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Abstract

This paper is concerned with the study of the asymptotic behaviour
of a multi-dimensional Fisher-KPP equation posed in an asymptotically
homogeneous medium and supplemented together with a compactly sup-
ported initial datum. We derive precise estimates for the location of the
front before proving the convergence of the solutions towards travelling
front. In particular we show that the location of the front drastically de-
pends on the rate at which the medium becomes homogeneous at infinity.
Fast rate of convergence only changes the location by some constant while
lower rate of convergence induces further logarithmic delay.
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1 Introduction

In this work we consider the following initial value problem of Fisher-KPP type

{ut—Au:G(x,u),t>O,x6]RN, (1)

u(0,2) = ug(z), Vo € RY,
where the initial datum ug is assumed to satisfy
0 <wup(x) <1 is non-trivial, continuous and compactly supported.  (2)

The nonlinearity G = G(z,u) is assumed to be asymptotically homogeneous in
space in the sense that, the following convergence holds true, locally uniformly,

G(z,u) — F(u) as ||z|| — oo,

and where the limit nonlinearity F(u) is of Fisher-KPP type on the interval
[0,1].



The goal of this paper is to understand the relationship between the long time
behaviour of the solution of and the one of the homogeneous Fisher-KPP
equation, that reads

uy — Au= F(u), t >0, z € RV, (3)

Here function F : [0,1] — R is of the class C' and satisfies F'(0) = F(1) = 0,
F(u) > 0 for all w € (0,1), together with the so-called KPP assumption

F(u) < F'(0)u, Yu € [0,1].

This equation has a long history and was introduced in particular in the pioneer
works of Fisher [I5] and Kolmogorov, Petrovskii and Piskunov [23] to model
some problems in population dynamics. One of the main property of is
that there exists a minimal speed ¢* = 2,/F"’(0) such for all ¢ > ¢*, admits
travelling wave solutions with speed ¢, that is entire solutions of the form

u(t,z) =U(x-e—ct),

where e € S¥~! is a given direction while the profile U is non-increasing and
satisfies U(—o0) =1 and U(o0) = 0.

The role of the critical travelling front, that is the travelling wave solution with
the minimal wave speed c*, is of particular importance when looking at the
dynamical properties of the Cauchy problem supplemented together with
an initial datum u(0,z) = ug(z) satisfying (2). In that context, Aronson and
Weinberger proved in the late 70’s that the solution v = w(t,z) enjoys the
so-called asymptotic speed of spread property:

lim sup w(t,z) =0, Ve>c*,
F700 ]| >t

lim sup |1 —u(t,z)| =0, Yece[0,c").

E=00 ||| <et

(4)

Here ||.|| denotes the Euclidean norm on RY. The above spreading speed result
shows that the solution exhibits the propagation of a transition zone between
the two equilibrium points. Let us mention that Kolmogorov et al [23] already
gave a proof for the one-dimensional attractivity of the critical wave with re-
spect to Heaviside initial datum. The boundedness of the transition zone as well
as the convergence to the critical travelling front in a moving frame = = m(t)
attached to the level line % has been proved by Uchiyama in [33] for the one-
dimensional equation and associated to more general initial data. In the
same spirit, one can also refer to the work of Lau [25] where convergence to the
critical wave front has been studied (see also [24] B2} B5] B6] and the references
therein). Let us also mention [I7} 10, 27] where convergence to critical travelling
wave and propagating terrace have been investigated using intersection number
arguments and for one-dimensional periodic equations. More refined informa-
tion has been obtained by Bramson in [7, [§] using probabilistic methods. He



proved the following asymptotic expansion for m(t), the location of the level

line u = 3

m(t) = c*t — i* Int—zo—x1t /?>4+0 (t_l) .
c

Here zg € R and x; > 0 are two constants. Recently Hamel, Nolen, Roque-
joffre and Ryzhik [I8, [19] reconsidered this problem for the one-dimensional
Fisher-KPP equation in a homogeneous and periodic medium respectively. Us-
ing partial differential equation methods, the authors proved that the front is
located at x = ¢*t — 2 Int 4+ O(1). We also refer to Ebert et al [IT] for a formal
derivation of the location of pulled front.

The multi-dimensional Fisher-KPP equation posed on the whole space
and equipped with a compactly supported initial datum has been studied by
Gértner in [16] also using probabilistic arguments. In that context the front has
proved to be located at ||z|| = ¢*t — 22 Int+ O(1). As a corollary of this work
(see Corollary , we shall recover this result. Let us also mention the work
of Uchiyama [33] where the author derived the asymptotic behaviour of the
solution of some monostable and non-KPP problem and where convergence to
pushed front is proved for a class of radially symmetric initial data. We finally
refer to Mallordy and Roquejoffre [26] and the references cited therein for the
asymptotic behaviour of the solutions of KPP equation in cylinders.

The goal of this work is to understand how is localized the transition zone
of the solution of between the two equilibrium points of function F'(u) for
large time. We shall more precisely show that the location of the transition
zone may depend on the rate at which the nonlinearity G(x,u) approaches its
homogeneous limit F(u) as ||| — oco. Roughly speaking when this rate is
integrable, meaning that the convergence to the homogeneous medium is suffi-
ciently fast, then the level lines of the solution behave similarly to the ones of
the homogeneous case. To be more precise, the transition zone of the solution
remains at a uniformly bounded distance of the one of the solution of the homo-
geneous equation . When the approach of the homogeneous medium is not
sufficiently fast, non-integrable rate of convergence, we obtain that the transi-
tion zone of the solution is perturbed with an additional logarithm term. Let
us mention that some results in this direction has been investigated by Ducrot
and Giletti in [9] for a one-dimensional and periodic equation with compactly
supported perturbation as a forcing term and zero initial datum. Let us also
emphasize that Nolen, Roquejoffre, Ryzhik and Zlatos in [29] considered a one-
dimensional Fisher-KPP equation in an asymptotically homogeneous medium
and proved that under spectral conditions on the linearized elliptic operator
at u = 0, transition front does not exist while bump-like solutions do exist.
However we show in this work that the solution of approaches the critical
travelling wave for large time.

Before stating our main results, let us first precisely state the assumptions
we shall make use throughout this work:

Assumption 1.1 We assume that:



(i) The function G = G(x,u) : RV x R* — R is assumed to be continuous
and C1 with respect to u and there exists M > 1 such that

G(z,0) =0, Yz € RN and G(z,u) <0, Vo € RN, Vu > M.

(i1) There exists a decreasing function I' : [0,00) — [0,00) such that

lim T'(r) =0,

T—>00
and a function F : RT — R of the class C? such that

a) F(0) = F(1) =0, F(u) > 0 for all w € (0,1) and F(u) < 0 for all
u> 1.

b) Function u # is decreasing on (0,1).
such that the following estimate holds true:

|G(z,u) — F(u)| <T(||z]))u, Yz RN, uel0,M].

Note that the first assumption ensures that the solution u = wu(¢, x) of and
[2) satisfies 0 < u(t,z) < M for all t > 0 and = € RY. The second assumption
means that the nonlinear term becomes asymptotically homogeneous with the
rate of convergence I'(]|z||) and the limit nonlinearity F'(u) satisfies the strong
KPP assumption. Note since T'(r) — 0 as 7 — oo and F(u) < 0 for v > 1 then
for each positive function € = ¢(t) tending to co as ¢ — oo one has

u(t,z) <1+ o(t) as t — oo uniformly for ||z|| > e(¢). (5)

As mentioned above we aim at understanding the location of the transition
layer for the solution of —.
Our first results deal with the case where the rate of convergence I' decreases
to 0 sufficiently fast. This assumption will be formalized as the condition I' €
L'(0,00). In this context, our first result reads as

Theorem 1.2 In addition to Assumption [1.1] let us furthermore assume that
I' € L'(0,00) Let us consider the shift function &(t) := c*t — Y21nt with

¢* = 2,/F'(0). Then the solution u = u(t,z) of (1)-@) satisfies that for each

e > 0 small enough, for each ¢ € (0,c*), there exists he > 0 large enough such
that for all large enough time:

1—-e< inf u(t,z) <1+,
ct<[la)| <E) —he
and

sup  u(t,x) <e.
lzl|=€(t)+he



The above result state that when I' € L! then the transition zone is uniformly
bounded and located at the radius r = £(t) + O(1) for all large time.

Before stating our next result, related to the asymptotic behaviour of the solu-
tion, let us introduce for each direction e € S¥~!, the unit sphere in RV, the
quantity m(t; e) defined for all large enough time by

1
m(t;e)—sup{r>0: u(t,re)—2}. (6)
Note that due to Theorem [[.2] one has
m(t;e) = &(t) + O(1) as t — oo, uniformly with respect to e € SV 1.

In order to state our next convergence result, we introduce for each K > 0,
each speed ¢ > 0 and each direction e € SV~! the time dependent cylinder
Q! (K, ¢, e) defined by

Q (K,c,e)={zeRY: z-e>ctand |z — (z-e)e| < K}.

Let us also introduce the function U, the unique critical travelling wave associ-
ated to normalized by U(0) = %, that is the unique solution of the problem

U'(z)+cU'(2)+ F(U(2)) =0,
U'(z) <0, Vz € R, (7)
U(—o0) =1, U(occ) =0 and U(0) = 1.

Using the above notations our next result reads as:

Theorem 1.3 Let Assumption (1.1) be satisfied and assume furthermore that
I' € L'(0,00) and F'(1) < 0. Let u = u(t,x) be the solution of (I)-([). Then
for each ¢ € (0,c¢*), for each K > 0 the following convergence holds true:

lim  sup |u(t,z) —U(xz-e—m(t;e))| =0,
t—o0 mEQf‘(K,c,e)
eGS]\/—I

wherein the function U is defined in .

As a direct corollary of the above result, and more precisely using the uniformity
with respect to the direction, one derives the following convergence property:

Corollary 1.4 Under the assumptions of Theorem the solution u of —
satisfies for each ¢ € (0,c*):

u(t,z)—U <||:17| —m (t; I;J)‘ = 0.

Here the function U is defined in .

lim sup
E700 2| >ct




In order to study the influence of the rate of convergence I' = T'(||z||) of
the nonlinear term G(z, u) toward the homogeneous medium F(u) and to indi-
cate that our results are somehow sharp, we consider the following example of
asymptotically homogeneous Fisher-KPP equation

Au
I e (8)

{ut — Au = G(z,u) with G(z,u) = F(u) —
(0, z) = up(x).

Here the initial datum wug satisfies while A € R is some given constant.
Instead of assuming that function F' satisfies the strong KPP assumption (see
Assumption (ii — b)) we shall assume that it only satisfies the usual KPP
assumption, that reads as

Assumption 1.5 We assume that function F : Rt — R is of the class C? and
satisfies:

F(0) = F(1) =0,
F(u) >0, Yu € (0,1) and F(u) <0, Yu > 1,
F(u) < F'(0)u, Yu >0 and F'(1) < 0.

!

In this example one has G(x,u) — F(u) as ||z|| = oo locally uniformly and the
convergence rate is given by I'(r) = 1j‘rr ¢ L'(0,00) as soon as A # 0. Our next
result is concerned with the location of the transition zone for . We shall
show that it depends on A through a logarithmic perturbation of the location
of homogeneous Fisher-KPP case (3]) (corresponding to the case A = 0).

The choice of the perturbation term I' is in some sense a limit case. It is

motivated by the fact that [j I'(s)ds ~ Alnr for large radius so that when

looking at r = ¢*t for large time then foc*t T'(s)ds is of the same order as the
expected logarithmic shift. More general non-integrable perturbation terms can
also be considered, such as I'(r) ~ ﬁ for some a € (0,1). In such a case, the

expected additional shift is of order kt'~“ for some constant k& € R. Since such
a shift is rather large as time goes to infinity, several arguments used in this
work need to be modified and such a problem remains open for the moment.

In order to discuss the large time behaviour of , as above, we introduce
the directional propagating radius associated to the level line u = % defined as
in @ for the solution of . Then the precise result we shall show in this work
reads as:

Theorem 1.6 Let Assumption be satisfied. Let A > 0 be given. Let u =
u(t,x) be the solution of (8). Then one has:

2) N +2
@p e

as time is large enough and uniformly with respect to the direction e € SN™1.
Moreover for each ¢ € (0,¢*), for each K > 0 the following convergence holds

m(t;e) = c*t—( )lnt—l—O(l),



true:
lim sup |u(t,x) —U(z-e—m(te))| =0,
t—00 wEQt(K,c,e)
GGSN_l

wherein the function U is defined in .

Let us also mention that the above result applies in particular in the homoge-
neous setting, namely A = 0. As already mentioned above, in the homogeneous
case, the localization of the transition zone (see Theorem has been de-
rived by Géartner using probabilistic methods. Here this localisation result as
well as the convergence result hold for the homogeneous Fisher-KPP equation.
Keeping this in mind as well as (4]) one obtains the following corollary for the
homogeneous Fisher-KPP equation:

Corollary 1.7 Under Assumption[1.5, let u = u(t,x) denotes the solution of
13) equipped with a initial datum wo satisfying . Then, for each a > 0, the
following convergence holds true:

wtte) = (lel = mcer (1 |||>)‘ o,

wherein U is defined in , Furthermore the following asymptotic holds true
uniformly with respect to the direction:

lim sup
E700 |z >a

N +2
mgpp (t;e) = 't — %lnt +0(1).
c

The proof of the above results are based on some comparison of the solution
together with the linear equation with Dirichlet boundary condition

v —Av=F'(0)v, t>0, ||z > X(¢),
v(t,x) =0, t > 0 and ||z|| = X (¢),

where X (t) is a suitable moving frame. This approach has been recently devel-
oped by Hamel et al in [I8] to study Fisher-KPP equation in the one-dimensional
homogeneous setting and in [19] in one-dimensional periodic medium. Note that
such a comparison was also observed and used by Géartner [I6] in a probabilistic
context. Explained in a different way, the formal computations provided by
Ebert et al [I1] are also based on such an idea. We also mention the recent
work of Nolen et al [28] where the authors studied the influence of time varying
diffusivity of the location of the front using some of these ideas.

This manuscript is organized as follows: Section 2 is devoted to the derivation
of suitable estimates for a class of linear problems in some moving frame located
at X (t) = ¢*t — §Int. These estimates are then used in Section 3 to control the
solution of around the transition zone and complete the proof of Theorem
[[:2] Theorem [I.3]is proved in Section 4 while Section 5 is devoted to the proof
of Theorem [L.Gl



2 Preliminary

This preliminary section is devoted to the derivation of suitable lower and upper
estimates for the solution of a linear diffusion equation posed in some particular
moving domain. Let ¢ > 0,7 >0, d > 0 and A € R be given. Consider T" > 0
large enough such that the map

() == ctféln#, 9)

is non-decreasing from [0, 00) into itself. Note that such a condition can be
re-written as % <1

The aim of this section is to derive accurate lower and upper estimate for
the following linear problem:

{vt:vrr—i-lvr_lvr—&—(f—l—lir)v,t>0,7°>§(t)+?, (10)

V(t, E() +T) =0, t > 0

supplemented together with some initial datum vy, a non-negative, non-trivial
and compactly supported function.
Our first estimate is concerned with the following lower bound:

Lemma 2.1 [Lower estimate] Let ro > T be given. Let vy : [F,00) — R be a
non-negative, non-trivial and compactly supported initial datum. Let v = v(t,r)
be the solution of associated to the initial datum vo. Then there exist
0> 0, t, > 0 large enough, v > 0 and § > 0 such that for all t > t, and

r e [7"0 +£(1),6(t) + Q\/ﬂ :

N+2

v(t,r) > ’yt%+%_ > (r—ro—&(t) e 2r—¢®) [1 — ﬂt‘é} .

In particular when 6 = 0 (see @) and A = 0, one derives the following corollary:

Corollary 2.2 Assume that § =0 and A = 0. Let ro > 7 be given. Under the
same condition as in Lemma there exist o > 0, t, > 0 large enough, v > 0
and B > 0 such that for allt > t, and r € [ro +ct,ct + g\/ﬂ :

N2
2

’U(t,?“) >yt (’I“ — 1o — ct) e 5(r—ct) [1 - ﬁt_%:| .

We now state some upper estimate that will be used in the sequel.
Lemma 2.3 [Upper estimate] The following upper estimates holds true:

(i) There exists 7o > 0 large enough depending on N, X\ and c such that
for each initial datum vg : [F,00) — RT, a non-negative, non-trivial and
compactly supported initial function, for each ¥ > 7o, for each o > 0 there
exist t > 0 large enough and some constants «, 8 > 0 such that for each
t>tandr e [F+£(t),E(1) + oV

A_N42
c

ST g) e 80O [14 4]

v(t,r) < at® T



(ii) If § = 0 and if in addition vy is smooth enough (at least C?) then for
each T > 0 large enough (depending only on N and c), there exists some
constant v > 0 such that for allt >0 and r > ct +7 one has:

A_N+42
c 2,

v(t,r) <y(t+1)

The proofs of the above results are based on self similar change of variables.
Before proving these results, we shall first recall some functional framework and
basic properties of the linear differential operator Lo = ¢” + 4¢’ + ¢ that will
be used in the sequel.

2.1 Functional framework

Let us introduce the weight function p : Rt — R defined by

p(y) = exp (f) ;

as well as the weighted spaces
H = L/Q) ={pe L*(0,00;R) : /pyp € LQ(O,OO;R)},
endowed with the usual norm denoted by ||.||2,, and defined by

lellz.p = VPPl L2(0,00i), Voo € H.

Note that it is a Hilbert space endowed with the usual inner product

oo
wo), = [ sy, o) € 1
0
We also introduce for each integer m > 1 the weighted Sobolev space

_ . . k 2 —
H' = {u e H"(0,00:R) : ul™) € L2(0,00), Vk =0,..,m}.

Next let us consider the linear operator £ : D(L) C H — H defined by

D(£) = H2 N HY(0, 001 R) and Lo = p~ (o) +0 = ¢ + 2/ + 5.

Then the following lemma holds true:

Lemma 2.4 The linear operator L : D(L) C H — H satisfies the following
properties:

(a) It generates a strongly continuous analytic, compact and positive semi-
group on H.



(b)

(d)

(¢)

The operator —L is a self adjoint operator with the null space generated
by the simple eigenvector éy € D(L) defined by

~ 1 . 2
éy) = ——eo(y), y = 0, with eo(y) = ye~ 7, (11)
lleoll2,p

that is €y = (2ﬁ)_1/2 €o-
The quadratic form associated to —L denoted by Q : H}(0, 00) QH; — RT
and defined by

o) - | T o) [l9 W) — ¢(w)] dy.
=/OOO U(p”%)/(y)

Qp) = llell3, Ve € (@)

For each ¢ € H} N H(0,00) one has

satisfies

o] =1 [ stowetdn < o) + Il

The linear operator Ls defined as the part of L in Hy := <eo>l, that is

D(Ls)={peD(L) Ly < H},
‘CSSO = E@a VSO € D(‘Cs)v

enjoys the maximal parabolic regularity, that is that for each p € (1,00)
there exists some constant M, > 0 such that for each f € L?(0, 00; Hy):

The following estimates hold true for each ¢ € D (L):

t
/ e(tl)ESf(l)le < Myl mertt s ¥ > 0.
0 lep((),oo;Hs)ﬂLp(07OC;D([:S))

/Ooo p(W)y° o (y)dy <16 (I = L) ¢, ),
€' (l2p < AT = L), 0),,

and setting ¢ = p'/%¢

1
191l 22(0.00) < 1€ ll2.p and [0 120,00 < 1T = £) 23,0+ S 19113, (14)

10



Remark 2.5 Note that, due to Gagliardo-Nirenberg inequality, and ,
there exists some constant C' > 0 such that for each ¢ € D (Ls) one has

/ 3/4 1/4
1726l + (20 | < -0 N1

As a consequence one obtains using usual results on fractional powers (see Henry
[20] and Pazy [30]) that for each B € (2,1) there exists some constant Cg > 0
such that

H(Pl/%@)/HOO <Cp H(iﬁs)ﬁsz,p’ Vo e D ((7£S)B) . (15)

Proof. The proof of the above lemma (a) — (¢) is classical. We refer for instance
to Kavian [22] and Escobedo and Kavian [I2] where the authors studied a similar
operator on the whole space and to Hamel et al [18] for details for this operator
on the half line with Dirichlet boundary condition.

The proof of (d) follows from the usual maximal parabolic regularity. We
refer to Amann [I], Hieber and Priiss [21], Priiss [31] and the references therein
for results on maximal parabolic regularity.

It remains to prove (e). Note that the two estimates in follow from the
definition as well as the alternated formulation of Q in . Next follows
from the weighted Sobolev estimates proved by Escobedo and Kavian in [I2]
and Kavian in [22]. We would like to mention that such estimates have been
proved for the operator on the whole space. In the sequel we mimic this proof
in order to check that similar estimates hold for the operator £ on the half line
with Dirichlet boundary condition. Let ¢ € D(L) be given. Set 1) = p'/2¢ and
note that one has ' — ¢ = p/2¢’. Hence one gets:

[e%) [e%) 2 oo
[ olePay= [ Y] ay - [T hwvran
0 0 16 0o 2
However one has - L oo
y / _ _ 2
| yuvay=—5 [ tan

oo [e's] 1 y2
| oera= [ [|w’|2+¢2+w2}dy.
A o 1Y 16

This completes the first estimate in . Next observe that 1" satisfies the
equation

Hence one gets

no__ 1/2 _ 1 ny
Pr=p/7(L I)@+(4+16>w-

Multiplying this equation by " and integrating over (0, 00) yields

> "2 __ > n.1/2 _ _ > } /12 972 /12 i/oo 2
[Twe= [Ture-ne- [T (e we) v g [T
]

Hence using Young inequality, the second estimate in follows.

11



Remark 2.6 Note that o (Ls) < —1 (here o denotes the spectral bound) so that
using Theorem 6.13 p.74 in Pazy [30], for each § > 0, a € [0,1] there exists
some constant M, (0) > 0 such that

[(—L£4)* % < Mo (8)t~e= (=9t vt > 0.

L(H.)

In the sequel, for each o € (0,1] we shall denote H* := D ((—Ls)") that is a
Banach space endowed with the usual graph norm defined by

lplle = I(=Ls)" @ll, Vo € HY.

2.2 Proof of Lemma 2.1]

In this subsection we will prove Lemma In order to prove this result, we
follow some argument developed in [19] and we define the new time variable 7
by ¢ = £(t) and consider the non-decreasing map h : [0,00) — [0,00) defined
by

t = h(7).
Note that one has h'(7) = @@ so that
s\ !
1§h’(7)§(lcT) , Vr > 0.
Moreover one has
L _ 1 —w(r) with w(r) = L (16)
() c(h(t)+T)
Note that for some constants K+ > 0 one has:
SK(1+T) ' <w(r) <SKT(r+T)7%, vr>0. (17)

Using this new time variable, namely 7, the function (7, r) := v(t,r) satisfies
the following parabolic problem:

h/%T)fJT:f)M—F#ﬂr—F (%—!—ﬁ)f), >0, r>cr+T,
O(ryer+7)=0, 7 >0, (18)
0(0,7) = vo(r), r > T

<

Next we set o(7,7) = e~ 2 """ a(7)w(r, r) wherein the function « is defined as
a solution of the equation

o' (7) _ g(h/(T) — 1) with «(0) = 1.

Note that simple computation ensures that

a(r) = Y (1 + 0 <T7%)> as T — 00.

12



Furthermore the function w satisfies the following parabolic equation
1
(r T
w(rt,F+er)=0, 7>0,
0,7

G = w,, + [ —c]wr—i—(lir—%N;l)w, r>cer 47

=

w ) =wo(r), r >7,

where wy is a non-trivial, non-negative and compactly supported function. Note
that one has w(r,r) > 0 for all 7 > 0 and r > c7 + T

Now we fix 79 > 7 and we consider the map w(r,r) = w(r,ro +r + ¢7) so
that @(,0) > 0 for all 7 > 0 and it satisfies for all 7 > 0 and r > 0:

N -1
r+1rg+cCT

A c N-1
1+r+ro4+ct 2r+4+ro+ecr

H——w(ﬂ]wfzzwmrk[ -+au@ﬁ]wr+{

This problem is supplemented together with the conditions

{QI}(T, 0) = w(r,r9 +c1) > 0, V7 > 0, (19)

w(0,7r) = w(0,ro + 1), ¥Yr > 0.

Now in order to prove Lemma [2.1| we shall make use of self-similar variables.
Let us introduce t; > 0 such that r¢ = ct; and let us consider the new variables
T+

y=r(t+ tl)_1/2 and s = In o (20)
1

as well as the map w(s,y) = w(r,r). Then the function w(s,y) satisfies for all
s > 0 and y > 0 the following problem:

[N

LN

1= () [0~ i) =t + et [ 22D ) o,

n Ar+t) c(N-1)(r+t) N
1+r4+rg+er 2 r+4+rg+ecr ’

Next, note that one has

E(Nil)(Tthl):N71—(1(7',7")Witha(r,r):Nil !

2 r4+rgtecr 2 2 r4+rg4ecr’
while
A t A A 1
& = — —a(r,r) with a(r,r) := —i.
l+r—+ro+ecr c cl4+r+rog+cr

Py N+1

Hence the function V' = V (s, y) defined by w(s,y) = (273 )SV(s,y) satisfies
the following equation:

5V,| = Ve + V4 0(m0)Vy + e(r )V,

1 w(@)] [Va - §

13



wherein we have set

bhw%:ﬁ+hfﬂ[rfxliﬁ+adﬂy
dnmzaﬁmy—anw+[2—(N;1qwuy

Recalling function V satisfies:
V(s,0) > 0 and V(0,y) = wo (ro n tl/Qy) .
Now note that one has
a(t,r) >0, Y7 >0, r > 0.

Hence, since V(s,y) > 0 and 0 < max [O, L;l) - %)} w(t) < K(t+t1)™1, vr >
0 for some given constant K > 0 (see ([17)), function V = V(s,y) satisfies for
all s > 0 and y > 0, the following differential inequality:

Y -
MW@@%GwU”F@ZW}V%Vbﬁmww[dﬂﬂ+T+h}V2&
We are now looking for a sub-solution of the form

V(s,y) = eoly) + fe™*/? [12e0(y) — e1(y)].
Here e is defined in and e is defined by
er(y) =y’e” T, Vy > 0. (21)

Parameter $ > 0 will be chosen large enough using the following computational
lemma.

Lemma 2.7 There exist § > 0, 0 > 0 and so > 0 such that the function
V =V(s,y) satisfies

L [K] (5724) <0, Vs> sg, Vy c [O’ QB%] .

Before proving this computational lemma, let us complete the proof of Lemma
2] To complete the proof of this lemma, let us notice that one has

263 s s
e TV (s, 965) =0 [65 + 125 — Bgzes] — —00 as s — 00.
Since V(s,0) = 0 for all s > 0, the parabolic comparison principle applies and
ensures that there exists some constant v > 0 small enough and s; > sg large

enough such that

YV (s, y) < V(s,y), ¥s>s1 Vye [0, ges/z} )

14



This completes the proof of Lemma recalling and coming back to the

original function.
Now it remains to complete the proof of Lemma [2.7]
Proof of Lemma [2.7.  To prove this lemma we aim at finding 8 > 0 large

enough, so > 0 large enough and ¢ > 0 such that L [V] < 0 on the set Qs
defined by

Q(s0,0) = {(S,y) ERT xRY: s> s, y < 963/2}
To do so, note that one has:

LIV) (5,5) = (1~ w(r)) e [1260(y) — ea(v)]

+w(r)3 [eh(y) + Be (12€5(y) — ¢ (1))]

+ B8 Ler —b(r, ) [eg + BeF (12¢ — e))]

+la ) + -2
aT,?" T+t1

] [eo + Be 2 (12¢9 — e1)].
Recalling definition and , it is easy to check that
Le; = 6eg — e;. (22)

Using this formula one obtains that

s o2 31 N —1)e* 2
ew4qu&w——ﬂi—¢f[f«;)e+wﬁMﬂ]P—g}
tiye? + ctie®
w(r
+ %ﬂ [12y - yg}
AN Y : y*
+ efw(T)§ [1 -5 + Be” 2 (12 —9y% + 2>}
1 N-1 s 4
—tze’ [1 ( - ) + COJ(T)‘| [56_2 (12 —9y% + y)}
tiyez + ctef 2
1
s A 1+t2ez s
teb | e e [y e (125 )]
Cl1+tfesy+ro+ctie’ T+h

Next, recalling and , there exist some constants w® > 0 such that
Sw e <w(r) <wte ™, V¥s>0.
Hence there exists some constant C' > 0 independent of s, y and 8 such that

[ (N —1)e?

1 s
tiye2 + ctyes

3

ese’ T LIV](s,y) < - BL- —t

o=

+ cow™ | + Cy?

+ (14 B)Ce 3y + fCe*y® + (14 B)Ce™ 242,

15



Now let us choose B > 0 large enough such that

6

V[V = 1)es
CWN=De L sl rer< Bt wso s>

3
y 1
L ey
t{yez + ct1e®

Note that when 6 > 0 the existence of such 5 > 0 is obvious since dw™ > 0.
When ¢ = 0 then the inequality becomes

31 (N —1)e*
—ﬁ%—tf;(si)+0y < - /8 B
tiyez + ctef

Then the second term allows to find such a 8 > 0 large enough so that the
inequality holds true uniformly for s > 0 and y € [0,1]. For y > 1 in order to
satisfy this inequality it is sufficient to have

y3 2 B 3 1
—ﬁ3+0y S—Zy -8, Vy>1,

that holds true for 5 > 0 large enough.
Next with such a choice of 3, one obtains:

42 3 .
efe TL[V](s,y) < — ﬂyz — B + (14 B)Ce 3 (y +y?) + BCe*y°.

Now note that there exists p > 0 such that for all s > 0:
Y’ -
*Bg + BCe%y® <0, Yy € [0, 965] .

In addition, there exists sg > 0 large enough such that for all y > 0 and s > sq:

3
(L4 B)0e 3y +y?) < 85 + 87"

As a consequence of the above computations we obtain that there exist g > 0
large enough, ¢ > 0 and sg > 0 such that the function V (s, y) satisfies

L[K] (Say) < 07 Vs > So, Y € [07 Qe%] 3

This completes the proof of Lemma [2.7] [

2.3 Proof of Lemma 2.3

The aim of this section is to provide an upper estimate for the solutlon of .
as stated in Lemma . Let € € (0 ) be given. Let us fix t; = ¢~ '7 where 7
is fixed large enough such that

N—-1 |X] 4
—+ — 1 23
{ 2 " C}cti/2< ’ 23)

16



and

(N-1) 8 {N—l |)\|}<s 4 [N +|A|}

P < £ and
22 2 | 2 o s e

m

> @

2

Similarly to the proof of the lower estimate, let us define the new time
variable 7 by er = £(t) and consider the non-decreasing map h : [0,00) — [0, 00)
defined by ¢ = h(7). Then the function v(r,7) := v(t, r) satisfies:

ﬁvT:vw—k#vr { —l—lj\ﬂ} v, t>0,7r>cT+7
v(r,et+7)=0,7>0 (25)

v(0,7) = vo(r) r > 7.

Next we introduce the new function w = w(r, ) defined by v(7,7) = e~ 2"~ a(1)w(r,7)
and wherein function a > 0 satisfies

o(r) o, _
alr) ~ ?(h (1) —1), a(0) = 1.

Similarly as above the function « satisfies
a(r) = % (1 +0 <T7%)> as T — 00.

Hence the function w satisfies the following equation

h,}T)w = Wy + [ | w, + [ﬁ;r — %N;l} w, T >cT+ T,
w(r,T+ecr)=0, 7 >0,
w(0,7r) = wo(r), r>T7.

We now introduce @(7,r) = w(r,7 + 7 + c7). Recalling (16), the function @
satisfies for all 7 > 0 and r > 0 the following parabolic equation

- s N -1 N A c N-1
(1 —w(m)Wr = Wppt | ————— + aw(7) | W+ — - w,
r4+r4+cr l1+r+r+cr 2r+r+4cr

supplemented together with
w(7,0) =0 and w(0,r) = w(0,7+ 7).
Now in order to prove Lemma we shall make use of self-similar variables by
considering the new variables
T+t

y=r(t+t)"/? and s =In — (26)
1

and the map V = V(s,y) defined by w(r,r) = e(%f%)sV(s,y). Here recall
that t; = ¢~!7. Then the function V (s, y) satisfies the following equation

(1—G(s)Vs — LV = @(s)% + B(s,y)| V, + C(s, )V (27)

17



Here, recalling (26), we have set &(s) = w(7),

N-—-1 -
B(s,y) = (%/2)4‘0“(5) )
y+cty “es/?
and
N-1 y A 1t yems2 A (N+1)T .
y+cty7es/2 €14t ye 5/2 + ctyes ¢

Now in order to prove Lemma we shall study by using the functional
framework introduced in Subsection We first derive a uniform L2 —estimate
for the function V. More particularly we claim that

Claim 2.8 There exists some constant K > 0 such that
IV (s, )2, < K, Vs>0.
Throughout this proof and in the sequel of the proof of Lemma we shall
use K to denote any constant depending on the parameters of the system and
on function vy (or V), that may change from line to line.
To prove this claim, we take the inner product of with V', that yields
~ d w(s) (N-1) V2
(1= 35 VB, + Qs = [ ol |- 250 + )y
2ds 2.p 0 2 (y+ cti/2es/2)2 2
00 2
] [A y } 14
— = = +B — | d
/0 ply)5 |W(s)5 + Bls,y) ( 5 ) y

n / " py)Cs,y)Vdy.

oo

This leads us to the following identity

(1- CTJ(S))%IIV(S, M3, + V(s )] <Ke 2|V (s, )3,

N—1  [N]e /2 [ )
——+ — | = v dy.
T ] S [ v

Next Lemma (c) yields that for some constant K one has

(N— 1 |)\|> 4e=5/?
- ——+=

2 c Ct}/Q

(1—@(5))2%9”‘/(5, 3o+ QV(s,.)] < Ke */?|V(s,.)]3,.

Recalling the choice of ¢; in , one obtains that

—t/2

VI, < VO, o0 (K [T Samsar) vszo. (9
0

1-a(t)

18



This completes the proof of Claim
Using this uniform Li—bound we shall complete the proof of Lemma (7).
To do so, we decompose function V' as

V(s,.) = p(s)éo + V(s,.) with V(s,.) € (é)*, Vs > 0. (29)

Note that due to , one knows that there exists some constant K > such
that
Ip(s)| < K for all s > 0. (30)

On the other hand function V satisfies:
(1—a() [ ()6 + Va] — £V = [2(0)Y + Bls,w)] [plo)e’ + V3] o
+Cs,) [pls)é + V|

Taking the inner product of the above equation with V' yields
~ d 2 ~ o o ~ y PR ~ o~
(L =365 lIVIB,+2 V()] = / pv) [2()% + Bls,y)| [p(9)&'V + 7V, | dy

+ [ O @y + 7] ay
’ (32)

Note that due to , Hoélder inequality and integration by parts, one obtains

| ot o)} + Bs.w)] [porv + 77 dy

o0 -
— [ oty [ Y B(s,y)] pls)a' Vy
0
> y V|2
Y B } Pl
/O py 4 s)5 Y+ B(s,y) 5 %Y
> (N -1) V|2
/ oy B 1/2 20 2 dy
0 (y+ct1 es/?)
. . —e/2 ~ - (N —=1)e*
<K [2)]1- &' Cllop + €6 2] 1Vl + 5z — VI3,
One the other hand, Holder inequality yields
| pw)Css) [po)@7 + 1VF] dy <K [5(6) Gl + €21 @0z 1V 2
0

N A —3/2 oo B
+[2+|Cq 1/2/ p()ylV (s, y)[*dy.
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In addition, we infer from Lemma (c) that

/0 p(y)C(s,y) [PV + V2] dy < K [@(3)l16o 20 + €21 @ (o] 1V

N -1 +m e5/2
2 ¢ ct}/2

10 [V(s.)] + 81V (s, B,

As a consequence, by setting

(N—1) 8 [N—=1 [}
22 T gr | e Te ) MmNt =
¢ty

M(t;) = A {N_lJrA'],

cti/Q 2 c

we infer from and the two above estimates that

(1 - 0())5a IV

3,+Q[V(s, )]
‘ . . (33)
< Ke~* V(5. )l + M(t)e IV IE,, + N(t)e=/2Q [7(s,.)]

Recalling the choice of ¢; in and that V(s,.) € (é)~* for all s > 0, one
obtains using Lemma (b), and Young inequality that

~ d = 3 ~ _s
(1= 0 5 VB, + (1= See /) IV IR, < Ke .
One deduces from the above inequality that
IV (s,.)||l2,, < Ke™1 for all s large enough. (34)

Now applying parabolic estimates to yields that for each p > 0, there exists
some constant K, > 0 such that

[V, (s,9)| < K,e~ 1 for all s large enough and y € [0, pl.
Therefore since V(s,0) = 0 then
IV (s,y)| < K,ye™ 7 for all s large enough and y € [0, p].
Coming back to the original function v = v(¢,r), this completes the proof of

Lemma (7).

We now turn to the proof of (i7) with § = 0. Let us first notice that from
the above estimate and integrating over s € [0,00) ensures that

/O Q [f/(s, .)] ds < K.

Recalling the definition of @ in Lemma implies that

[ 1100018, +1- 7018, ] s < & (35)
0
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Now let us notice that when 6 = 0 then @(s) = 0 and the equation for V
re-writes as

V. — LV = B(s,y)V, + C(s,)V, (36)
with
~ (N —1)
B(s,y) = — /2 .,
y + cty “es/?
~ N -1 Y A 1+ t}/de_s/z
C(s,y) =

2 y—l—ct}/zeS/Q c 1—|—t%/2ye—s/2+ctles.

Introducing the projector Il; € L(H) on Hy = éoF defined by
s = ¢ — (g, €0) , €0,

and using the constant variation formula, one obtains that V(s,.) = IL,V (s, .)
satisfies for all s > sg >0

V(s,.):6(5750)55‘7(50,.)4—/ eC=ETL | B(s', )V, (s',.) + C(s', )V (s, )| ds'.

S

' (37)
Here {e'“} _  C L(H,) denotes the analytic semigroup generated by the linear
operator L,.
Now we investigate some first properties of the function f defined by

f(s) = E(Sv )Vy(sa ) + 6(53 ')V(Sﬂ )
Recalling , note that one has
f(s) = fi(s) + fa(s),

wherein we have set

fi(s) = p(s) | B(s, )& + C(s, )& |

fa(s) = B(s, )V, (s,.) + C(s, )V (s,.).
Hence due to one obtains
1£1(8)]l2,p < Ke™/2, ¥s >0,

while i ]
1Fa(5)ll2p < Ko [Ty (5. Ml + 197 (5, Vg + /2]

Next due to , note that s — e*/2fy(s) € L?(0,00; H) As a consequence,
one may apply maximal regularity stated in Lemma (d) to to conclude
(recalling that V(0,.) € D(Ls) because the initial datum is assumed to smooth
enough) that

V e L2(0,00; D (L)) N WH2 (0, 00; Hy) .
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- 1
Hence, usual interpolation yields V e L* (0, oQ; Hﬁ). As a consequence, using

one gets that the map s — e%/2fy(s) € L*(0,00; H). Next we set g(s) =
e*/?|| f2(s)|| with g € L*(0,00;R"). Now let a € (0,3) be a given fractional
power. Then using (37) with sg = 0 and the properties of fractional powers
recalled in Lemma nd Remark one obtains that for some ¢ € (O7 %)

~(1-8)(s—s")

|V (s, e < Ke (1=9s 4 K/ ¢ o) es'/? [1+g(s")]ds'. (38)
) —

Using Young inequality one gets
s e—(1—6+%)l

1V (s, )| e SKe—(l—é)s_’_Ke_s/Q/
0

, 3/4
s 71(176)(575 )
e 3 _og’
/ - ¢ ﬁ’ds'] llgll -
o

Hence we derive that for each power a € (07 %) there exists some constant
K, > 0 such that

la

+ K

IV (s, )re < Kae /2, ¥s > 0.
Due to the above estimates and one obtains with o = % that

| f2(8)||2,p < Ke /2, ¥s > 0.

As a consequence one knows that g € L*°(0, co; R) and by using with g €
L> (0,00; R"), one obtains that for each o € (0,1) there exists some constant
K, > 0 such that

1V (s, )||me < Koe™®/2, ¥s >0,

Finally with any o € (%, 1) and estimate , one concludes that
1012V (5, Ylwre < Ke™*/2, ¥s > 0.
As a consequence, one has obtained that for each s > 0 and y > 0:
V(s,y) < Kéo(y) + Ke™*2yp~(y) < Ky.

This completes the proof of Lemma (i) by coming back to the original
variables and function.

3 Proof of Theorem 1.2

This section is devoted to the proof of Theorem [I.2] Throughout this section
the condition I € L' (0, 00) is assumed.

We shall first study the asymptotic speed spread of the solution of . Then we
shall derive some lower and upper estimates for the solution in a moving frame
located at the radius r = £(t) := ¢*t — NC+ Int, to finally conclude to the proof
of Theorem
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3.1 Asymptotic speed of spread

In this section we shall investigate the asymptotic speed of spread for an asymp-
totically homogeneous Fisher-KPP equation. Let v : [0,00) — R be a function
such that v(r) — 0 as r — oco. Consider the problem

ur — Au = F(u) +v(||z])u, t >0, z € RV,
u(0, ) = up(x).

Here function F satisfies that the usual KPP assumption (see Assumption [1.5)).
Then our inner spreading result reads as:

Lemma 3.1 Recalling that the initial datum ug satisfies , the solution u =
u(t,x) of the above problem satisfies for each 0 < ¢ < " < c*:
lim sup |1 —u(t,z)| = 0.
E=00 et |zl <ert
The proof of this result relies on standard arguments. We refer for instance
to [3] or [6]. We however give a sketch of the proof for the sake of completeness.
Proof. Let 0 < ¢ < ¢’ < ¢* be given. Let ¢ € [¢, ] be given. Let R > 0 be

given and consider the eigenvalue problem on the open ball Bg C R¥ of center
0 and radius R

—ApRr = pryr in Bg,
wr =0o0n 0BR and pr > 0 on Bg.

Recall first that pg > 0 and pg — 0 as R — oco. We normalize pr by pr(z) <
©r(0) = 1 and we extend it outside the ball by 0. Let e € S¥~! be a given
direction. Consider for some given n > 0 the map

u(t,z) =ne 2@~ Dpp(z — cte)

Next we compute on the set z — cte € By

C2 u
Ll = u, — Au—F (u) — A(Jalhu = u | S - £

w |G = =2+ (el

On the other hand one has u < ne% and there exists k > 0 such that

F(u)

F'(0) > "

> F'(0) — ku, Vu.

Hence one obtains

2
Ly <u CZ — F'(0) + mne”™? 4 pp + sup |’Y(7”)]] :

- r€lct—R,ct+R]

Since ¢’ < ¢* = 24/F'(0), ugr — 0 as R — oo and y(r) — 0 as r — oo, we can
adjust all the parameters in order to obtain that L[u] < 0 for all ¢ large enough.
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Still decreasing 7 if necessary, one obtains from the comparison principle that
there exists o > 0 large enough, R > 0 large enough, n > 0 small enough such
that for all t > tg, all z € RV, all e € S¥~! and all ¢ € [¢/, ”]:

u(t,z) > ne” 5@~ Dpp(x — cte).
Hence for all ¢ large enough, this yields the following lower estimate:

inf t > 0).
c'tsﬁgnsm"( @) 2 19 r(0)

The result follows by passing to the limit into the equation for u and recalling
that estimate holds true in this context. ]
We now derive an upper estimate for the spreading speed of

Lemma 3.2 Let u = u(t,z) be the solution of . 1t satisfies for each o > 0:

lim sup u(t,x) = 0.
P70 2| >er to Vi

Proof. Note that due to Assumption (#4) the function wu satisfies on the set

||| > ¢*t:
Liu](t,z) := us — Au—u[F'(0) + T(c*t)] < 0.

Let e € S¥~! be given. Consider, for some constant K > 0, the map
u(t,x) = KA(t)e™ T @) with B(t) = elo 19,
Then one has:
e T TOL (k) = K (8/(1) - BOT(') = 0.

Hence if we choose K > 0 sufficient large so that w(0,z) > ug(x) for all x € RV,
one gets from the comparison principle that for all ¢ > 0 and ||z|| > ¢*t:

U(t,l’) < Kefot F(c*s)dsef%(w-efc*t), Ve € SNfl.
This implies that for all ¢ and ||z|| > ¢*t:
u(t,z) < Kelo T(es)ds o= 5 (el —c"t)

The result follows. [}

3.2 Lower estimate

In this section we derive a lower estimate of the solution u = u(t, z) of . To
do so, let 7 € (0,1) be given. Consider a function f, : [0,1] = R of the class C*
such that

{ Fo(u) < w= F(u) Vu € (0,1] and f,(0) = F'(0), (39)

0 < fy(u) < £,(0), Yu € [0, and f, (n) = 0.
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Note that the nonlinear function u — u fn(u) satisfies the usual KPP assump-
tions. Then according to Aronson and Weinberger’s results [3], there exists a

unique (up to translation) travelling wave with minimal speed cj, := 2 fn(O) =
¢* associated to the modified non-linearity u ~ uf, (u). In the sequel we denote

by ﬁn this travelling wave, that is the unique non-increasing solution of the
problem

Uy(2) + ¢ TUp(2) + Ty(2) fy (Tn(2)) =0, 2 € R, @)
Uy (—00) =1, Uy(o0) = 0 and U, (0) = 2.

Using these notations, our first estimate reads as
Lemma 3.3 Let u = u(t,z) be the solution of (I). There exists 0 > 0 such
that for each n € (0,1) and each c € (0,c*), there exist h,) > 0 large enough and
ty > 0 large enough such that for all t > t, and ||z|| € [ct,c*t + oV/t]:

N +2
C*

u(t,z) > acﬁn <||:1:| —c't+ Int+ hn> .

Here we have set o, = exp (—1 [[°T(s)ds).

The proof of this lower estimate is based on the following claim coupled
together with the construction of a suitable sub-solution involving function U,,.
First we claim that:

Claim 3.4 There exists o > 0 such that function u = u(t,x), the solution of
(1), satisfies

o N+4L pc*ViE .
liminf ¢t72 e 2 inf u(t,z) > 0.
toe lall=e*t+ovE

Before proving this claim let us first complete the proof of Lemma [3.3
Proof of Lemma[3.3. As mentioned above, the proof of this result relies on the
construction of a suitable sub-solution involving U,. Since € (0, 1) is fixed, we
omit the dependence with respect to n during this proof. We also fix ¢ € (0, ¢*).
Let us first recall that there exists some constant o > 0 such that the following
asymptotic holds true:

*
c’z

lim S U(z+h) = ae~ 2", VheR. (41)
z—00 %
Let us fix ¢; > ¢ such that
N-—-1
N+2C*<01<C*- (42)

Next for each h € R define the function w” by

(N +2)

C

wh'(t,z) := B(t)U <|x|| —c't+ In(t) + h) ,
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wherein we have set
ﬂ(f) — e fot F(cs)ds.

Here recall that U is defined as the solution of . Note that due to Assump-
tion (ii) the function u satisfies on the set Q := {(t,z) : |z| > ct} the
following inequality:

Llu](t,z) = ut — Au — F(u) + ul'(ct) > 0.
Now let A > 0 be given. Then one has:

(N+2)

c*t

L[uw"] (t,z) =B ()U(Z) + (—c* +

_N-1
]

) BT (2) - BOT"(2)

BOUT'(2) + BT (2) - F (81)T(2)),

wherein we have set Z = ||z|| — ¢*t + (1\/%2) In(¢) + h. Next because of and
since /() + T(ct)B(t) = 0 and f(u) < u~'F(u), one obtains that

F(U) FBMU)

(N+2) N-1
c*t [l

)ﬁwD+U

Mﬂ*L@ﬂ(mwg<

Since u — u~!F(u) is decreasing and ((t) < 1 one obtains that

(N+2) N-1\~,
ct Tal ) vi2).

B L[] (2) < (

Recalling the definition of ¢; in ([42)), for each ||z|| > ¢t and all ¢ large enough

one has:
N+2 N-1_ N+2 N-1

ct 2] T et et

> 0.

As a consequence, since U < 0, we infer that
L [w"] (t,2) <0< LY(t, ),

for all ¢ large enough and ||z| > ¢;t.
Now due to the asymptotic speed of spread recalled in Lemma [3.1] and re-
calling that 0 < ¢ < ¢; < ¢*, one knows that

lim sup |1 —wu(tz)] =0. (43)
200 ct< el <ent
Hence since U is decreasing, w”
such that for all h € R

< n < 1 and there exists ¢t; > 0 large enough

sup w'(t,x) < inf  w(t,x), Vt>t;.

) —
llzl|=cit ct<||lz][<ert
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Now recalling as well as Claim there exists hg > 0 large enough such
that

inf, _ w(t,
lim inf o]l =ct-+ovi U (@)

n > 1,
£=00 SUD)|| || =c* 407 W (t,z)

uniformly with respect to h > hgy (indeed function U is non-increasing so is
function w”(t,z) with respect to h). This means there exists ¢ > t; large
enough such that for all t > # and = € RN such that ||z|| = ¢*t + v/t and all
h > hg:

u(t,z) > wh(t,z).

Finally, since U(z) — 0 as z — 00, let us choose h large enough such that
u(fz) > wh (f2) for all F < ||z]| < T+ oVE

Then the comparison principle applies and ensures that there exists ¢ > 0 large
enough such that for each t >t and each € RN with ¢t < lz|| < c*t+ g\/i:

u(t,2) = BT (|l — &) + ho) -

Here let us recall that £(t) = ¢*t — % Int. Once again let us recall that U< 7.
Hence becauseA of the lower estimate stated in Lemma follows, possibly
by increasing ¢ if necessary. [ |
To conclude this lower estimate it remains to prove Claim This proof
follows some ideas of [19].
Proof of Claim[3.4 To prove this claim we shall construct a suitable radially
symmetric sub-solution for u. Let ro > 7y be given large enough wherein 7y is
provided by Lemma with ¢ = ¢*. We shall construct such a sub-solution on
the set ||z|| > ¢*t 4+ ro and t > 0. To do so let us notice that there exists some

constant k > 0 such that

> F'(0) — ku, Yu € [0, M].

Hence because of Assumption (#t) the function u satisfies on the set ||z|| >
c*t+ rp:
ug — Au — u [F'(0) — ku — T'(c*t +79)] > 0.

Consider the map u(t,z) = wu(t + 1,2). Then it satisfies for all ¢ > 0 and
||| > ¢*t + 7o with 7o = 7o + ¢*:

L[@)(t,x) = us — Au—u |[F'(0) — v — f(t)} > 0.

Here we have set I'(t) = T'(¢*(t + 1) + 7). Let us chose a non-trivial radially
symmetric function vy > 0 smooth and compactly supported such that

u(0,2) = u(l,z) = vo([lx]]), Vil = ro.
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Then we look for a sub-solution of the parabolic operator L of the form
w(t,z) = a)u(t,r), r = ||z,
where v is a solution of the linear problem

*\ 2
N—1 c -
s = Vg + XL, + C0 > e*t o,

v(t,c*t+79) =0,
v(0,7) = vo(r), T > To.

Let us first notice that due to Lemma (49) there exists some constant v > 0

such that
~y

’U(t,’]") S m, V’r > c t+T().
Next, recalling that F’(0) = (C;)Z, one has
N -1 -
L[w] (t,z) =a'(t)v + « {vt — Vpp — ——— U — F/(O)U:| + ra(t)?v? + T(t)va(t)
r

<w [o/(t) +T(H)alt) + ryalt)2(1+t)~ —ﬂ .
Hence let us fix ap € (0,1) and consider the map

at) = e~ Jo POty with n(t) 