j

[
uεj
]

(x) + rj(x), a.e. x ∈ RN ,

wherein the remainder rj takes the form

rj(x) = −χsj(x)Θ(x)

∫
B(x0

j ,s)
mε(x− y)Θ(y)uεj(y)dy, ∀x ∈ RN .

Now recalling that

Mε,s
j

[
uεj
]

= Fj(ε)u
ε
j ,

we get

(1−Mε)
(
χsju

ε
j

)
= Fj(ε)

(
χsju

ε
j

)
+ rj .

Now let us focus on proving (7.1). To that aim observe that one has, for all x ∈ RN :

|rj(x)| ≤M0‖Θ‖2∞χsj(x)

∫
B(x0

j ,s)
ε−Ne−

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0

(
e
η1‖y−x

0
j‖

εγ0 uεj(y)

)
dy.
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Here η1 is the constant provided by Theorem 6.1. Hence Hölder inequality yields,

for all x ∈ RN :

|rj(x)|2 ≤M2
0 ‖Θ‖4∞χsj(x)

∫
B(x0

j ,s)
ε−2Ne−2

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0 dy×
∥∥∥∥e η1‖.−x

0
j‖

εγ0 uεj

∥∥∥∥2

L2(B(x0
j ,s))

.

Due to Theorem 6.1, there exists some constant C > 0 such that for all ε > 0 small

enough one has

|rj(x)|2 ≤ Cχsj(x)

∫
B(x0

j ,s)
ε−2Ne−2

‖x−y‖γ0+η1‖y−x
0
j‖

εγ0 dy, ∀x ∈ RN .

In the sequel of this proof C > 0 denotes a constant, independent of ε, that may

change from line to line. Now fix σ > s. Then one has for all x ∈ RN such that

‖x− x0
j‖ ≥ σ:

|rj(x)|2 ≤ C
∫
‖y−x0

j‖≤s
ε−2Ne−2

‖x−x0
j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

≤ C
∫
‖y−x0

j‖≤s
ε−2Ne−2

‖x−x0
j‖
γ0(1− s

σ )
γ0

εγ0 dy

≤ Cε−2N exp

(
−2
‖x− x0

j‖γ0
(
1− s

σ

)γ0

εγ0

)
.

Next, one gets for all x ∈ RN such that s ≤ ‖x− x0
j‖:

|rj(x)|2 ≤ C
∫
‖y−x0

j‖≤
s
2

ε−2Ne−2
‖x−x0

j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

+ C

∫
s
2≤‖y−x

0
j‖≤s

ε−2Ne−2
‖x−x0

j‖
γ0(1−‖x−x0

j‖
−1‖y−x0

j‖)
γ0+η1‖y−x

0
j‖

εγ0 dy

≤ C
∫
‖y−x0

j‖≤
s
2

ε−2Ne−2 sγ0
2γ0εγ0 dy + C

∫
s
2≤‖y−x

0
j‖≤s

ε−2Ne−
η1s

εγ0 dy

≤ Cε−2N

[
exp

(
−21−γ0sγ0

εγ0

)
+ exp

(
−η1s

εγ0

)]
.

Coupling the above estimates completes the proof of (7.1) and thus the proof of

Lemma 7.1.

Using the above lemma we are now in position to prove Theorem 7.1. For that

purpose let us fix 0 < σ < η. Here η is the constant provided by Lemma 7.1 above.

Next applying Proposition 5.1 to the operators Mε,s
j with j ∈ N and Mε, one

obtains that there exist κ > 0 and κ1 > 0 with 2κ1 < κ such that, for all ε << 1

small enough, one has for all θ ∈ [0, κ1]:

σ (1−Mε) ∩ [θε, (κ− θ) ε] = {1− Ek(ε), k = 1, ..,K} ,
σ
(
Mε,s
j

)
∩ [θε, (κ− θ) ε] = {Fj(ε)}, ∀j ∈ N .
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Now setting Iε =
[
κ1

2 ε,
(
κ− κ1

2

)
ε
]
, the above statement re-writes asσ (1−Mε) ∪

K⋃
j=1

σ
(
Mε,s
j

) ∩ [(Iε +
[
−κ1ε

2
,
κ1ε

2

])
\ Iε

]
= ∅.

Next following Chapter 6 in 36, we set aε = e−
σ
εγ0 and we consider, for any fixed

ε > 0 small enough, disjoint intervals I1, .., INε ⊂ Iε such that

{1− E1(ε), .., 1− EK(ε), F1(ε), .., FK(ε)} ⊂ ∪Nεk=1Ik,

dist (Ik, Ik′) ≥ 2aε, ∀k 6= k′ and
Nε
sup
k=1
|Ik| = O (aε) .

Consider now for k = 1, .., Nε the sets of index

Jk = {j ∈ {1, ..,K} : Fj(ε) ∈ Ik} and Lk = {j ∈ {1, ..,K} : 1− Ek(ε) ∈ Ik},

as well as the vectors subspaces of L2(RN ) defined by

Ek =
⊕
j∈Jk

span
(
χsju

ε
j

)
and Fk = span

{
ψεj , j ∈ Lk

}
.

Together with the above notation, the proof of Theorem 7.1 directly follows from

the following claim:

Claim 7.2. The following holds true:

card Jk = cardLk, ∀k = 1, .., Nε.

Proof. [Proof of Claim 7.2] Let us observe that

Nε∑
k=1

card Jk =

Nε∑
k=1

cardLk = K.

Hence in order to prove the above claim, it is sufficient to prove that

card Jk ≤ cardLk, ∀k = 1, .., Nε.

To that aim, consider ΠEk and ΠFk the spectral (orthogonal) projectors on Ek and

Fk respectively. Next in order to prove the above collection of inequalities, it is

sufficient to prove that there exists σ′ > 0 such that, for all k = 1, .., Nε and all

ε > 0 small enough, one has

‖ΠEk −ΠFkΠEk‖ = O

(
exp

(
− σ′

εγ0

))
.

These estimates follow from the results derived in 17 (see Proposition 2.5 of this

paper). Indeed, if k ∈ {1, .., Nε} is given such that card Jj ≥ 1 then because of

Lemma 7.1 one obtains

‖ΠEk −ΠFkΠEk‖ = O

(
1

aε
exp

(
− η

εγ0

))
= O

(
exp

(
−η − σ

εγ0

))
,
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and the result follows since η − σ > 0.

We now turn to the proof of Theorem 2.3.

Proof. [Proof of Theorem 2.3] Here recall that we have assumed that M = {i} ⊂
N . Next observe that there exist some power m0 ≥ 1 and some constant κ > 0 such

that for all ε > 0 small enough:

dist (1− E1(ε), σ (1−Mε) \ {1− E1(ε)}) ≥ κεm0 .

Using the notation introduced above, this implies that there exists kε ∈ {1, .., Nε}
such that

1− E1(ε), Fi(ε) ∈ Ikε and card Jkε = cardLkε = 1.

Due to the proof of Claim 7.2, one gets, for k = kε and some σ > 0, that for ε small

enough:

‖ΠEk −ΠFkΠEk‖ = O
(

exp
(
− σ

εγ0

))
.

This re-writes as follows:

χsiu
ε
i − 〈χsiuεi , ψε1〉ψε1 = O

(
exp

(
− σ

εγ0

))
in L2(RN ).

Here the symbol 〈., .〉 is used to denote the usual inner product in L2(RN ). Taking

the L2−norm implies that

|〈χsiuεi , ψε1〉| = 1 +O
(

exp
(
− σ

εγ0

))
,

so that

ψε1 = χsiu
ε
i +O

(
exp

(
− σ

εγ0

))
in L2(RN ).

Now recall that

E1(ε)ψε1 = Mε [ψε1] .

Hence it follows from Young inequality for the convolution product that for some

constant κ > 0:

‖ψε1‖L1(RN ) ≥ κε
−N/2.

Thus, setting ψ̃ε = ‖ψε1‖
−1
L1(RN ) ψ

ε
1, one gets

E1(ε)ψ̃ε = Mε

[
ψ̃ε
]
,

and

E1(ε)ψ̃ε = ‖ψε1‖
−1
L1(RN )Mε [χsiu

ε
i ] +O

(
ε−N exp

(
− σ

εγ0

))
in L1(RN ).
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However, using the same argument and computations as in the proof of Lemma 7.1,

one obtains that there exists σ′ > 0 such that

Mε [χsiu
ε
i ] = χsiu

ε
i +O

(
exp

(
− σ′

εγ0

))
in L1(RN ).

As a consequence, we get for some σ′′ > 0 that

E1(ε)ψ̃ε = ‖ψε1‖
−1
L1(RN ) χ

s
iu
ε
i +O

(
exp

(
− σ

′′

εγ0

))
in L1(RN ).

Now let us fix η ∈ (0, γ0). Recalling Theorem 6.1 (for uεi ) one gets, using Hölder

inequality, that there exists some constant C > 0 such that, for all ε > 0 small

enough, it holds:

E1(ε)

∫
RN\B(x0

i ,ε
ν)

ψ̃εdx ≤ C
[∫

εν≤y≤s
exp

(
−2η1

‖y‖
εγ0

)
dy

] 1
2

+O

(
exp

(
− σ

′′

εγ0

))
.

As a consequence, we get

E1(ε)

∫
RN\B(x0

i ,ε
ν)

ψ̃εdx = O
(
exp

(
−η1ε

ν−γ0
))
.

Since E1(ε)→ 1 as ε→ 0, this proves the expected concentration property for the

function ψ̃ε. Finally, Theorem 2.3 follows from the link between the principal eigen-

vector of Lε and Mε discussed in Remark 4.1 together with the above concentration

property.
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