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Abstract

This manuscript is devoted to the study of some spreading properties of
Holling-Tanner prey-predator reaction-diffusion system. We more particu-
larly focus on the invasion of introduced predator in some environment which
is initially well-populated of prey. We first prove that, for the arbitrary di-
mensional problem, the system has a spreading speed property. We derive
more precise information for the one-dimensional system for which the long
time behaviour is studied and it is proved that the solution converges (in
some sense) towards a generalized transition wave with some determined
global mean speed of propagation.

Résumé

L’objet de ce travail est d’étudier l’invasion d’un prédateur introduit dans un
environment spatial homogonène riche en proie. Le modèle mathématique
que nous considérons est un système de réaction-diffusion posé dans tout
l’espace avec des interactions proies-prédateurs de type Holling-Tanner. Dans
un premier temps, sans faire d’hypothèse sur la dimension de l’espace, nous
caractérisons la zone d’expansion de la population de prédateurs. Une étude
plus approfondie est ensuite menée dans le cadre monodimensionnel en es-
pace. Dans ce cas, nous montrons que le comportement asymptotique des
solutions est décrit par des ondes de transition généralisées dont la vitesse
moyenne est explicitée en fonction des paramètres du modèle.
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1. Introduction

We consider in this work the following Holling-Tanner predator-prey re-
action diffusion system

∂tu− dΔu = u(1− u)− Π(u)v,

∂tv −Δv = rv
(
1− v

u

)
,

(1.1)

posed for t > 0 and x ∈ R
N and supplemented together with some initial

data
u(0, x) = u0(x), v(0, x) = v0(x), (1.2)

whose properties will be described below.
Here d > 0 describes the (normalized) diffusivity of prey, Π ≡ Π(u)

denotes the functional response to predation while r > 0 denotes the growth
rate of predator.

The underlying ordinary differential system of (1.1) with

Π(u) =
mu

A+ u
,

for some given constants m > 0 and A > 0 was suggested by Tanner [15].
(See also Murray [11] and Renshaw [14]). Since the last decades, (1.1) as well
as the underlying ordinary differential system have attracted the attention
of many researchers. One can for instance refer to May [9], Murray [11]
and Hsu and Huang [12] for the study of the underlying ordinary differential
equations and Du and Hsu [7] for the study the reaction-diffusion system
with Π(u) = αu on a bounded domain. Typical examples of functions Π are
given by Holling type functional response, that reads as

Π(u) =
eun

h+ un
, (1.3)

for some constant e > 0 and h > 0 and some power n ≥ 1. Let us also
mention the case where Π(u) ≡ αu some constant given constant α > 0, that
corresponds to the classical Lotka-Volterra functional response. Here we will
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not assume a specific form for function Π. We shall assume that function
Π : [0,∞) → [0,∞) satisfies

Π(u) = uπ(u), ∀u ∈ [0,∞), (1.4)

wherein π : [0,∞) → [0,∞) is of the class C1 such that π(u) > 0 for all
u ∈ (0, 1]. Furthermore, we assume that

Assumption 1.1. There exists δ ∈ (0, 1) such that

1− δ = π(δ).

This assumption is a simple condition to ensure a positive and uniform
lower bound for the prey population. All the proofs of this work are crucially
based on this lower bound property. Here we do not focus on finding more
general conditions on function π to satisfy such a property. Here we mainly
focus on the predator invasion phenomenon. Note that when n ≥ 2, function
Π described in (1.3) satisfies the above assumption.

In this work we shall focus on the response of system (1.1) to a localized
introduction of predator. To do so, one shall consider that the prey popu-
lation is initially uniformly well distributed (at its carrying capacity u0 ≡ 1
for simplicity and see Assumption 1.2 below for more precise assumption)
while predator population is initially introduced in some localized location,
namely v0 is compactly supported. Using such a framework we are interest-
ing in deriving some information about the invasion of predator in such an
environment. Before stating our first result, let us precise the assumptions
we shall use on the initial data. We assume that the initial data u0 and v0
satisfy the following conditions

Assumption 1.2. Functions u0 and v0 arising in (1.2) satisfy

(i) They are both nonnegative and continuous functions,

(ii) Function u0 satisfies δ ≤ u0(x) ≤ 1 for all x ∈ R
N ,

(iii) Function v0 is nonzero and compactly supported and 0 ≤ v0(x) ≤ 1 for
all x ∈ R

N .

The first main result of this work is concerned with the spreading speed
property for (1.1) that reads as

3



Theorem 1.3 (Spreading speed). Let Assumptions 1.1-1.2 be satisfied. Set
c∗ = 2

√
r. Let (u, v) be the solution of (1.1). Then the following holds true:

lim
t→∞

v(t, x+ ect) = 0, lim
t→∞

u(t, x+ ect) = 1, (1.5)

for all unit vector e and for all c > c∗ locally uniformly with respect to
x ∈ R

N . For each c ∈ (0, c∗), one has

lim inf
t→∞

inf
‖x‖≤ct

v(t, x) ≥ δ, lim sup
t→∞

sup
‖x‖≤ct

u(t, x) < 1, (1.6)

wherein ‖.‖ denotes the Euclidian norm in R
N .

The second main result of this work is concerned together with the large
time behaviour of the one-space dimensional system (1.1). In order to derive
and state the convergence result, let us notice that due to Assumption 1.1
and π(1) > 0, there exists γ ∈ (δ, 1) such that

1− γ

π(γ)
= δ. (1.7)

Using this definition, we will assume the following additional condition.

Assumption 1.4. We assume that the map h : (0, 1] → R defined by

h(u) =
1− u

π(u)
, ∀u ∈ (0, 1],

satisfies

(i) h(u) < δ for each u ∈ (γ, 1],

(ii) h(u) < 1 for all u ∈ (δ, 1].

Then the following result holds true:

Theorem 1.5. Let us assume that N = 1. Let Assumptions 1.1, 1.2 and 1.4
be satisfied. Let (u, v) be the solution of (1.1). Consider the quantity m(t)
defined at least for large time by

m(t) = sup

{
x ≥ 0 : v(t, x) =

δ

2

}
.
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There exist Ĥ > 0 and two non-increasing maps V± : R → (0, 1) such that

lim
x→∞

V±(x) = 0, lim
x→−∞

V+(x) = 1, lim
x→−∞

V−(x) = δ,

and two non-decreasing maps U± : R → (0, 1) such that

lim
x→∞

U±(x) = 1, lim
x→−∞

U+(x) = γ, lim
x→−∞

U−(x) = δ,

such that for each {tk}k≥0 tending to +∞ when k → ∞, there exists a sub-

sequence still denoted by {tk}k≥0 and some constant H ∈
[
−Ĥ, Ĥ

]
such that

the sequences {uk(t, x) = u(t+ tk, x+m(tk))}k≥0 and {vk(t, x) = v(t+ tk, x+
m(tk))}k≥0 converge locally uniformly with respect to (t, x) ∈ R

2 towards two
functions u ≡ u(t, x) and v ≡ v(t, x), an entire solution of (1.1) and such
that for all (t, x) ∈ R

2

v(0, 0) =
δ

2
,

V−(x− c∗t+H) ≤v(t, x) ≤ V+(x− c∗t+H),

U−(x− c∗t+H) ≤u(t, x) ≤ U+(x− c∗t+H).

Remark 1.6. From the proof of this result, one also obtains the following
asymptotic behaviour for the quantity m(t):

m(t) = c∗t− 3

2c∗
ln t+ o(ln t) as t → ∞.

The entire solutions constructed in the above result look like generalized
transition waves. We refer to Berestycki and Hamel [5, 4] for more informa-
tion on such a notion. However within the general framework of Assumption
1.4, we are not able to prove that the entire solutions constructed in Theorem
1.5 are generalized transition waves. To prove such a result, we will use the
following additional assumption

Assumption 1.7. We assume that the map h : (0, 1] → [0,∞) defined in
Assumption 1.4 is non-increasing.

Under the above additional assumption, we will prove that the entire
solutions constructed in Theorem 1.5 are generalized transition waves of (1.1).
Before stating this result, let us recall some definitions taken from Berestycki
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and Hamel [5, 4]. We refer to this article for more general definitions (see
also Mellet et al in[10] for some convergence results to generalized transition
wave for some scalar equation in general heterogeneous environment and
combustion type nonlinearity). First note that under Assumption 1.7, the
equation

h (a) = a,

has a unique solution denoted by a∗ ∈ (0, 1).

Definition 1.8 (Generalized transition waves). Assume that N = 1. An
entire classical solution (u, v) of (1.1) is said to be an almost planar gen-
eralized transition wave of (1.1) connecting the stationary states (1, 0)
and (a∗, a∗) if there exists {ξt}t∈R ⊂ R such that for each ε > 0 there exists
M > 0 such that

∀t ∈ R, ∀x ∈ (ξt,∞), x ≥ ξt +M ⇒
∥∥∥∥(uv

)
(t, x)−

(
1
0

)∥∥∥∥ ≤ ε,

and

∀t ∈ R, ∀x ∈ (−∞, ξt), x ≤ ξt −M ⇒
∥∥∥∥(uv

)
(t, x)−

(
a∗

a∗

)∥∥∥∥ ≤ ε,

This generalized transition wave is said to have a global mean speed of
propagation c ∈ R if

|ξt − ξs|
|t− s| → c as |t− s| → ∞.

Our main last result is the following:

Theorem 1.9. Let Assumptions 1.1, 1.2, 1.4 and 1.7 be satisfied. Then each
entire solution (u, v) of (1.1) constructed in Theorem 1.5 is an almost planar
generalized transition invasion wave of predators with global mean speed of
propagation c∗ and connecting the two stationary states(

u
v

)
=

(
1
0

)
and

(
u
v

)
=

(
a∗

a∗

)
,

wherein a∗ ∈ (0, 1) is the unique solution of the equation

h (a∗) = a∗.

Furthermore, recalling Definition 1.8, one can choose ξt = c∗t for all t ∈ R.
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Remark 1.10. According to Definition 1.4 given by Berestycki and Hamel

[4], in the context of Theorem 1.9, the stationary coexistence state

(
a∗

a∗

)
invades the predator free stationary state

(
1
0

)
.

Let us notice that in the context of spatially periodic scalar equations,
Berestycki and Hamel recently proved in [4] that under some assumptions,
generalized transition waves such that ξt = c∗t correspond to planar travelling
wavefronts. In the context of Theorem 1.9, one expects that the almost
planar transition waves correspond to travelling wave solutions of (1.1), that
is entire solution of the form:

(u, v) (t, x) ≡ (
U, V

)
(x− c∗t) .

However this question remains an open problem.
The organization of this work is the following: Section 2 is devoted to

recall some well known results on the asymptotic behaviour of the Fisher-
KPP equation. Section 3 is devoted to the study of spreading speed property.
Section 4 focuses on the one-dimensional system (1.1) and provides some
information on the asymptotic shape of the solutions. Finally Section 5 is
devoted to the proof of Theorem 1.9.

2. Preliminaries on the Fisher-KPP equation

This aim of this section is to recall some important and well known prop-
erties of the Fisher-KPP equation that will play a crucial role in the sequel.
Consider a map f : [0, 1] → R of the class C1. Assume that the map uf(u)
satisfies the Fisher-KPP assumptions, namely

(i) the map f is non-increasing on [0, 1] and

(ii) f(1) = 0.

Next consider the following so-called Fisher-KPP parabolic equation

∂tu−Δu = uf(u), t > 0, x ∈ R
N , (2.8)

supplemented together with some initial data u(0, x) ≡ u0(x) where u0 ∈
C
(
R

N , [0, 1]
)
is some given compactly supported function. Then the follow-

ing two important properties will be used in the sequel:
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Theorem 2.1 (Spreading speed). Set c∗ = 2
√

f(0) and let u be the solution
of (2.8) with initial data u0. Then for each c > c∗ and each e ∈ SN−1 one
has

lim
t→∞

u(t, x+ cte) = 0, locally uniformly in x ∈ R
N ,

and for each c ∈ (0, c∗), one has

lim
t→∞

inf
‖x‖≤ct

u(t, x) = 1.

One refers for instance to Aronson and Weinberger [2] for the proof of
such a result (see also [1], [6] and the references cited therein for more results
on the heterogeneous equation).

In the one dimensional situation, namely N = 1, one obtains more precise
information about the long time behaviour of the solution. Consider for each
time large enough the quantity

m(t) = sup

{
x ∈ R : u(t, x) =

1

2

}
.

Note that the later quantity is well defined due to Theorem 2.1. Then the
following result holds true

Theorem 2.2. Assume that N = 1. Let u ≡ u(t, x) be a solution of (2.8).
Then

lim
t→∞

u(t, x+m(t)) = U∗(x),

uniformly with respect to x in each semi-infinite interval of the form [−K,∞)
and K > 0. Here U∗ denotes the unique travelling front with speed c∗ of (2.8)
with U∗(0) = 1

2
, namely U∗ satisfies{

(U∗)′′ (x) + c∗ (U∗)′ (x) + U∗(x)f (U∗(x)) = 0, x ∈ R,

U∗(∞) = 0, U∗(−∞) = 1, U∗(0) = 1
2
.

(2.9)

The proof of this result can found, for instance, in the article of Uchiyama
[16] (see also Bramson [3] and Lau [13] for more results on the asymptotic
behaviour of the Fisher-KPP equation). We also refer to Ducrot et al [8], for
recent results on the long behaviour for quite general one-dimensional scalar
equation with spatial periodicity and Heaviside like initial data .
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In the sequel of this work, we will need some notations. For each α > 0
and N ≥ 1, we set DN

α the set defined as follows

DN
α :=

{
g : RN → [0, α] : g ≡ 0 positive, continuous and compactly supported

}
.

Next for each α > 0 and each g ∈ DN
α , function U(t, x;α; g) denotes the

solution of {
∂tU −ΔU = rU

(
1− U

α

)
,

U(0, .) = g(.).
(2.10)

Next, for each α > 0, each g ∈ D1
α and each η ∈ (0, α) we set

m(t;α; g; η) = sup {x ≥ 0 : U(t, x;α; g) = η} , (2.11)

which is at least defined for t large enough due to the spreading speed prop-
erty.

Let us also recall Lemma 8.5 given by Uchiyama [16]

Lemma 2.3. For each g and f in D1
1 the quantity m

(
t; 1; g; 1

2

)−m
(
t; 1; f ; 1

2

)
is bounded for large time t.

Using Theorem 2.2 one derives the following layer property:

Lemma 2.4. Let g ∈ D1
1 be given. For each ε ∈ (

0, 1
2

)
, there exists hε > 0

and Tε > 0 such that for each t > Tε:

{x ≥ 0 : U(t, x; 1; g) ∈ [ε, 1− ε]} ⊂ m

(
t; 1; g;

1

2

)
+ [−hε, hε].

3. Spreading speed

The aim of this section is to prove Theorem 1.3. The proof of this result
relies on deriving suitable asymptotic estimates.

Lemma 3.1. Let Assumptions 1.1 and 1.2 be satisfied. Let (u, v) be the
solution of (1.1). Then we have for all (t, x) ∈ [0,∞)× R

N

δ ≤ u(t, x) ≤ 1, 0 < v(t, x) ≤ 1.

Proof. The proof of this result relies on the comparison principle. The proof
is straightforward due to Assumptions 1.1 and 1.2.
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Lemma 3.2. Let Assumptions 1.1 and 1.2 be satisfied. Then the following
holds true

lim inf
t→∞

v(t, x) ≥ δ,

locally uniformly with respect to x ∈ R
N .

Proof. Since u ≥ δ then v satisfies

∂tv −Δv = rv
(
1− v

u

)
≥ rv

(
1− v

δ

)
.

Thus
∂tv −Δv − rv

(
1− v

δ

)
≥ 0.

Recalling Definition (2.10), since δ ∈ (0, 1], one obtains, due to the compari-
son principle, that

v(t, x) ≥ U(t, x; δ; δv0), ∀t ≥ 0, ∀x ∈ R
N ,

and the result follows (see Aronson et Weinberger [2]).

Lemma 3.3. Let Assumptions 1.1 and 1.2 be satisfied. Let (u, v) be a so-
lution of (1.1). Then for each e ∈ SN−1 (the unit sphere of RN) and each
c > c∗ one has

lim
t→∞

v(t, x+ cte) = 0, locally uniformly with respect to x ∈ R
N ,

and for each c ∈ (0, c∗), one has

lim inf
t→∞

inf
‖x‖≤ct

v(t, x) ≥ δ.

Proof. From Lemma 3.1 and the comparison principle, one obtains that

U(t, x; δ; δv0) ≤ v(t, x) ≤ U(t, x; 1; v0), ∀t ≥ 0, x ∈ R
N .

One the other hand, let us notice that

U(t, x; δ; δv0) ≡ δU(t, x; 1; v0),

so that we obtain that

δU(t, x; 1; v0) ≤ v(t, x) ≤ U(t, x; 1; v0), ∀t ≥ 0, x ∈ R
N . (3.12)

Using Theorem 2.1, the result of Lemma 3.3 follows.
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We are now able to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. As done by Berestycki et al in [6] (see Theorem 1.3
and Lemma 2.2), to complete the proof of Theorem 1.3 (1.6), it is sufficient
to show that for each c ∈ (0, c∗), there exists κ ∈ (0, 1) such that for all
e ∈ SN−1

lim sup
t→∞

u(t, ect) ≤ κ.

To do so, let c ∈ (0, c∗) be given and let us argue by contradiction by assuming
that there exists a sequence {tn → ∞} and a sequence {en} ⊂ SN−1 such
that

lim
n→∞

u(tn, enctn) = 1.

Set {xn := enctn}n≥0 and consider the following sequence of map for n ≥ 0

un(t, x) = u (t+ tn, x+ xn) , vn(t, x) = v (t+ tn, x+ xn) .

Up to a subsequence, one may assume that un and vn converges locally
uniformly to U and V , entire solutions of the following system of equations⎧⎪⎨⎪⎩

∂tU − dΔU = U(1− U)− Uπ(U)V,

∂tV −ΔV = rV
(
1− V

U

)
,

0 ≤ V ≤ 1, δ ≤ U ≤ 1.

Note that due to Lemma 3.3, one has

lim
n→∞

vn(0, 0) ≥ δ,

while
lim
n→∞

un(0, 0) = 1.

Thus one gets that
U(0, 0) = 1 and V (0, 0) ≥ δ.

The strong comparison principle implies that U(t, x) ≡ 1 and from the
U−equation, V ≡ 0, a contradiction. Thus we have obtained that for each
c ∈ (0, c∗), there exists κ = κ(c) ∈ (0, 1) such that

lim sup
t→∞

u(t, ect) ≤ κ, ∀e ∈ SN−1.

This completes the proof of Theorem 1.3 (1.6).
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Finally it remains to prove (1.5) for the u−component. To do so, let
c > c∗ be given. Let e ∈ SN−1 be given. Let {tk}k≥0 be a given sequence
tending to infinity as k → ∞. Consider the sequence of map defined for
k ≥ 0 by

uk(t, x) = u (t+ tk, x+ cetk) , vk(t, x) = v (t+ tk, x+ cetk) .

Due to property (1.5) for the v−component (see Lemma 3.3), one obtains
that

lim
k→∞

vk(0, x) = 0 locally uniformly.

Due to parabolic estimates, up to a subsequence, one may assume that
{uk}k≥0 and {vk}k≥0 converges locally uniformly towards some functions U
and V , an entire solution of the following system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tU − dΔU = U(1− U)− Uπ(U)V,

∂tV −ΔV = rV
(
1− V

U

)
,

0 ≤ V ≤ 1, V (0, x) = 0,

δ ≤ U ≤ 1.

From the strong comparison principle, one gets that V (t, x) ≡ 0 and therefore
U becomes an entire solution of the Fisher-KPP equation

∂tU − dΔU = U(1− U),

δ ≤ U ≤ 1.

It remains to prove that such an entire solution U satisfies U(t, x) ≡ 1. The
proof of this claim follows from the next lemma:

Lemma 3.4. Let d > 0 be given. Let η ∈ (0, 1) be given. Let U be a given
entire super-solution of the equation

∂tU − dΔU − U(1− U) ≥ 0, ∀(t, x) ∈ R× R
N ,

with η ≤ U(t, x) ≤ 1 for all (t, x) ∈ R× R
N . Then U(., .) ≡ 1.

This completes the proof of Theorem 1.3.

It remains to prove Lemma 3.4.
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Proof of Lemma 3.4. Let us now show that U(t, x) ≡ 1. To do so, consider
the function ū ≡ ū(t) defined by{

dū(t)
dt

= ū(t) (1− ū(t)) , t > 0,

ū(0) = η.

Then from the comparison principle, for each s ∈ R and t ∈ R one has

ū(t− s) ≤ U(t, x), ∀x ∈ R, t ≥ s.

Since ū(t) → 1 when t → ∞, one obtains that for each t ∈ R:

lim
s→−∞

ū(t− s) ≤ U(t, x) ≤ 1,

uniformly with respect to x ∈ R. This implies that U(t, x) ≡ 1 and completes
the proof of the result.

4. The one-dimensional system N = 1

The aim of this section is to derive more precise information on the large
time behaviour of the one dimensional system (1.1), namely with N = 1.

The next lemma shows that the location of the invasion front of predator
is strongly related to the one of the Fisher-KPP equation.

Lemma 4.1. Let Assumptions 1.1 and 1.2 be satisfied. Let (u, v) be the
solution of (1.1). Due to Theorem 1.3 one can consider at least for large
time t the quantity m(t) defined by

m(t) = sup

{
x ≥ 0 : v(t, x) =

δ

2

}
.

Then recalling Definition (2.11), the quantity m(t)−m
(
t; 1; v0;

1
2

)
is bounded

for large time.

Remark 4.2. Note that the above result proves Remark 1.6 by using the
asymptotic of m

(
t; 1; v0;

1
2

)
provided by Uchiyama in [16].

Proof. The proof of this result relies on Lemma 2.4. Indeed due to (3.12),
one gets that for t large enough,

m(t) ∈
{
x ≥ 0 : U(t, x; 1; v0) ∈

[
δ

2
,
1

2

]}
.
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Therefore due to Lemma 2.4, there exists h > 0 and T > 0 such that for all
t ≥ T :

m(t)−m

(
t; 1; v0;

1

2

)
∈ [−h, h],

and the result follows.

In order to prove Theorem 1.5, we will need to investigate the large time
behaviour of the following families of parabolic problems for s ∈ R and h ∈ R{

∂tU − d∂xxU = U(1− U)− δUπ(U)U∗ (x− c∗t+ h) , t > s,

U(s, s, x;h) ≡ 1
(4.13)

whose solution will be denoted by U ≡ U(t, s, x;h) for t ≥ s and wherein U∗

is the Fisher front defined in (2.9). We will also need some information on
the large time behaviour of the following scalar equation{

∂tV − d∂xxV = V (1− V )− V π(V )U∗ (x− c∗t+ h) , t > s,

V (s, s, x;h) ≡ δ,
(4.14)

whose solution will be denoted by V ≡ V (t, s, x;h) for t ≥ s.
Concerning the above problems, namely (4.13) and (4.14), one will derive

the following result:

Theorem 4.3 (Behaviour of (4.13)). Let Assumptions 1.1 and 1.4 (i) be
satisfied. There exists a map U : R → R such that

(i) U is increasing and

lim
x→∞

U(x) = 1, lim
x→−∞

U(x) = γ,

(ii) U satisfies for all x ∈ R

dU
′′
(x) + c∗U

′
(x) + U(x)

(
1− U(x)

)− δUπ
(
U(x)

)
U∗(x) = 0,

(iii) the map U satisfies for each t ∈ R and each h ∈ R:

lim
s→−∞

sup
x∈R

|U(t, s, x;h)− U(x+ h− c∗t)| = 0.
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Then we will show a similar result as the one described in Theorem 4.3
for (4.14), that reads

Theorem 4.4 (Behaviour of (4.14)). Let Assumptions 1.1 and 1.4 (ii) be
satisfied. There exists a map U : R → R such that

(i) U is increasing and

lim
x→∞

U(x) = 1, lim
x→−∞

U(x) = δ,

(ii) U satisfies for each x ∈ R:

dU ′′(x) + c∗U ′(x) + U(x) (1− U(x))− Uπ (U(x))U∗(x) = 0,

(iii) the map U satisfies for each t ∈ R and each h ∈ R:

lim
s→−∞

sup
x∈R

|V (t, s, x;h)− U(x+ h− c∗t)| = 0.

The proofs of these results are postponed. We will first complete the
proof of Theorem 1.5.

Proof of Theorem 1.5. Due to Lemma 4.1, define Ĥ > 0 such that

m(t)−m

(
t; 1; v0;

1

2

)
∈
[
−Ĥ, Ĥ

]
, for all t large enough.

Let {tk}k≥0 be a given sequence tending to ∞ as k → ∞. Recalling the
definition of m(t) in Lemma 4.1, we consider the sequences of maps {uk}k≥0

and {vk}k≥0 defined by

(uk, vk) (t, x) = (u, v) (t+ tk, x+m (tk)) .

Due to parabolic estimates, one may assume possibly along a subsequence,
still denoted by {tk}k≥0 that {(uk, vk)}k≥0 converges towards some function
(u, v) locally uniformly with respect to (t, x) ∈ R

2. Moreover (u, v) becomes
an entire solution of the following problem

∂tu− d∂xxu = u (1− u)− uπ (u) v,

∂tv − ∂xxv = rv

(
1− v

u

)
,

δ ≤ u(t, x) ≤ 1, 0 ≤ v(t, x) ≤ 1.

(4.15)
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Due to the definition of m(t) in Lemma 4.1 one has that

v(0, 0) =
δ

2
.

If we come back to (3.12), one obtains that for each k ≥ 0

δU (t+ tk, x+m (tk)) ≤ vk(t, x) ≤ U (t+ tk, x+m (tk)) , ∀t ≥ −tk, x ∈ R,

wherein we have set for short U(t, x) = U(t, x; 1; v0). Next due to Lemma
4.1, the sequence {Hk} defined by

Hk := m(tk)−m

(
tk; 1; v0;

1

2

)
∈
[
−Ĥ, Ĥ

]
,

is bounded. Up to a subsequence one may assume that it converges to some

value H ∈
[
−Ĥ, Ĥ

]
. Therefore, using Theorem 2.2, we obtain that for each

(t, x) ∈ R
2

lim
k→∞

U (t+ tk, x+m (tk)) = lim
k→∞

U

(
t+ tk, x+m

(
tk; 1; v0;

1

2

)
+Hk

)
= U∗ (x− c∗t+H) .

As a conclusion we derive that for each (t, x) ∈ R
2:

δU∗ (x− c∗t+H) ≤ v(t, x) ≤ U∗ (x− c∗t+H) .

Plugging this last estimate into the u−equation in (4.15), one obtains that
for each (t, x) ∈ R

2:

∂tu− d∂xxu ≥ u (1− u)− uπ (u)U∗ (x− c∗t+H) ,

u(t, x) ≥ δ,
(4.16)

and for each (t, x) ∈ R
2:

∂tu− d∂xxu ≤ u (1− u)− δuπ (u)U∗ (x− c∗t+H) ,

u(t, x) ≤ 1,
(4.17)

As a consequence of these differential inequalities and using the compar-
ison principle, we obtain that for each (t, x) ∈ R

2 and each s ≤ t that

V (t, s, x;H) ≤ u(t, x) ≤ U(t, s, x;H).
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Letting s → −∞ allows us to obtain that

U (x− c∗t+H) ≤ u(t, x) ≤ U (x− c∗t+H) , ∀(t, x) ∈ R
2.

This completes the proof of Theorem 1.5.

It remains to prove Theorem 4.3 and 4.4. The proof of these results are
similar to each other. We will only prove Theorem 4.3 and we focus on (4.13).
Notice that the study of such a problem may be reduced to the study of the
latter equation with h = 0 and s = 0. Indeed from the uniqueness of the
solution, one may observe that for each s ∈ R, each h ∈ R, each t ≥ s and
x ∈ R, we have

U(t, s, x;h) ≡ U (t− s, 0, x− c∗s+ h; 0) .

It is therefore sufficient to study the problem{
∂tU − d∂xxU = U(1− U)− uπ(U)U∗ (x− c∗t) , t > 0, x ∈ R,

U(0, x) ≡ 1,
(4.18)

wherein U∗ is defined in (2.9). We shall prove the following result:

Theorem 4.5. Let Assumptions 1.1 and 1.4 (i) be satisfied. Let U ≡ U(t, x)
be the solution of (4.18). There exists a map U : R → R such that

(i) U is increasing and

lim
x→∞

U(x) = 1, lim
x→−∞

U(x) = γ,

(ii) U satisfies for all x ∈ R

dU
′′
(x) + c∗U

′
(x) + U(x)

(
1− U(x)

)− δUπ
(
U(x)

)
U∗(x) = 0,

(iii) the map U satisfies for each t ∈ R and each h ∈ R:

lim
t→∞

sup
x∈R

|U(t, x)− U(x− c∗t)| = 0.

It is clear that due to the uniform converge explained in (iii), Theorem
4.3 holds true. Thus it is sufficient to prove Theorem 4.5.
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Proof of Theorem 4.5. Denote by U ≡ U(t, x) the solution of (4.18). Then
from the comparison principle we have

γ ≤ U(t, x) ≤ 1, ∀t ≥ 0, x ∈ R.

Next consider the map w ≡ w(t, x) :≡ U(t, x+c∗t) that satisfies the following
problem

∂tw = d∂xxw + c∗∂xw + w(1− w)− δwπ(w)U∗(x),

w(0, x) ≡ 1.
(4.19)

Then we infer from the comparison principle and U∗(x) > 0 and (U∗)′ (x) < 0
for all x ∈ R that w is decreasing with respect to t and increasing with respect
to x ∈ R. Since w(t, x) ∈ [γ, 1] we obtain that there exists U : R → (γ, 1) an
increasing map such that

(i) U satisfies for all x ∈ R:

dU
′′
(x) + cU

′
(x) + U(x)

(
1− U(x)

)− δU(x)π
(
U(x)

)
U∗(x) = 0,

(ii) lim
t→∞

w(t, x) = U(x) locally uniformly with respect to x ∈ R.

Furthermore, since U is increasing, one obtains that

lim
x→−∞

U(x) = γ and lim
x→∞

U(x) = 1.

We now aim to prove that the above convergence in (ii) is uniform with
respect to x ∈ R. To prove that, we will argue by contradiction by assuming
that the convergence of w to U is not uniform with respect to x ∈ R. Thus
there exists ε > 0, a sequence {tn}n≥0 and {xn}n≥0 such that

tn → ∞, |xn| → ∞, when n → ∞
|w(tn, xn)− U(xn)| ≥ ε, ∀n ≥ 0.

Next consider the sequence of map {wn}n≥0 defined by

wn(t, x) := w(t+ tn, x+ xn).

We now split the argument into two parts:
Let us first assume that up to a subsequence that xn → +∞ when n → ∞.
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Due to parabolic estimates, possibly along a subsequence, one may assume
that the sequence {wn} converges to some W ∗ locally uniformly with respect
to (t, x) ∈ R

2. Moreover since U∗(x) → 0 and U(x) → 1 when x → ∞, one
obtains that

W ∗(0, 0) = lim
n→∞

wn(0, 0) ≤ 1− ε,

∂tW
∗ = d∂xxW

∗ − c∂xW
∗ +W ∗ (1−W ∗) , (t, x) ∈ R

2,

γ ≤ W ∗(t, x) ≤ 1, ∀(t, x) ∈ R
2.

Using Lemma 3.4, one obtains that W ≡ 1, a contradiction with W ∗(0, 0) <
1.

Assume now that, up to a subsequence that xn → −∞ when n → ∞.
Due to parabolic estimates, possibly along a subsequence, one may assume
that the sequence {wn} converges to some W ∗ locally uniformly with respect
to (t, x) ∈ R

2. Moreover since U(x) → γ and U∗(x) → 1 when x → −∞,
one obtains that

W ∗(0, 0) = lim
n→∞

wn(0, 0) > γ,

∂tW
∗ = d∂xxW

∗ − c∂xW
∗ +W ∗ (1−W ∗ − δπ (W ∗)) , (t, x) ∈ R

2,

γ ≤ W ∗(t, x) ≤ 1, ∀(t, x) ∈ R
2.

We claim that W ∗ ≡ γ. Let w(t, s) with t ≥ s be the solution of

∂tw(t, s) = w(t, s)F (w(t, s)) , w(s, s) = 1,

wherein we have set
F (w) = 1− w − δπ(w).

Then from the comparison principle, one has for each t ≥ s.

W ∗(t, x) ≤ w(t, s), ∀x ∈ R.

Note that w(t, s) = w(t − s, 0) for all t ≥ s. One the other hand, since
F (w) < 0 for each w ∈ (γ, 1] (see (i) in Assumption 1.4) then t �→ w(t, 0) is
decreasing and since F (γ) = 0, one obtains

lim
t→∞

w(t, 0) = γ.

As a consequence for each t ∈ R and each x ∈ R, one gets

W ∗(t, x) ≤ lim
s→−∞

w(t− s, 0) = γ.
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Recalling that W ∗ ≥ γ leads us to W ∗ ≡ γ and the claim is proved. Note
that the former property leads to a contradiction together with W ∗(0, 0) > γ.
and this completes the proof of Theorem 4.5.

5. Proof of Theorem 1.9

The aim of this section is to complete the proof of Theorem 1.9. This
step relies on the following proposition:

Proposition 5.1. Let Assumptions 1.1, 1.2, 1.4 and 1.7 be satisfied. Let
(u, v) = (u, v)(t, x) be an entire solution of (1.1) such that for all (t, x) ∈
R× R

δ ≤ u(t, x) ≤ γ and δ ≤ v(t, x) ≤ 1,

wherein δ is defined in Assumption 1.1 while γ is defined in (1.7). Then
(u, v) satisfies:

(u, v) (t, x) ≡ (a∗, a∗) .

Before proving Proposition 5.1, let us complete the proof of Theorem 1.9.

Proof of Theorem 1.9. Let (u, v) be an entire solution of (1.1) constructed in
Theorem 1.5. Set ξt = c∗t for all t ∈ R and let H ∈ R be such that for all
(t, x) ∈ R× R:{

V−(x− c∗t+H) ≤ v(t, x) ≤ V+(x− c∗t+H),

U−(x− c∗t+H) ≤ u(t, x) ≤ U+(x− c∗t+H),
(5.20)

and wherein functions U± and V± are provided by Theorem 1.5. Recall-
ing Definition 1.8, let us prove that (u, v) is an almost planar generalized
transition wave of (1.1) connecting the stationary states (1, 0) and (a∗, a∗).

Let ε > 0 be given. Since (U±,V±) (x) → (1, 0) when x → ∞, there
exists M > 0 such that for all x ≥ M −H,

0 ≤ 1−U±(x) ≤ ε and 0 ≤ V±(x) ≤ ε.

Hence due to (5.20) for each t ∈ R and each x ≥ c∗t+M one has∥∥∥∥(uv
)
(t, x)−

(
1
0

)∥∥∥∥ ≤ ε.
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Let us now prove that for each ε > 0 there exists M > 0 such that for each
(t, x) ∈ R× R:

x− ξt ≤ −M ⇒
∥∥∥∥(uv

)
(t, x)−

(
a∗

a∗

)∥∥∥∥ ≤ ε.

In order to prove this result let us argue by contradiction by assuming that
there exists ε > 0, a sequence {(tn, xn)}n≥0 such that for each n ≥ 0

xn − c∗tn ≤ −n and

∥∥∥∥(uv
)
(tn, xn)−

(
a∗

a∗

)∥∥∥∥ > ε. (5.21)

Next consider the sequence entire solution (un, vn) (t, x) = (u, v) (t+ tn, x+ xn).
Due to parabolic estimates, possibly along a subsequence, one may assume
that (un, vn) → (u∞, v∞) locally uniformly for (t, x) ∈ R

2 where (u∞, v∞)
is an entire solution of (1.1). Furthermore the second inequality in (5.21)
ensures that ∥∥∥∥(u∞

v∞

)
(0, 0)−

(
a∗

a∗

)∥∥∥∥ > ε. (5.22)

On the other hand (5.20) yields for each n ≥ 0, for each (t, x) ∈ R
2:{

V−(xn − c∗tn + x− c∗t+H) ≤ vn(t, x) ≤ V+(xn − c∗tn + x− c∗t+H),

U−(xn − c∗tn + x− c∗t+H) ≤ un(t, x) ≤ U+(xn − c∗tn + x− c∗t+H).

Recalling that xn − c∗tn → −∞ as n → ∞, we infer from the asymptotic
behaviour close to x = −∞ of U± and V ± that for all (t, x) ∈ R

2:

δ ≤ u∞(t, x) ≤ γ and δ ≤ v∞(t, x) ≤ 1.

Finally Proposition 5.1 applies and provides a contradiction together with
(5.22). This completes the proof of Theorem 1.9.

It remains to prove Proposition 5.1. To do so, recalling Assumption 1.7,
one introduces the sequence {γn}n≥0 defined by{

γ0 = 1,

h(γn+1) = γn, n ≥ 0.
(5.23)

Due to the definition of δ in Assumption 1.1 and of γ in (1.7), one has γ1 = δ
and γ2 = γ. Then the following lemma holds true:

21



Lemma 5.2. Using the above definition, the two sequences {γ2n}n≥0 and
{γ2n+1}n≥0 are adjacent. They converge to a∗ ∈ (0, 1), the unique solution of
h(a∗) = a∗ and satisfy for each n ≥ 0:

γ1 < γ3 < ... < γ2n+1 < ... < a∗ < .. < γ2n < .. < γ2 < γ0.

The proof of this lemma is straightforward.
Using the definition of {γn}n≥0 we are now able to complete the proof of

Proposition 5.1.

Proof of Proposition 5.1. The proof of this result is based on deriving the
following ”sandwich” estimates for all n ≥ 0 and (t, x) ∈ R

2:

γ2n+1 ≤ u(t, x) ≤ γ2n+2 and γ2n+1 ≤ v(t, x) ≤ γ2n. (5.24)

Note that because of Lemma 5.2, (5.24) completes the proof the Proposition
5.1. As a consequence we only need to prove (5.24).
Let us first notice that this inequality holds true for n = 0 because of the
assumptions of the proposition. Let us now argue by induction on n. Let us
assume that (5.24) holds true for some n ≥ 0 and let us prove that (5.24)
holds true for n+ 1.

Firstly since u ≤ γ2n+2 then v ≡ v(t, x) satisfies:

∂tv − ∂xxv − rv

(
1− v

γ2n+2

)
≤ 0, ∀(t, x) ∈ R× R.

Since v is bounded one concludes from the comparison principle that v(t, x) ≤
γ2n+2 for all (t, x) ∈ R

2. Next u ≡ u(t, x) satisfies

∂tu− d∂xxu− u(1− u) + γ2n+2uπ(u) ≥ 0, ∀(t, x) ∈ R× R.

Thus using (5.24) for n and the comparison principle, one obtains that for
each t ∈ R, s ≤ t and x ∈ R:

u(t− s) ≤ u(t, x), (5.25)

where u is the solution of the ordinary differential equation:{
∂tu = u (1− u)− γ2n+2uπ (u) for t ≥ 0,

u(0) = γ2n+1.
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Now let us notice that the map t �→ u(t) is increasing. Indeed one has for

(1− γ2n+1)− γ2n+2π (γ2n+1) = π (γ2n+1) [h (γ2n+1)− γ2n+2]

= π (γ2n+1) [γ2n − γ2n+2] > 0,

where the last inequality arises because of the monotonic property of {γn}n≥0

stated in Lemma 5.2. Hence u converges as t → ∞ to γ2n+3. Therefore using
(5.25) and letting s → −∞ yields to γ2n+3 ≤ u(t, x) for all (t, x) ∈ R× R.
Using the same arguments as before and γ2n+3 ≤ u(t, x), one concludes that
v(t, x) ≥ γ2n+3 and this latter inequality is used to complete u(t, x) ≤ γ2n+4.
Thus (5.24) holds true for n+ 1 and this completes the proof of Proposition
5.1.
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