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This work is devoted to the study of travelling wave solutions
for some size structured model in population dynamics. The
population under consideration is also spatially structured and
has a nonlocal spatial reproduction. This phenomenon may model
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corresponding unspatially structured size structured models may
induce oscillating dynamics due to Hopf bifurcations, the aim of
this work is to prove the existence of point to sustained oscillating
solution travelling waves for the spatially structured problem.
From a biological view point, such solutions represent the spatial
invasion of some species with spatio-temporal patterns at the place
where the population is established.
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1. Introduction

We consider a population of plants that can invade a spatial area. Here the production of seeds
depends on the size of these plants. When they reach some maturity size, they are able to produce
some seeds that can disperse through the spatial domain and the population is able to invade the
empty spatial domain. To consider this phenomenon, we will use the following model⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, s, x)

∂t
+ ∂(g(s)u(t, s, x))

∂s
= −μ(s)u(t, s, x), for s � 0, and x ∈ R,

g(0)u(t,0, x) = (
I − d2�x

)−1

(
αh

( ∞∫
0

γ (θ)u(t, θ, ·)dθ

))
(x), for x ∈ R,

u(0, .,.) = u0 ∈ L1((0,∞), L1+(R)
)
.

(1.1)

The function u(t, s, x) represents the population density of certain plants with respect to the size s
and spatial position x at time t > 0, so if x1 � x2, and s1 � s2 the quantity

s2∫
s1

x2∫
x1

u(t, s, x)dx ds

denotes the number of plants with size s ∈ [s1, s2], spatial location x ∈ [x1, x2] and at time t > 0.
The term ∂(g(s)u(t,s,x))

∂s represents the average growth rate of individuals so that function g > 0 de-
scribes the growth velocity. Parameter d > 0 describes the dispersal of seeds around the position of
the individual by using a Gaussian distribution, while function μ ∈ L∞

loc,+([0,∞)) is the size-specific
natural death rate. Parameter α > 0 and function h describe the reproduction process while function
γ ∈ L∞+ (0,∞) represents the maturity of plants, that is the ability of the plants to reproduce.

When the initial distribution x → u0(s, x) is spatially uniform for almost every s � 0, the model
reduced to ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, s)

∂t
+ ∂(g(s)u(t, s))

∂s
= −μ(s)u(t, s), for s � 0,

g(0)u(t,0) = αh

( ∞∫
0

γ (s)u(t, s)ds

)
,

u(0, .) = u0 ∈ L1+
(
(0,∞),R

)
.

(1.2)

This problem has been recently studied by Magal and Ruan [19] (see also Chu, Ducrot, Magal and Ruan
[6] for an extension of this result). The authors prove that under some conditions, Hopf bifurcation
may occur around some positive equilibrium whenever α is large enough.
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The aim of this work is to study some qualitative properties of travelling wave solutions for prob-
lem (1.1) and more precisely we shall pay a particular attention of the behaviour of the connexion
around to the positive equilibrium. Indeed, in view of the oscillating behaviour of system (1.2) one
can expect that the wave solutions of (1.1) also exhibit some sustained oscillations around the posi-
tive equilibrium. Similarly to [6], we shall assume, through this work, that the map h : R → R is the
so-called Ricker’s birth function

h(s) = s exp(−s). (1.3)

We refer for instance to [25,26] for more details.
Under some assumptions on functions g and μ that will be explained in Section 2, the travelling

wave problem corresponding to (1.1) can be re-written as the following second order infinite delay
differential equation, that is: find a wave speed c > 0 and some bounded function u satisfying the
following equation

1

c2
u′′(t) = u(t) − αh

( ∞∫
0

γ (s)u(t − s)ds

)
, t ∈ R, (1.4)

supplemented with the conditions

u(t) � 0, ∀t ∈ R and sup
s∈R

u(s) < ∞,

lim
t→−∞ u(t) = 0, lim

t→∞
u(t) > 0. (1.5)

This kind of nonlocal elliptic equation has been widely studied by several authors. We may refer to
Ma [17,18], Trofimchuk et al. [32], Thieme and Zhao [29] (for some results on integral equations) and
the references cited therein. We may also mention a lot of interest for the nonlocal logistic equations
for which one may refer to Apreutesei et al. [1,2], Berestycki et al. [4] or Gourley [12].

More precise information have been obtained for some similar model than (1.4) with a single
delay, that reads

1

c2
u′′(t) = u′(t) + u(t) − αh

(
u(t − τ )

)
, t ∈ R.

We refer for instance to [10,11,13,17,18,27,28,30,38] for existence results of wave solutions. We also
refer to Trofimchuk et al. [31] (see also the references cited therein for other result for this kind of
equation with a single delay) where the authors prove the existence of point to sustained oscillating
solution connections.

The aim of this work is to study (1.4) with some infinite distributed delay and to show that,
under some conditions, this problem admits some point to sustained oscillating solution connection.
To reach this goal we shall specify function γ in order to reduce (1.4) to a system of delay differential
equations with a single delay. A convenient form will be the following:

Assumption 1.1. The function γ takes the form

γ (s) =
{

δ(s − τ )ne−μs if s � τ ,

0 if s < τ,
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wherein τ > 0, μ > 0, n ∈ N are some parameters while δ > 0 is a normalization parameter so that

∞∫
0

γ (s)ds = 1.

One may recall that this specific function has also been used in [6] in order to derive more precise
information on the behaviour of (1.2).

Under this assumption, the problem under consideration, namely (1.4) together with Assump-
tion 1.1 reduces to a system of delay differential equation with a single delay. More specifically we
shall concentrate on finding a real number c > 0 and a componentwized positive and bounded vector
valued function (φ,ψ0, . . . ,ψn) : R → R

n+2 satisfying the system of equations

1

c2
φ′′(t) = φ(t) − αh

(
ψn(t)

)
, t ∈ R,

ψ ′
j(t) = −μψ j(t) + μψ j−1(t), t ∈ R, j = 1, . . . ,n,

ψ ′
0(t) = −μψ0(t) + φ(t − τ ), t ∈ R,

lim
t→−∞

(
φ(t),ψ0(t), . . . ,ψn(t)

)= 0,

lim
t→∞

φ(t) > 0, lim
t→∞

ψk(t) > 0, k = 0, . . . ,n. (1.6)

Here c > 0 is an unknown parameter, α > 0, μ > 0 and n � 0 while function h is defined in (1.3). Let
us notice that up to change c and τ respectively by c

μ and μτ , one may assume that μ = 1 and we
shall consider the following system of equations

1

c2
φ′′(t) = φ(t) − αψn(t)eψn(t), t ∈ R,

ψ ′
j(t) = −ψ j(t) + ψ j−1(t), t ∈ R, j = 1, . . . ,n,

ψ ′
0(t) = −ψ0(t) + φ(t − τ ), t ∈ R,

lim
t→−∞

(
φ(t),ψ0(t), . . . ,ψn(t)

)= 0,

lim
t→∞

φ(t) > 0, lim
t→∞

ψk(t) > 0, k = 0, . . . ,n. (1.7)

While the existence of such solution can be found in the literature (see for instance [9,17,18,27]),
the behaviour of the wave solutions when t → ∞ remains unknown for a large class of parameters
α and τ . Let us also mention the recent work of Fang and Zhao that deals with uniqueness result of
non-monotone wave solutions. Let us first recall some known results on this problem (more detailed
results are recalled in Section 4.1 for the sake of completeness). When α ∈ (1, e2] then any solution
(φ,ψ1, . . . ,ψn) with a wave speed c > 0 of system (1.7) converges to some positive equilibrium point
when t → ∞. More complex situations may occur when α > e2. Here we summarize in the following
result some information on system (1.7).

Theorem 1.2. Let α > e2 be given such that

α3 exp

(
−α

e
− α2e− α

e

)
> lnα.
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Let n � 0 be given. For each τ > 0, let c∗(τ ) = c∗(α, τ ,n) > 0 denotes the minimal speed of system (1.7) (see
Theorem 4.5). Then the following hold true:

(i) Let τ > 0 be given. Let c > c∗(τ ) and (φ,ψ1, . . . ,ψn) be a solution of (1.7) that is non-eventually
monotone when t → ∞. Then the map t → φ(t) oscillates (damped or undamped oscillations) around
lnα. Moreover there exists t̂ ∈ R large enough such that for any t > t̂ the equation φ(s) = lnα with
s ∈ [t − τ , t] has at most two solutions.
As a consequence, if φ is a non-converging function when t → ∞ then φ exhibits some undamped oscil-
lations around lnα when t → ∞.

(ii) For each λ > 1 there exists τ ∗ = τ ∗(n,α,λ) > 0 such that for each τ > τ ∗ and each solution
(φ,ψ1, . . . ,ψn) of (1.7) with parameter τ and wave speed c > max(c∗(τ ), λ

τ
π√

lnα−2
), the map t → φ(t)

does not converge when t → ∞ and has undamped oscillations around the equilibrium lnα when t → ∞.
(iii) Assume that e < αe− α

e . Let τ > 0 be given. Let c > c∗(τ ) and (φ,ψ1, . . . ,ψn) be a solution of (1.7). Then
if φ does not converge when t → ∞ then the oscillations of function t → φ(t) are ultimately periodic
when t → ∞.

Remark 1.3. Let us notice that under the assumptions of (ii), it remains difficult to prove that the solu-
tions are non-converging for any admissible wave speed, that is for any c > c∗ . Indeed, for the model
under consideration, one can expect to have c∗(α, τ ,n) ∼ C(α,n)

τ when τ → ∞ for some constant
C(α,n). The comparison with the quantity π√

lnα−2
remains complicated. However, a more detailed

investigation of this situation seems to be possible due the recent work of Fang and Zhao in [9].
It will be studied in a forthcoming work.

Note now that the property that the equation φ(s) = lnα with s ∈ [t − τ , t] has at most two
solutions when t is large enough indicates that the oscillations of the waves are slow oscillations.

While the existence of solutions for system (1.7) and more generally for system (1.4) has been
developed in the literature (see for instance [17,18,27] we also refer to Diekmann [7] and Weinberger
[36] for a first use a sub and super solution pair to handle these existence problems), the existence of
non-converging solutions when t → ∞ remains to be a difficult question. One may refer to Dunbar [8]
and Huang [15] for some results in this direction. One may also mention that these works are based
on singular perturbation analysis (related to Fenichel theory in the above mentioned work of Dunbar
and on Fredholm property and implicit function theorem in the one of Huang). Finally let us mention
that recent results obtained by Fang and Zhao in [9] give some answers to this difficult question in
the general context of scalar integral equations by developing some properties of the spreading speed.

In this work, we would like to develop some tools based on the discrete Lyapunov functional
for cyclic feedback delay differential systems. This tool allows us to obtain some information on the
oscillating behaviour of the solution. The discrete Lyapunov functional was originally developed by
Mallet-Paret in [20] and then by Cao [5] and Arino [3] for scalar equations with single delay. (We also
refer to [24] for some results for ordinary differential equations.) The extension to the case of systems
with delay was done by Mallet-Paret and Sell in [22] with some consequences on Poincaré–Bendixon
theory given in [23]. However, this result does not directly applies for system (1.7) because of the
properties of function h in (1.3). This difficulty is overcome by looking at some maximal monotonic
properties of the solution. Finally after showing that the solutions remains in some region where the
discrete Lyapunov functional applies, we need to compare the oscillations of the solutions together
with the ones of the eigensolutions of the corresponding linearized equation around some positive
equilibrium. According to Mallet-Paret [21] (see also Hupkes and Verduyn Lunel in [16]), to apply
such a comparison, we need to overcome the difficulty of the possible existence of the so-called
superexponential solutions, namely solution that converges faster than any exponential function. This
problem is solved by studying the oscillations of the superexponential solutions. More particularly, we
show that such a solution, when exists, has an infinite numbers of oscillations in some lag interval
[t, t + τ ] for t large enough.

The paper is organized as follows: Section 2 is devoted to the reformulation of the problem of
travelling wave solutions for system (1.1) in term of (1.4) and then (1.7) when Assumption 1.1 is
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satisfied. Section 3 recalls some known results on oscillations for some delay differential systems
and also study the infinite oscillations of superexponential solutions of (1.7). Section 4 is devoted to
derive some maximal monotonic properties of the solutions and prove the applicability of the discrete
Lyapunov functional for this problem when t → ∞. In Section 5 we prove that under conditions
on the some characteristic equations, the existence of point to undamped oscillating connection is
ensured, while Section 6 investigates some properties of the characteristics equations and complete
the proof of Theorem 1.2. Finally since the results of Theorem 1.2 does not deal with the stability of
these waves with respect to the evolution equation (1.1), we supplement this work by giving some
numerical simulations of the invasion process of (1.1). The numerical investigations given in Section 6
show that moving patterns may occur for (1.1) and are numerically stable.

2. Travelling wave formulation

In this section we come back to system (1.1) and we shall show, under some conditions on func-
tions g and μ, that the travelling wave solutions for this problem correspond to the solutions of (1.4).
To do so, we shall assume that μ ∈ L∞

loc,+([0,∞)) and g ∈ C1
b ([0,∞),R), namely g is of the class C1,

and g and g′ are bounded. Moreover we assume that

μ(s) + g′(s) � μ0 > 0 and g(s) � g0 > 0, ∀s � 0,

for some constants μ0 > 0 and g0 > 0. Recall that size structured models has been recently revisited
by Webb in [35]. Inspired by this work, define Ψ (s) as the solution of

Ψ ′(s) = g
(
Ψ (s)

)
, for s � 0, with Ψ (0) = 0,

and set

v(t, s, x) := u
(
t,Ψ (s), x

)
.

Then v satisfies the equation

∂v(t, s, x)

∂t
+ ∂v(t, s, x)

∂s
= −(μ(Ψ (s)

)+ g′(Ψ (s)
))

u
(
t,Ψ (s), x

)
,

together with

g(0)v(t,0, x) = (
I − d2�x

)−1

(
αh

( ∞∫
0

γ
(
Ψ (l)

)
v(t, l, ·)g

(
Ψ (l)

)
dl

))
(x).

Setting

μ̂(s) := μ
(
Ψ (s)

)+ g′(Ψ (s)
)

and γ̂ (s) := γ
(
Ψ (s)

)
g
(
Ψ (s)

)
,

we obtain that v satisfies the age-structured problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂v(t, s, x)

∂t
+ ∂(v(t, s, x))

∂s
= −μ̂(s)v(t, s, x), for s � 0 and x ∈ R,

v(t,0, x) = (
I − d2�x

)−1

(
α

g(0)
h

( ∞∫
0

γ̂ (l)v(t, l, ·)dl

))
(x), for x ∈ R,

v(0, .,.) = v ∈ L1((0,∞), L1 (R)
)
.

(2.1)
0 +
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Thus without loss of generality (with the above assumptions on the map g), we can assume that
g ≡ 1. Next, we set

v(t, s, x) = e− ∫ s
0 μ̂(l)dl w(t, s, x) and y = x

d
,

and we obtain that w satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ w(t, s, y)

∂t
+ ∂ w(t, s, y)

∂s
= 0, for s � 0 and y ∈ R,

w(t,0, y) = (I − �y)
−1

(
αh

( ∞∫
0

γ̃ (s)w(t, s, ·)ds

))
(y), for y ∈ R,

w(0, .,.) = w0 ∈ L1((0,∞), L1+(R)
)
,

(2.2)

wherein we have set

γ̃ (s) := γ̂ (l)e− ∫ s
0 μ̂(l)dl, for almost every s � 0.

As a consequence, without loss of generality, one may assume that μ̂ = 0 and d = 1.
Let us now consider travelling wave solutions for (2.2), that is solutions of the form

w(t, s, y) = ŵ(s, y + ct),

where c > 0 denotes the wave speed and ŵ ∈ C1,2(R) is some bounded positive function. It follows
that ŵ satisfies the following equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂

∂s
ŵ(s, y) + c

∂

∂ y
ŵ(s, y) = 0,

ŵ(0, y) = �y ŵ(0, y) + αh

( ∞∫
0

γ̃ (s)ŵ(s, y)ds

)
.

(2.3)

From the first equation in (2.3), we obtain that ŵ(s, y) = Φ(y − cs) and therefore we only need to
look for such a travelling wave solution which takes the form

w(t, s, y) = Φ
(

y + c(t − s)
)
,

where Φ ∈ C2(R,R
+) is a bounded and positive function. So, from (2.3), we deduce that function Φ

satisfies the following second order delay differential equation

Φ ′′(y) = Φ(y) − αh

( ∞∫
0

γ̃ (s)Φ(y − cs)

)
ds, ∀y ∈ R. (2.4)

Finally setting φ(t) = Φ(ct) we get that φ satisfies (1.4) with γ (s) ≡ γ̃ (s).
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Finally if φ is a solution (1.4) and under Assumption 1.1, if we set k = 0, . . . ,n,

ψk(t) = δk

∞∫
τ

(s − τ )ke−μsφ(t − s), t ∈ R,

where δk > 0 is such that δk
∫∞
τ (s − τ )ke−μs ds = 1, then (φ,ψ0, . . . ,ψn) satisfies (1.6). This justifies

the study we shall fulfill in this work for system (1.7).
We complete this section by giving some notations that will be used through this work. To do

so, let us notice that the system (2.4) has at most two positive equilibria. Indeed, 0 is always an
equilibrium, and system (2.4) has a positive equilibrium if α > 1, denoted by x and defined by

x = lnα. (2.5)

3. Oscillations and small solutions

3.1. Oscillations for delay differential systems

Since the goal of this paper is to study the oscillating behaviour of the solutions of (1.7) around
the positive equilibrium x when α > 1, we shall recall some results that will be useful through this
work. Let c > 0 be given and (φ,ψ0, . . . ,ψn) be a solution of (1.7). Next we set

x0(t) = x − φ(t), t ∈ R,

x2(t) = x − ψn(t), . . . , xn+2(t) = x − ψ0(t), t ∈ R.

We also denote x1(t) = −φ′(t), t ∈ R. Next let us notice that the vector valued function (x0, x1, . . . , xn)

satisfies the first order system of delay differential equations:

dx0(t)

dt
= F 0(x0(t), x1(t)

)
,

dx1(t)

dt
= c2 F 1(x0(t), x1(t), x2(t)

)
,

dxk(t)

dt
= F k(xk−1(t), xk(t), xk+1(t)

)
, k = 2, . . . ,n + 1,

dxn+2(t)

dt
= F n+2(xn+1(t), xn+2(t), x0(t − τ )

)
. (3.1)

Here we have set

F 0(u, v) = v, F 1(u, v, w) = u + f (w),

F k(u, v, w) = −v + w, k = 2, . . . ,n + 2, (3.2)

and

f (s) = αh(x − s) − x. (3.3)
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In order to consider the number of sign changes, let us introduce the set

K = [−τ ,0] ∪ {1, . . . ,n + 2},
and, for each t ∈ R, consider the map xt : K → R defined by

xt(θ) =
{

x0(t + θ), θ ∈ [−τ ,0],
xθ (t), θ ∈ {1, . . . ,n + 2}. (3.4)

Next we have the following lemma:

Lemma 3.1. Let (φ,ψ0, . . . ,ψn) be a solution of (1.7), then for each t ∈ R we have xt ∈ C(K) \ {0}.

The proof of this lemma is related to the following property of system (1.7).

Lemma 3.2. Let α > 1 be given. Let (φ,ψ0, . . . ,ψn) be a solution of

1

c2
φ′′(t) = φ(t) − αψn(t)eψn(t), t ∈ R,

ψ ′
j(t) = −ψ j(t) + ψ j−1(t), t ∈ R, j = 1, . . . ,n,

ψ ′
0(t) = −ψ0(t) + φ(t − τ ), t ∈ R. (3.5)

Let us assume that there exists Y > 0 such that φ(y) ≡ x on [Y ,∞). Then φ(y) ≡ x, ∀y ∈ R.

Proof. Due to the translation invariance, one may consider a solution (φ,ψ0, . . . ,ψn) of (3.5) such
that φ(x) = x for any x � 0. Recalling Assumption 1.1, from (3.5) we have for any y � 0:

x = αh

( ∞∫
0

γ (s)φ(y − s)ds

)
.

Since the map y → ∫∞
0 γ (s)φ(y − s)ds is continuous, it is constant on [0,∞). Moreover since

φ(y) → x when y → ∞ we obtain that

∞∫
0

γ (l)φ(y − l)dl = x, ∀y � 0.

This equality re-writes

∞∫
0

γ (l)1y−l�0φ(y − l)dl +
∞∫

0

γ (l)1y−l�0φ(y − l)dl = x

∞∫
0

γ (l)dl.

Since φ(x) = x for any x � 0 we obtain that

∞∫
y

γ (l)φ(y − l)dl = x

∞∫
y

γ (l)dl, ∀y � 0.
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As a consequence, for any s ∈ R we get

∞∫
0

dy esy

∞∫
y

γ (l)φ(y − l)dl = x

∞∫
0

dy esy

∞∫
y

γ (l)dl.

Since the map φ is positive, one can use the Fubini theorem to obtain for any s > 0:

∞∫
0

eslγ (l)dl

0∫
−∞

esxφ(x)dx =
∞∫

0

eslγ (l)dl
x

s
.

As a consequence we obtain for any s ∈ C such that �s ∈ (0,1) that

0∫
−∞

esxφ(x)dx = x

s
.

Finally from Laplace inversion formula (see for instance [37]) we obtain that

φ(x) = x, ∀x ∈ (−∞,0].

This completes the proof of the result. �
Proof of Lemma 3.1. If there exists t ∈ R such that xt = 0 then we obtain that xs = 0 for all s � t and
φ(s) ≡ x for any s � t . Lemma 3.2 applies and provides a contradiction together with the behaviour
of φ when t → −∞. �

Due to Lemma 3.1 one can introduce the notion of sign changes following the definition given by
Mallet-Paret and Sell in [22]. For each ϕ ∈ C(K) \ {0} we consider

sc(ϕ) = sup
{
k � 0: ∃{θ i}k

i=1 ⊂ K
k, θ i−1 < θ i, ϕ

(
θ i−1)ϕ(θ i)< 0, ∀i = 1, . . . ,k

}
.

Next let (φ,ψ0, . . . ,ψn) be a solution of (1.7) and recall that for each t ∈ R the map xt ∈ C(K) \ {0}.
Next we defined the sign changes (around x) of this solution at time t ∈ R by the quantity sc xt .

Let us now give some important remarks on this sign changes. Assume that α > e. Then there
exists a unique x∗ ∈ (0, x) such that

αh
(
x∗)= x. (3.6)

Coming back to definition (3.3) one can check that

f (s)

{
> 0, 0 < s < x − x∗,
< 0, s < 0.

As a consequence, function F defined in (3.2) satisfies the following feedback conditions

F 0(0, v) = v

{� 0 if v � 0,
� 0 if v � 0
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and

F 1(u,0, w) = u + f (w)

{� 0 if u � 0 and w ∈ [0, x − x∗),
� 0 if u � 0 and w � 0,

F k(u,0, w) = w

{� 0 if u � 0 and w � 0,

� 0 if u � 0 and w � 0.

Thus this function enters the framework developed by Mallet-Paret and Sell in [22], those results will
be extensively used in the sequel. More particularly we have the following lemma (see Theorem 2.1
in [22]):

Lemma 3.3. Assume that α > e. If (φ,ψ0, . . . ,ψn) is a solution of (1.7) such that there exists t̂ ∈ R such that

ψn(t) > x∗, ∀t > t̂,

then the map t ∈ (̂t,∞) → V (t) ∈ {0,2, . . . ,∞} defined by

V (t) =
{

sc xt if sc xt is even or infinite,

sc xt + 1 if sc xt is odd,

is non-increasing.

Moreover we also have some information when a sign change takes place (see Proposition 2.3 in
[22]).

Lemma 3.4. Under the same assumption as in Lemma 3.3, if for some t1 > t̂ − 4τ we have

xi(t1)= 0 and xi−1(t1)xi+1(t1)� 0, for some i = 1, . . . ,n + 2,

then either V (xt1 ) < V (xt1−3τ ) or V (xt1 ) = ∞. Here we have set xn+3(t1) = x0(t1 − τ ).

3.2. Super-exponentially converging solutions

Let (φ,ψ0, . . . ,ψn) be a solution of (1.7) such that

lim
t→∞(φ,ψ0, . . . ,ψn)(t) = x(1,1, . . . ,1).

Then we shall show the following result:

Theorem 3.5. Recalling definition (3.4), if

lim
t→∞ V (xt) < ∞,

then (φ,ψ0, . . . ,ψn) does not super-exponentially converges to x(1,1, . . . ,1). More particularly, there exist
two constants 0 < K1 < K2 such that

K1 � ‖xt+τ ‖ � K2, ∀t � 0. (3.7)
‖xt‖
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Here we have set for each ϕ ∈ C(K),

‖ϕ‖ = sup
θ∈[−τ ,0]

∣∣ϕ(θ)
∣∣+ n+2∑

k=1

∣∣ϕ(k)
∣∣.

In order to prove this result, we shall prove (3.7). To do so, let us first state the following upper
bound:

Lemma 3.6. Let (φ,ψ0, . . . ,ψn) be a solution of (1.7), then there exists some constant K > 0 such that

‖xt+τ ‖ � K‖xt‖, ∀t � 0.

Proof. The proof of this result is a direct application of Gronwall inequality. Indeed one can notice
that the vector valued map F defined in (3.2) is sub-linear and the result follows. �

In order to prove the lower-bound in (3.7), one will argue by contradiction by assuming that

inf

{‖xt+τ ‖
‖xt‖ , t � 0

}
= 0, (3.8)

and we aim to show that

lim
t→∞ V (xt) = ∞. (3.9)

Due to (3.8) there exists a sequence {t j} j�0 such that

t j → ∞ and
‖xt j+τ ‖
‖xt j ‖

→ ∞ when j → ∞.

Next for each j � 0, each t ∈ R and each k = 0, . . . ,n + 2 we set

yk
j(t) = xk(t + t j)

‖xt j ‖
,

as well as the vector

y j(t) = (
y0

j (t), . . . , yn+2
j (t)

)
.

We shall show the following important property:

Lemma 3.7. Let (3.8) be satisfied. For each (a,b) ∈ R
2 such that a < b we have

lim
j→∞

inf
{∣∣yk

j(s)
∣∣: s ∈ [a,b]}= 0, ∀k = 0, . . . ,n + 2.
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Proof. Recalling definition (3.4), for each m � 0 and each t ∈ R, the map y j,t ∈ C(K) is well defined
and according to Lemma 3.1 we have y j,t ∈ C(K) \ {0} and due to the definition of the sequence {t j},
we have

lim
j→∞

‖y j,τ ‖ = 0. (3.10)

Moreover, for each j � 0, y j satisfies the system of equations for all t ∈ R:

dy0
j (t)

dt
= y1

j (t),

1

c2

dy1
j (t)

dt
= y0

j (t) + f ∗(x2(t + t j)
)

y2
j (t),

dyk
j(t)

dt
= −yk

j(t) + yk+1
j (t), k = 2, . . . ,n + 1,

dyn+2
j (t)

dt
= −yn+2

j (t) + y0
j (t − τ ), (3.11)

where we have set

f ∗(s) =
{

f (s)
s , s �= 0,

f ′(0), s = 0.
(3.12)

Next, due to Lemma 3.6, one can notice that the sequence {y0
j } is locally bounded on [−τ ,∞)

while for each k � 1, the sequences {yk
j} are locally bounded on [0,∞). Moreover for each j � 0

there exists θ j ∈ [−τ ,0] such that

∣∣y0
j (θ j)

∣∣+ n+2∑
k=1

∣∣yk
j(0)

∣∣= 1, ∀ j � 0. (3.13)

Due to system (3.11), for each k = 0, . . . ,n + 2, the sequences t → yk
j(t) are locally bounded in

C1
loc([0,∞),R) while t → y0

j (t) is locally bounded in Cloc([−τ ,∞),R). Possibly along a subsequence,

the sequence {y j} converges locally uniformly towards y∗ = (y0,∗, . . . , yn+2,∗) on [0,∞) while y0
j

converges for the weak star topology of L∞(−τ ,0) towards γ ∈ L∞(−τ ,0). Note that y∗ and γ sat-
isfy the linear system of delay differential equations

dy0,∗(t)
dt

= y1,∗(t), t � 0,

dy1,∗(t)
dt

= c2(y0,∗(t) + f ′(0)y2,∗(t)
)
, t � 0,

dyk,∗(t)
dt

= −yk,∗(t) + yk+1,∗(t), k = 2, . . . ,n + 1, t � 0,

dyn+2,∗(t)
dt

= −yn+2,∗(t) + y0,∗(t − τ ), t � τ ,

dyn+2,∗(t) = −yn+2,∗(t) + γ (t − τ ), a.e. t ∈ (0, τ ). (3.14)

dt
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Due to (3.10), we obtain that (y∗)τ ≡ 0 on K so that (y∗)t ≡ 0 for any t � τ . Due to (3.14) we
obtain that for each k = 0, . . . ,n + 2, yk,∗(t) ≡ 0 for t � 0 and that γ ≡ 0. As a consequence, since
γ = 0 we obtain that for each a �= b such that [a,b] ⊂ [−τ ,0],

lim
j→∞

inf
θ∈[a,b]

∣∣y0
j (θ)

∣∣= 0.

Next since for each j � 0 and each t ∈ R the sequence {y j} satisfies (3.11), for each ϕ ∈ D(−τ ,∞)

we obtain that

∞∫
−τ

ϕ(s)y1
j (s)ds = −

0∫
−τ

ϕ′(s)y0
j (s)ds → 0, j → ∞.

By induction we obtain for each k = 0, . . . ,n + 2 and for each ϕ ∈ D(−τ ,∞) that

∞∫
−τ

ϕ(s)yk
j(s)ds → 0,

∞∫
−τ

ϕ(s)y0
j (s − τ )ds → 0, j → ∞.

Thus we obtain that for each ϕ ∈ D(−τ ,∞), ψ ∈ D(−2τ ,∞),

∞∫
−τ

ϕ(s)y0
j (s)ds → 0,

∞∫
−2τ

ψ(s)y0
j (s)ds → 0, j → ∞. (3.15)

Therefore we obtain that for each −τ < a �= b and each −2τ < a′ < b′ ,

lim
j→∞

inf
θ∈[a,b]

∣∣yk
j(θ)

∣∣= 0, k = 1, . . . ,n + 2,

lim
j→∞

inf
θ∈[a′,b′]

∣∣y0
j (θ)

∣∣= 0.

Next using the same argument as above we have for each ϕ ∈ D(−2τ ,∞),

∞∫
−2τ

ϕ(s)y1
j (s)ds = −

∞∫
−2τ

ϕ′(s)y0
j (s)ds → 0, j → ∞. (3.16)

Next we obtain for each ϕ ∈ D(−2τ ,∞),

−
∞∫

−2τ

ϕ′(s)y1
j (s)ds = c2

∞∫
−2τ

y0
jϕ ds +

∞∫
−2τ

f ∗(x2(s + t j)
)

y2
jϕ ds,

and we infer from (3.15)–(3.16) that

lim
j→∞

∞∫
y2

jϕ ds = 0, ∀ϕ ∈ D(−2τ ,∞).
−2τ
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We may repeat the argument to obtain that

lim
j→∞

∞∫
−2τ

yk
jϕ ds = 0, ∀ϕ ∈ D(−2τ ,∞), ∀k = 0, . . . ,n + 2.

Once again one may repeat the argument on each interval [−(p + 1)τ ,−pτ ] to get the expected
result. �

Next we derive the following lemma:

Lemma 3.8. Let N � 1 be given, define for each interval [a,b] ⊂ [−Nτ , τ ] and each k = 0, . . . ,n + 2,

h j
k

([a,b])= inf
θ∈[a,b]

∣∣yk
j(θ)

∣∣, j ∈ N,

as well for each d ∈ (0, τ ] define

H j
k(d) = inf

{
h j

k

([a,b]): [a,b] ⊂ [−Nτ , τ ], b − a = d
}
.

Then we have

lim
j→∞

H j
k(d) = 0, ∀k = 0, . . . ,n + 2, ∀d ∈ (0, τ ].

The proof is similar to the one of Lemma 2.4 in [5].
Finally we complete this section by proving Theorem 3.5.

Proof of Theorem 3.5. To prove this result, let us argue by contradiction by assuming that (3.9) does
not hold true, that is

lim
t→∞ V (xt) = N < ∞,

for some N . Next, as a consequence of (3.13), we obtain that

lim
j→∞

∣∣yk
j(0)

∣∣= 0, ∀k = 1, . . . ,n + 2,

so that for each η > 0, there exists j0 � 1 such that∣∣y0
j (θ j)

∣∣> 1 − η, ∀ j � j0. (3.17)

Next we set T = (N + 2)τ and δ ∈ (0,1) such that

2(N + 1)δ < τ , δ < (n + 2)τ ,
e−2T

μM

1

2(N + 1)δ
> 1

and recalling definition (3.12) we define M > 0 by

M = ∥∥ f ∗∥∥ .
∞
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Next we fix ε ∈ (0,1) such that

eT ε < e−T 1

M
,

e−T

2(N + 1)δ

(
e−T

M
− eT ε

)
> 1, (3.18)

we fix j0 � 1 such that

H j0
k (d) � ε, ∀k, ∀d ∈

[
δ

n + 2
, τ

]
. (3.19)

Up to increase j0 one may assume that there exists m > 0 such that

m � f ∗(x2(t + t j)
)
� M, ∀t � −T ,

and

V (xt+t j0
,K) = lim

t→∞ V (xt ,K), ∀t � −T . (3.20)

In the sequel we will omit the dependence with respect to j0 and we shall write yk for each k =
0, . . . ,n + 2 instead of yk

j0
.

Recall that according to the normalization condition (3.17), up to change the vector y by γ y for
some constant γ > 0, one may assume (for notional simplicity) that there exists θ0 ∈ [−τ ,0] such
that

∣∣y0(θ0)
∣∣> 1.

One shall prove by induction (on k) that for each k = 1, . . . , N + 1, there exist

(Pk)

{
τk − kδ < tk

1 < θk
1 < tk

2 < θk
2 < · · · < θk

k < tk
k+1 < τk + kδ,

y0
(
θk

i

)= 0, i = 1, . . . ,k,
∣∣y0
(
tk

p

)∣∣> 1, p = 1, . . . ,k + 1,
(3.21)

wherein we have set

τk = θ0 − kτ , k ∈ N. (3.22)

The case k = 1: We shall prove that the induction property holds true for k = 1. Due to (3.19), there
exist γ1 ∈ (θ0 − δ

n+2 , θ0) and γ2 ∈ (θ0, θ0 + δ
n+2 ) such that

∣∣y0(γi)
∣∣� ε.

As a consequence, there exists s1 ∈ (θ0 − δ
n+2 , θ0 + δ

n+2 ) such that

y′
0(s1) = 0, y′′

0(s1)y0(s1) � 0,
∣∣y0(s1)

∣∣> 1.

Recalling that y0 satisfies the second order equation

1
2

y′′
0(t) − y0(t) = f ∗(t + t j)y2(t), t ∈ R,
c
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one obtains that

y2
0(s1) + f ∗(s1 + t j)y0(s1)y2(s1) � 0,

that yields to

∣∣y2(s1)
∣∣> 1

M
.

Next due to (3.19), we have

inf

{∣∣y2(s)
∣∣, s ∈

[
θ0 − 2δ

n + 2
, θ0 − δ

n + 2

]}
� ε,

inf

{∣∣y2(s)
∣∣, s ∈

[
θ0 + δ

n + 2
, θ0 + 2δ

n + 2

]}
� ε.

As a consequence, there exists s2 ∈ (θ0 − 2δ
n+2 , θ0 + 2δ

n+2 ) such that

y′
2(s2) = 0,

∣∣y2(s2)
∣∣> 1

M
.

This yields to |y3(s2)| > 1
M . By induction, for each p = 2, . . . ,n+2 there exists sp−1 ∈ (θ0 − (p−1)δ

n+2 , θ0 +
(p−1)δ

n+2 ) such that

∣∣yp(sp−1)
∣∣> 1

M
.

Setting

zp(t) = et yp(t), p = 2, . . . ,n + 2, t � −T ,

we obtain that

sup
[θ0− n+1

n+2 δ,θ0+ n+1
n+2 δ]

|zn+2| � e−T 1

M
.

Next due to (3.19) the map |yn+2| takes some values less that ε on each interval [θ0 − δ, θ0 − n+1
n+2 δ]

and [θ0 + n+1
n+2 δ, θ0 + δ] and the map |zn+2| takes some values less that eT ε on each of these intervals.

As a consequence, due to (3.18), there exists some point θ ′
0 ∈ [θ0 − δ, θ0 + δ] such that z′

n(θ ′
0) = 0, that

is y0(θ
′
0 − τ ) = 0. Moreover there exist t1 ∈ [θ0 − δ, θ ′

0] and t2 ∈ [θ ′
0, θ0 + δ] such that

∣∣z′
n+2(ti)

∣∣� 1

δ

(
e−T 1

M
− eT ε

)
.

Due to the definition of zn+2, recall that it satisfies the equation

z′
n+2(t) = et y0(t − τ ), t � −T ,
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and we obtain due to (3.18) that

∣∣y0(ti − τ )
∣∣� e−ti

∣∣z′
n+2(ti)

∣∣> 1.

By setting θ1
1 = θ ′

0 − τ and t1
i = ti − τ for i = 1,2 we obtain that

−τ + θ0 − δ � t1
1 < θ1

1 < t1
2 � −τ + θ0 + δ,

y0
(
θ1

1

)= 0,
∣∣y0
(
ti

1

)∣∣> 1, i = 1,2.

This completes the proof of the induction property for k = 1.
From k to k + 1: Let us assume that the induction property holds true for some k ∈ {1, . . . , N} and

we shall show that it also holds true for k + 1. For that purpose we shall also argue by induction by
showing that for each p = 2, . . . ,n + 2, there exist

τk −
(

k + p + 1

n + 2

)
δ < r p

1 < sp
1 < r p

2 < sp
2 < · · · < sp

k < r p
k+1 < τk +

(
k + p + 1

n + 2

)
δ,

yp
(
sp

i

)= 0, i = 1, . . . ,k,
∣∣yp

(
r p

l

)∣∣> 1

M
, l = 1, . . . ,k + 1. (3.23)

Let us first prove that this property holds true for p = 2. To do so, let us recall that due to (3.19),
there exist θk

0 ∈ [τk − kδ − 1
n+2 δ, τk − kδ] and θk

k+1 ∈ [−τk + kδ, τk + kδ + 1
n+2 δ] such that

∣∣y0
(
θk

0

)∣∣< ε,
∣∣y0

(
θk

k+1

)∣∣< ε.

First notice that due to (3.20) and Proposition 2.3 in [22] we have

y′
0

(
θk

i

) �= 0, ∀i = 1, . . . ,k.

As a consequence of the induction property, for each i = 0, . . . ,k, there exists

θk
i < ξ+

i � γi � ξ−
i+1 < θk

i+1,

such that

y′
0(γi) = 0, y′′

0(γi)y0(γi) � 0,
∣∣y0(γi)

∣∣> 1, ∀i = 0, . . . ,k,

y′
0

(
ξ−

i

)= 0 = y′
0

(
ξ+

i

)
, y0

(
ξ−

i

)
y0
(
ξ+

i

)
< 0, ∀i = 1, . . . ,k,∣∣y′

0(s)
∣∣> 0, ∀s ∈ (ξ−

i , ξ+
i

)
, i = 1, . . . ,k. (3.24)

Again using Proposition 2.3 in [22] as well as (3.20), one obtains that

y0
(
ξ±

i

)
y2(ξi±) < 0.

Since y0(ξ
−
i )y0(ξ

+
i ) < 0, ∀i = 1, . . . ,k, one obtains that for each i = 1, . . . ,k, there exist s2

1, . . . , s2
k

such that

ξ−
i < s2

i < ξ+
i and y2

(
s2

i

)= 0, ∀i = 1, . . . ,k.
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By setting r2
i = γi−1 for any i = 1, . . . ,k + 1, one obtains due to the equation for y0 that

∣∣y2
(
r2

i

)∣∣> 1

M
, ∀i = 1, . . . ,k + 1.

This completes the proof of the induction property (3.23) for p = 2.
Let us now assume that the induction property (3.23) holds true for some p ∈ {2, . . . ,n + 1}. First

of all let us notice that due to Proposition 2.3 in [22] as well as (3.20) we have

y′
p

(
sp

i

) �= 0, ∀i = 1, . . . ,k.

Indeed due to the equation for yp , if it is zero for some i one obtains that yp(sp
i ) = yp+1(sp

i ) which
contradicts (3.20). Here again due to (3.19), there exist sp

0 and sp
k+1 such that

τk − kδ − p + 2

n + 2
< sp

0 < τk − kδ − p + 1

n + 2
,

τk + kδ + p + 1

n + 2
< sp

k+1 < τk + kδ + p + 2

n + 2
,∣∣yp

(
sk

0

)∣∣> ε,
∣∣yp

(
sk

k+1

)∣∣> ε.

As a consequence, for each i = 0, . . . ,k, there exists

sp
i < ξ+

i � γi � ξ−
i+1 < sp

i+1,

such that

y′
p(γi) = 0,

∣∣yp(γi)
∣∣> 1

M
, ∀i = 0, . . . ,k,

y′
p

(
ξ−

i

)= 0 = y′
p

(
ξ+

i

)
, yp

(
ξ−

i

)
yp
(
ξ+

i

)
< 0, ∀i = 1, . . . ,k,∣∣y′

p(s)
∣∣> 0, ∀s ∈ (ξ−

i , ξ+
i

)
, i = 1, . . . ,k. (3.25)

Due to the equation for yp we get that

yp
(
ξ±

i

)= yp+1
(
ξ±

i

)
, ∀i = 1, . . . ,k.

As a consequence, for each i = 1, . . . ,k, there exist sp+1
1 , . . . , sp+1

k such that

ξ−
i < sp+1

i < ξ+
i and yp+1

(
sp+1

i

)= 0, ∀i = 1, . . . ,k.

Next, setting r p+1
i = γi−1 for any i = 1, . . . ,k + 1, one obtains, due to the equation for yp , that

∣∣yp+1
(
r p+1

i

)∣∣> 1

M
, ∀i = 1, . . . ,k + 1.

This completes the proof of the induction property (3.23) for p + 1.
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We conclude that the induction property (3.23) holds true for p = n + 2, that re-writes

τk − kδ − n + 1

n + 2
δ < r1 < s1 < r2 < s2 < · · · < sk < rk+1 < τk + kδ + n + 1

n + 2
δ,

yn+2(si) = 0, i = 1, . . . ,k,
∣∣yn+2(rl)

∣∣> 1

M
, l = 1, . . . ,k + 1.

Due to (3.19), there exist s0 and sk+1 such that

τk − (k + 1)δ < s0 < τk − kδ − n + 1

n + 2
δ, τk + kδ + n + 1

n + 2
δ < sk+1 < τk + (k + 1)δ,∣∣yn+2(s0)

∣∣> ε,
∣∣yn+2(sk+1)

∣∣> ε.

As a consequence of (3.18), for each i = 0, . . . ,k, there exists ti such that

si < ti < si+1, z′
n+2(ti) = 0,∣∣zn+2(ti)

∣∣> e−T

M
,∣∣zn+2(sl)

∣∣� eT ε, ∀l = 0, . . . ,k + 1.

Thus for each i = 0, . . . ,k + 2 there exists ri such that

s0 � r0 < t0 < r1 < t1 < · · · < rk+1 < tk+1 < rk+2 < sk+1,∣∣z′
n+2(ri)

∣∣> 1

ti − si

(
e−T

M
− eT ε

)
.

Due to the definition of zn+2, recall that it satisfies the equation

z′
n+2(t) = et y0(t − τ ), t � −T ,

and we obtain due to (3.18) that

y0(ti − τ ) = 0, ∀i = 0, . . . ,k,∣∣y0(ri − τ )
∣∣� e−ti

∣∣z′
n+2(ri)

∣∣> 1, ∀i = 0, . . . ,k + 2.

Setting θk+1
i = ti−1 −τ for i = 1, . . . ,k +1 and tk+1

l = rl−1 −τ for l = 1, . . . ,k +3 we obtain that (3.21)
holds true for k + 1. This completes the proof of Theorem 3.5. �
4. General properties

The aim of this section is to derive some properties of the solutions of (1.7). To do that we first
introduce the characteristic equation of system (1.7) around the equilibrium 0. It reads

�−(c, λ) =
(

λ2

c2
− 1

)
(λ + 1)n+1 + αe−τλ. (4.1)
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Here we have explicitly written down the dependence with respect to c > 0 because it is also an un-
known number of the problem (1.7). A first basic property of �− which follows from some concavity
property is the following:

Lemma 4.1. Let us assume that α > 1. Let τ > 0 and n � 0 be given. There exists a unique c∗ = c∗(α, τ ,n) > 0
such that the following hold:

(i) For each c ∈ (0, c∗) we have infλ�0 �−(c, λ) > 0.
(ii) For c = c∗ , the equation �−(c∗, λ) = 0 with λ � 0 has a unique solution λ of multiplicity two.

(iii) For each c > c∗ the equation �−(c∗, λ) = 0 with λ � 0 has two (simple) solutions 0 < λ1(c) < λ2(c).

Then one can give the following definition:

Definition 4.2. Let τ > 0 and n � 0 be given. We assume that α > 1, and we consider c∗ =
c∗(α, τ ,n) > 0 provided by Lemma 4.1 which will be referred as the minimal speed.

4.1. Bound of the solutions and existence result

Through this section we shall assume that

Assumption 4.3. We assume that α > 1.

Let us introduce the following quantities:

x+ := αh(SM) = α

e
, x− := αh

(
x+)= α2

e
e− α

e . (4.2)

Let us notice that αh([x−, x+]) ⊂ [x−, x+]. According to [32] we obtain the following result:

Lemma 4.4. Let c > 0 be given. Assume that system (1.7) has a solution (φ,ψ0, . . . ,ψn) then we have

x− � lim
t→∞

φ(t) � sup
R

φ � x+,

and also

x− � lim
t→∞

ψk(t) � sup
t∈R

ψk(t) � x+, ∀k = 0, . . . ,n.

The proof is similar to the one of Theorem 3 in [32].
Let us now recall some existence results. To do that let us recall that for each α > 1 the value

c∗ > 0 is defined in Definition 4.2.

Theorem 4.5. Assume that α > 1. Then for any c > c∗ , (1.7) has a unique (up to translation) positive and
bounded solution satisfying

x− � lim inf
y→∞ φ(y) � lim sup

y→∞
φ(y) � x+.

Moreover system (1.7) does not have any solution for 0 < c < c∗ .
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Assume that α ∈ (1, e2] and let c > c∗ be given. Let (φ,ψ0, . . . ,ψn) be a solution of (1.7). Then this func-
tion converges at t → ∞, that is

lim
t→∞(φ,ψ0, . . . ,ψn)(t) = x(1, . . . ,1).

Moreover, for each c > c∗ , when α ∈ (1, e] then φ is non-decreasing.

The proof of this result on relies on the reduction of (1.7) or more generally system (1.4) under
some integral formulation and use Theorems 2.2 and 3.1 in [9]. We also refer to Ma [17,18], So et al.
[27] and Wu and Zou [38] for some existence results of travelling wave solutions for some delayed
reaction–diffusion equations (see Thieme et al. [29] for integral equations). And we refer to Thieme
et al. [29], Trofimchuk et al. [30] and Trofimchuk et al. [32] for other non-existence results.

4.2. Monotonicity properties

In order to study some monotonicity properties of the leading edge, we need some more precise
properties of the characteristic equation �− defined in (4.1). We shall assume the following:

Assumption 4.6. Let α > 1 be given and let c > c∗ be given. We set

Ω = {
λ ∈ C: �−(c, λ) = 0, �λ � 0

} \ {λ1(c), λ2(c)
}
,

wherein λi(c) are defined in Lemma 4.1. Then we assume that

�λ < λ1(c) < λ2(c), ∀λ ∈ Ω.

Then we shall show the following result:

Proposition 4.7 (Maximal monotonicity). Let Assumption 4.6 be satisfied and let (φ,ψ0, . . . ,ψn) be a solution
of (1.7). There exists a maximal interval (−∞, σ ) for some σ ∈ (−∞,∞] such that φ′(t) > 0 on this interval
(−∞, σ ).

Proof. We shall argue by contradiction by assuming that there exists a sequence {tm}m�0 such that
tm → −∞ and φ′(tm) = 0 for each m � 0. Next we set

ζ(t) = αh(ψn(t))

ψn(t)
= αe−ψn(t),

and

um(t) = φ(t + tm)

φ(tm)
, vi

m(t) = ψi(t + tm)

φi(tm)
.

Since φ → 0 as well as ψi when t → −∞, one may assume that

φ(t + tm) � φ(tm), ∀t � 0. (4.3)

Next we shall show the following result:

Lemma 4.8. The sequence of functions {um, v0
m, . . . , vn

m}n�0 is locally bounded on R.
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Proof. Let us first notice that (4.3) implies that um(t) � 1 for each t � 0. Next, due to the definition
of ψ0 we obtain that

ψ0(t + tm) =
0∫

−∞
elφ(l + t + tm − τ )dl.

Therefore for each t � τ we have

ψ0(t + tm) � φ(tm).

Next due to the definition of ψ1 we get that

ψ1(t + tm) =
0∫

−∞
elψ0(l + t + tm)dl.

Therefore for each t � τ we obtain that

ψ1(t + tm) � φ(tm).

Finally by induction we get that

ψ j(t + tm) � φ(tm), ∀m, j, ∀t � τ .

From this, one will show that {um} is also bounded on [0, τ ]. Indeed due to the definition of {tm} we
have um(0) = 1 while u′

m(0) = 0. As a consequence we get that

um(t) = et + e−t

2
+

t∫
0

(
es−t − et−s)ζ(s + tm)v0

m(s)ds.

Since vm(t) � 1 for each t ∈ [0, τ ] we obtain that um is uniformly bounded on (−∞, τ ]. Repeating
the above arguments on [0,2τ ], [0,3τ ], . . . , we obtain the expected result. �

As a consequence of the above lemma, up to a subsequence, one may assume that these functions
converges to some positive functions (u, v0, . . . , vn) locally uniformly on R that satisfy the linear
problem on R:

1

c2
u′′(t) = u(t) − αvn(t),

v j′(t) + v j(t) = v j−1(t), j = 1, . . . ,n,

v0′
(t) + v0(t) = u(t − τ ).

Moreover we have

u′(0) = 0, u(0) = 1, (4.4)

and 0 � u(t) � 1 and 0 � v j(t) � 1 for t � 0.
Next the following lemma holds true.
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Lemma 4.9. For any a ∈ R, the linear problem

1

c2
u′′(t) = u(t) − αvn(t),

v j′(t) + v j(t) = v j−1(t), j = 1, . . . ,n,

v0′
(t) + v0(t) = u(t − τ ), (4.5)

does not have any solution on (−∞,a] converging to zero when t → −∞ faster than any exponential func-
tions.

The proof of this result is similar to some step of the proof of Lemma 6 in [31]. The details are
left to the reader.

According to Assumption 4.6, the characteristic equation has two positive real solution 0 < λ2(c) <

λ1(c). Since the solution is positive, it does not oscillate around zero when t → −∞. Thus we obtain
that

⎛⎜⎝
u(t)

v0(t)
. . .

vn(t)

⎞⎟⎠= eλ1(c)t A1 + eλ2(c)t A2 + ξ(t),

where ξ is a small solution and A1, A2 are some real constant vectors. According to Lemma 4.9 we
have ξ ≡ 0 and due to (4.4) we obtain that

u(t) = −λ2(c)eλ1(c)t + λ1(c)eλ2(c)t

λ1(c) + λ2(c)
.

Since 0 < λ2(c) < λ1(c), we obtain a contradiction with the positivity of u (when t → ∞). �
We are now able to state the following result:

Theorem 4.10. Let Assumption 4.6 be satisfied and let (φ,ψ0, . . . ,ψn) be a solution of (1.7). Let σ ∈ (−∞,∞]
be defined by

σ = sup
{

t ∈ R: φ′(s) > 0, ∀s � t
}
.

If σ < ∞ then ψ j(σ + τ ) > x for any j = 0, . . . ,n while φ(σ ) > x.

Note that σ > −∞ because of Proposition 4.7.
In order to prove Theorem 4.10, we shall use the following computational lemmas those proofs are

similar to the ones of Lemmas 8 and 10 in [32].

Lemma 4.11. Let z(t) = φ′(t) and set Γ (t) = αh(ψn(t)). Then the t → Γ (t) is of bounded variation. If z
satisfies z(a) = z0 and z(0) = 0 then we have

z(t) = e−t − et

e−a − ea

{
z0 + c

2

t∫ (
eu−a − ea−u)dΓ (u)

}
+ c

2

(
et−a − ea−t) 0∫

e−u − eu

e−a − ea
dΓ (u),
a t
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z′(0) = 2

ea − e−a

{
z0 + c

2

0∫
a

(
eu−a − ea−u)dΓ (u)

}
,

z′(a) = −e−a − ea

e−a − ea
z0 + c

0∫
a

e−u − eu

e−a − ea
dΓ (u).

Lemma 4.12. If z(t) = φ′(t) satisfies z(−∞) = z(0) = 0 then

z(t) = c

2

{(
e−t − et) t∫

−∞
es dΓ (s) + et

0∫
t

(
e−t + et)dΓ (s)

}

= c

2

{(
e−t − et) 0∫

−∞
es dΓ (s) + et

0∫
t

(
es−t + et−s)dΓ (s)

}
.

To prove Theorem 4.10 let us first prove the following lemma:

Lemma 4.13. Let us assume that σ < ∞. Then the following hold true:

(i) ψn(σ + τ ) > SM .
(ii) For each j = 0, . . . ,n we have ψ ′

j(t) > 0 for any t ∈ (−∞, σ + τ ].

Proof. Let us assume that σ = 0 and that φ′(0) = 0. One will show that ψn(τ ) > SM . To do so we
shall argue by contradiction by assuming that ψn(τ ) � SM . Since φ is non-decreasing on (−∞,0], one
can notice that ψ j is non-decreasing on (−∞, τ ]. In view of Lemma 4.12 we obtain that φ′(t) < 0 on
(0, τ ]. Consider

σ1 = sup
{

t � τ : φ′(s) < 0, ∀s ∈ (0, t]}.
Let us notice that σ1 < ∞. Indeed if not, φ is decreasing on (0,∞) and less that SM and therefore
converges to zero at t = ∞, a contradiction with lim t→∞ φ(t) > 0. As a consequence σ1 > τ and

φ′(σ1) = 0, φ′′(σ1) � 0, φ(σ1) < φ(σ1 − τ ).

Moreover since φ is non-increasing on (0, σ1) and ψ0 satisfies the equation

ψ ′
0(t) = −ψ0(t) + φ(t − τ ),

we obtain that ψ0 is non-increasing on (τ , τ + σ1). Therefore we obtain that φ(σ1 − τ ) < ψ0(σ1).
Next ψ1 satisfies

ψ ′
1(t) = −ψ1(t) + ψ0(t),

so that ψ1 is non-increasing on (τ ,σ1 + τ ), that leads to ψ0(σ1) < ψ1(σ1). By induction we obtain
that φ(σ1 − τ ) < ψn(σ1). Due to the equation for φ as well as the definition of σ1 we get that

αh
(
ψn(σ1)

)
� φ(σ1) < φ(σ1 − τ ) < ψn(σ1).
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On the other hand, let us recall that ψn(τ ) � SM so that ψn(σ1) � SM . Thus

ψn(σ1) � SM , αh
(
ψn(σ1)

)
< ψn(σ1),

a contradiction. This completes the proof of the result. �
Here let us recall that for each t � σ + τ we have

ψn(t) � · · · � ψ1(t) � ψ0(t) � φ(t − τ ).

As a consequence of this remark, to prove Theorem 4.10 it is sufficient to show that ψn(τ ) > x.

Proof of Theorem 4.10. Let us assume that σ = 0 and that φ′(0) = 0. Next from Lemma 4.13 we have
SM < ψn(τ ). Moreover let us recall that for each t � τ and each j = 1, . . . ,n we have

ψ j(t) � φ(t − τ ).

Therefore SM < φ(0). We shall argue by contradiction by assuming that ψn(τ ) ∈ (SM , x]. Next there
exists a unique t∗ < τ such that ψn(t∗) = SM . We claim that

Claim 4.14. There exists σ2 > 0 such that σ2 > t∗ and

φ′(σ2) = 0, φ′′(σ2) � 0, φ′(t) < 0 on (0,σ2).

Before proving this claim, let us complete the proof of the result. First note that, due to this claim,
we get

αh
(
ψn(σ2)

)
� φ(σ2).

Next ψ0 is non-decreasing on (−∞, τ ) and non-increasing on (τ , τ + σ2), so that ψ ′
0(τ ) = 0 and we

obtain that

ψ0(τ ) = φ(0).

By induction we obtain that for each j = 1, . . . ,n, the map ψ j is non-decreasing on (−∞, τ ) and
non-increasing on (τ , τ + σ2). Thus ψ ′

j(τ ) = 0 so that ψ j(τ ) = ψ j−1(τ ). Therefore we get that

ψn(τ ) = φ(0).

Due to this property we get that ψn(σ2) � x.
We now discuss the argument according to the location of σ2 with respect to τ .
If σ2 � τ then φ(σ2) < φ(σ2 − τ ). Moreover since for any j = 1, . . . ,n ψ ′

j(σ2) � 0 we obtain that
φ(σ2 − τ ) � ψn(σ2). As a consequence we get

αh
(
ψn(σ2)

)
� φ(σ2) < φ(σ2 − τ ) � ψn(σ2).

This implies ψn(σ2) > x, a contradiction.
If σ2 < τ then since σ2 > t∗ we obtain that ψn(σ2) > SM . Here again we split the argument into

two parts φ(σ2) � ψn(σ2) and φ(σ2) > ψn(σ2).
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When φ(σ2) � ψn(σ2) then

ψn(σ2) � φ(σ2) � g
(
ψn(σ2)

)
and ψ(σ2) < x,

a contradiction.
When φ(σ2) > ψn(σ2), then since σ2 > t∗ we obtain that ψn(σ2) > SM and therefore

h
(
φ(σ2)

)
< h

(
ψn(σ2)

)
.

Since φ(σ2) � αh(ψn(σ2)) we obtain that φ(σ2) � x and

φ(σ2) > αh
(
φ(σ2)

)
,

a contradiction.
It remains to prove Claim 4.14: We now split our argument into two parts:
First: Assume that t∗ > 0. Then since φ′(0) = 0, φ(0) > 0 and the map g(ψn) is non-decreasing on

[0, t∗] we obtain from Lemma 4.12 that φ′(t) < 0 on (0, t∗]. Therefore, there exists σ2 > t∗ such that

φ′(σ2) = 0, φ′′(σ2) � 0, φ′(t) < 0 on (0,σ2).

Second: Assume now that t∗ � 0. Then the map t → g(ψn(t)) is non-increasing on [0, τ ]. There-
fore since φ(0) > 0 and φ′(0) = 0 we obtain from Lemma 4.11 that φ′(t) < 0 for all t ∈ (0, τ ]. As a
consequence, there exists σ2 > τ such that

φ′(σ2) = 0, φ′′(σ2) � 0 and φ(σ2) < φ(0) � x.

This completes the proof of Claim 4.14 and therefore the proof of Theorem 4.10. �
Theorem 4.15. If σ < ∞ then sc xσ+τ ∈ {0,1,2}. Moreover we have

φ(s) ∈ [x−, x+] for all s � σ ,

ψk(s) ∈ [x−, x+], ∀s � σ + τ , k = 0, . . . ,n. (4.6)

Proof. Without loose of generality we shall assume that σ = 0. We shall split to proof into two parts.
First we shall prove

sc xσ+τ ∈ {0,1,2} (4.7)

and then that (4.6) holds true.
According to Theorem 4.10, there exists a unique t∗ < τ such that ψn(t∗) = SM . In order to prove

(4.7) we shall discuss the location of t∗ with respect to σ = 0.
First case: Assume that φ′(t) < 0 on (0, τ ] and set τ2 = sup{t: φ′(s) < 0, ∀s ∈ (0, t)} > τ . Then is

clear that sc xτ ∈ {1,2}. If τ2 = ∞ then φ(t) � x for all t � 0 and the result follows. Assume that τ2 is
finite. Then φ′(τ2) = 0 and φ′′(τ2) � 0. We obtain that

1

c2
φ′′(τ2) = φ(τ2) − αh

(
ψn(τ2)

)
� 0.

Thus

φ(τ2) � αh
(
ψn(τ2)

)
.
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Since ψ ′
0(t) > 0 on (−∞, τ ) and ψ ′

0(t) < 0 on (τ , τ + τ2). Thus since τ2 > τ we get ψ ′
0(τ2) =

−ψ0(τ2) + φ(τ2 − τ ) � 0, that is

φ(τ2 − τ ) � ψ0(τ2) � · · · � ψn(τ2).

Recall that φ(τ2) < φ(τ2 − τ ) � ψn(τ2). This implies that

φ(τ2) < ψn(τ2) and αh
(
ψn(τ2)

)
� φ(τ2).

Thus ψn(τ2) > x.
Next

φ(τ2) = 1

c2
φ′′(τ2) + αh

(
ψn(τ2)

)
� αh

(
ψn(τ2)

)
� x−.

Thus φ(t) � x− for t ∈ [0, τ ].
Second case: We assume that t∗ � 0 and φ′(a) = 0 for some a ∈ (0,h]. Since Γ (t) = αh(ψn(t)) is

strictly decreasing on [0,a], we obtain from Lemma 4.11 that φ′(t) < 0 for all t ∈ (0,a) and φ′′(a) =
z′(a) > 0. Hence φ has at most one critical point a ∈ (0, τ ] and φ′(t) < 0 on t ∈ (0,a) and φ′(t) > 0 on
t ∈ (a, τ ]. Thus sc xτ ∈ {0,1,2} and we set τ2 = a. Next since t∗ � 0 then ψn(τ2) > SM and we have

φ(τ2) = 1

c2
φ′′(τ2) + αh

(
ψn(τ2)

)
� αh

(
ψn(τ2)

)
� x−,

and the result is proved.
Third case: We assume that t∗ � 0 and φ′(t) > 0 on (0, τ ]. We set

c := sup
{

t: φ′(s) > 0, s ∈ (0, t)
}
.

Since φ(0) > x, we obtain that c is finite, φ′(c) = 0, φ′′(c) � 0 and Γ (t) = αh(ψn(t)) is strictly de-
creasing on (0, c). From Lemma 4.11, we get that φ′′(c) = z′(c) > 0, a contradiction.

Last case: We assume that t∗ > 0. Then the map t → Γ (t) is strictly increasing on (−∞, t∗ + τ ]
and φ′(t) < 0 for t ∈ (0, t∗]. Let us assume that there exists a ∈ (t∗, τ ] such that φ′(a) = 0. Then
Lemma 4.11 shows that φ′′(a) > 0 and φ has at most one critical point on (0,h] and sc xτ ∈ {0,1,2}.

If φ′(t) < 0 on (0, τ ] we obtain the first case. If there exists a ∈ (0, τ ] such that φ′(a) = 0 we
conclude as in the second cases.

This completes the proof of (4.7).

Let us now prove (4.6). Since the upper bound is obvious, we first prove that φ(s) � x− for all
s � 0. We shall argue by contradiction by assuming that there exists t0 � 0 such that φ(t0) < x− . Let
us denote by τ̂ > 0 the first point where

φ(τ̂ ) < x−, φ′(τ̂ ) = 0, φ′′(τ̂ ) � 0.

Therefore we obtain that

αh
(
ψn(τ̂ )

)
� φ(τ̂ ) < x−.

On the other hand one has

φ(s − τ ) � φ(τ̂ ), ∀s ∈ [τ , τ̂ + τ ].
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Since for each k = 0, . . . ,n, ψk(τ ) > x > x− , we obtain that

ψk(s) > φ(τ̂ ), ∀s ∈ [τ , τ̂ + τ ].
This implies in particular that

ψn(τ̂ ) > φ(τ̂ ).

We finally obtain that

αh
(
ψn(τ̂ )

)
� φ(τ̂ ) < x− and ψn(τ̂ ) > φ(τ̂ ).

While the first inequality implies that ψn(τ̂ ) < x− , the inequality αh(ψn(τ̂ )) � ψn(τ̂ ) implies that
ψn(τ̂ ) > x, a contradiction. Therefore we obtain

φ(s) � x− for all s � 0.

We now complete the proof of the result. To do so note that we have

ψ ′
0(t) = −ψ0(t) + φ(t − τ ) � −ψ0(t) + x−, ∀t � τ .

Since ψ0(τ ) > x− , the result follows for ψ0. The proof for ψk with k = 1, . . . ,n is similar and (4.6)
holds true. The completes the proof of the result. �

As a direct consequence of Lemma 3.3 (see Theorem 2.1 in [22] for more details) and Theorem 4.15
we obtain that:

Lemma 4.16. Let us assume that x∗ < x− and σ < ∞. Then for each t � σ + τ we have

sc xt ∈ {0,1,2}.
5. Applications

We aim of this section is to study some properties of the solution of (1.7) when t → ∞. Most of
these results will be related to the properties of the characteristic equation associated to (1.7) around
the equilibrium point x when it exists, that is when α > 1. This characteristic equation reads

�+(c, λ) =
(

λ2

c2
− 1

)
(1 + λ)n+1 + (1 − lnα)e−τλ. (5.1)

5.1. Non-monotone solutions

Since the result of Theorem 4.15 are related to the assumption σ < ∞, it is important to give some
conditions that ensure that such a property holds true. We shall derive the following result:

Proposition 5.1. Let c > c∗ be given and let (φ,ψ0, . . . ,ψn) be a converging and non-oscillating solution
of (1.7) when t → ∞,

lim
t→∞(φ,ψ0, . . . ,ψn)(t) = x(1,1, . . . ,1).

Then there exists λ0 ∈ (−∞,0] such that �+(c, λ0) = 0.
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Proof. In order to deal with functions tending to zero at infinity we set

x0(t) = x − φ(t), x1(t) = x′
0(t),

xk(t) = x − ψk−2(t), k = 2, . . . ,n + 2.

Recall that it satisfies (3.11). Since t → x(t) does not oscillate around (0,0, . . . ,0), Theorem 3.5 implies
that t → x(t) does not converge superexponentially to zero. Let ρ > 3τ be given. Using Corollary 24
in [31], there exist a sequence t j → ∞ and some constant d > 1 such that the map f (t) := ‖xt‖
satisfies

f (t j) = max
s�t j

f (s), max
t j−ρ�s�t j

f (s) � df (t j).

Next we set the vector valued function y j(t) = (y0, j(t), . . . , yn+2, j(t)) defined by

yk, j(t) = xk(t + t j)

‖xt j ‖
, j ∈ N, k = 0, . . . ,n + 2.

Note that we have

∣∣yk, j(t)
∣∣� d, ∀ j � 0, k = 0, . . . ,n + 2, t � −2τ .

Let us notice that y j satisfies the system of equations

dy0, j(t)

dt
= y1, j(t),

dy1, j(t)

dt
= c2(y0, j(t) + f ∗(x2(t + t j)

)
y2, j(t)

)
,

dyk, j(t)

dt
= −yk, j(t) + yk+1, j(t), k = 2, . . . ,n + 1,

dyn+2, j(t)

dt
= −yn+2, j(t) + y0, j(t − τ ), (5.2)

where we have set

f ∗(s) =
{

f (s)
s , s �= 0,

f ′(0), s = 0.

Moreover for each j � 0 there exists θ j ∈ [−τ ,0] such that

∥∥y j(θ j)
∥∥= 1, ∀ j � 0.

Due to system (5.2), the sequence t → y j(t) is bounded in C1([−τ ,∞),R
n+2). Up to a subsequence,

one may assume that y j converges towards y∗ = (y0,∗, . . . , y1,∗) locally uniformly and θ j → θ0 ∈
[−τ ,0]. Moreover passing to the limit in (5.2) along a subsequence if necessary, we obtain that y∗
satisfies the linear system of equations on [−τ ,∞):
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dy0,∗(t)
dt

= y1,∗(t),

dy1,∗(t)
dt

= c2(y0,∗(t) + f ′(0)y2,∗(t)
)
,

dyk,∗(t)
dt

= −yk,∗(t) + yk+1,∗(t), k = 2, . . . ,n + 1,

dyn+2,∗(t)
dt

= −yn+2,∗(t) + y0,∗(t − τ ), (5.3)

together with the normalization condition ∥∥y∗(θ0)
∥∥= 1.

Since the characteristic equation associated to system (5.3) reads as �+ and since this complex map
is of type τ , we conclude using Theorem 3.1 in [14] (see also Theorem 4.4 in [34] or [33]), that y∗
is not a small solution so that its asymptotic behaviour when t → ∞ is driven by its eigenvectors.
Finally if the equation �(c, λ) = 0 does not have any real and negative solution, then according to
Proposition 7.2 in [21] (see also Proposition 2.2 in [16]), we conclude that y∗ oscillates around zero,
that is contradiction with the definition of y∗ and the non-oscillating behaviour of x at t = ∞. This
completes the proof of the result. �
Corollary 5.2. Let us assume that x∗ < x− . Let c > c∗ be given and let (φ,ψ0, . . . ,ψn) be a non-eventually
monotone solution of system (1.7) when t → ∞. Then there exists t̂ ∈ R large enough such that for each t � t̂ ,

sc xt ∈ {1,2},
and φ oscillates around the positive equilibrium x.

The proof of the result is straightforward by noticing that when φ is not eventually monotone
when t → ∞ then φ′ oscillates around zero.

Remark 5.3. Let us notice that this result has some consequences. Indeed assume that x∗ < x− and,
let c > c∗ and (φ,ψ0, . . . ,ψn) be a non-converging solution of system (1.7) when t → ∞. Then φ has
undamped oscillations around x when t → ∞.

5.2. Point to oscillating solution connection

We shall now study the oscillating properties of the solutions around x. We first investigate some
properties of converging non-small solutions in the following lemma:

Lemma 5.4. Let c > c∗ be given and (φ,ψ0, . . . ,ψn) a non-small solution of (1.7) such that

lim
t→∞(φ,ψ0, . . . ,ψn)(t) = x(1,1, . . . ,1).

Let us assume that the equation �+(c, λ) = 0 does not have any solution in the set

S00 =
{
λ ∈ C: �λ � 0 and �λ ∈

[
−2π

τ
,

2π

τ

]}
.

Then, recalling definition (3.4), for each t̂, there exists t > t̂ such that V (xt) � 3.
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Proof. The proof of this result will follow the same steps as the proof of Lemma 5.1. In order to deal
with functions tending to zero at infinity we set

x0(t) = x − φ(t), x1(t) = x′
0(t),

xk(t) = x − ψk−2(t), k = 2, . . . ,n + 2.

Recall that it satisfies (3.11). Since the map t → x(t) does not converge superexponentially to zero,
there exist a sequence t j → ∞ and some d > 1 such that the map f (t) := ‖xt‖ satisfies

f (t j) = max
s�t j

f (s), max
t j−3τ�s�t j

f (s) � df (t j).

Next using the same arguments as in the proof of Lemma 5.1, the sequence of vector valued function
y j(t) = (y0, j(t), . . . , yn+2, j(t)) defined by

yk, j(t) = xk(t + t j)

‖xt j ‖
, j ∈ N, k = 0, . . . ,n + 2,

converges (up to a subsequence) towards y∗ = (y0,∗, . . . , y1,∗) locally uniformly on [−τ ,∞) where
y∗ is a nontrivial solution of the linear system of Eqs. (5.3) on [−τ ,∞) Recall that y∗ is not a small
solution so that for each sufficiently large |ν|, with ν > 0 we have

y∗(t) = v(t) + 0
(
e−νt), t → ∞,

where v is a nonempty finite sum of eigensolutions associated to the eigenvalues in F = {λ ∈ C:
�+(c, λ) = 0, −ν < �λ � 0}. Since we have

F ∩ {λ: −2π � τ�λ � 2π} = ∅,

we obtain that for each t̂ ∈ R there exists β > t̂ large enough such that the map y∗ changes its sign
at least three times on the interval (β,β + τ ). Recalling that the sequence y j converges uniformly to
y∗ on the interval [β,β + τ ], we conclude that y j also changes its sign at least three times on this
interval when j is large enough. This completes the proof of the result. �

We shall now give some conditions on the characteristic equation at x that ensure the non-
existence of a 0 to x connection for system (1.7), and thus, due to Remark 5.3, the existence of point
to sustained oscillating connection for this problem. To do so we shall assume that:

Assumption 5.5. Let c > c∗ be given such that the equation �+(c, λ) = 0 does not have any solution
in the strip S00 defined by

S00 =
{
λ ∈ C: �λ � 0 and �λ ∈

[
−2π

τ
,

2π

τ

]}
.

We complete this section by the following result.

Theorem 5.6. Recalling definition (3.6), let us assume that x∗ < x− . Let c > c∗ be given such that Assump-
tions 4.6 and 5.5 are satisfied. Then any solution (φ,ψ0, . . . ,ψn) of (1.7) with the speed c has non-decaying
sustained oscillations at t = ∞.
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Remark 5.7. Note that the assumption x∗ < x− can be re-written in term of a condition on α > e as

α3 exp

(
−α

e
− α2e− α

e

)
> lnα,

that corresponds to the assumption of Theorem 1.2.

Proof. Let (φ,ψ0, . . . ,ψn) be a solution of (1.7). In view of Corollary 5.2, it is sufficient to show that
(φ,ψ0, . . . ,ψn) does not converge to x(1,1, . . . ,1) when t → ∞. Let us argue by contradiction by
assuming that

lim
t→∞(φ,ψ0, . . . ,ψn)(t) = x(1,1, . . . ,1).

Since x∗ < x− , Lemma 4.16 applies and show that limt→∞ V (xt) ∈ {0,1,2}. As a consequence of The-
orem 3.5, (φ,ψ0, . . . ,ψn) is not a small solution at t = ∞. Thus due to Lemma 5.4 we get that

lim
t→∞ V (xt) � 3,

a contradiction. This completes the proof of the result. �
Corollary 5.8. Let us assume that SM < x− . Let c > c∗ be given such that Assumptions 4.6 and 5.5 are satisfied.
Then any solution (φ,ψ0, . . . ,ψn) with the speed c is ultimately periodic at t = ∞.

The proof of this result is a direct consequence of Poincaré–Bendixon theorem provided by Mallet-
Paret and Sell in [23].

6. Further results on the characteristic equation

This section is devoted to given some conditions that ensure that Assumption 4.6 as well as As-
sumption 5.5 hold true.

6.1. On Assumption 4.6

In order to study some properties of the equation �−(c, λ) = 0, we introduce ε = 1
c2 and ε∗ = 1

c∗2

and we introduce the map

Ψ (ε,λ) = (
ελ2 − 1

)
(λ + 1)n+1 + αe−τλ,

and as well as the map

Φ(λ) = Ψ (0, λ) = −(λ + 1)n+1 + αe−τλ.

Note that we have

Ψ (ε,λ) = Φ(λ) + εP (λ),

wherein we have set

P (λ) = λ2(λ + 1)n+1.

First we have the following lemma:
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Lemma 6.1. Let α > 1 and τ > 0 be given. Then the equation Φ(λ) = 0 with �λ � 0 has only one real root

0 < z1 < α
1

n+1 − 1. Moreover, all other roots z j , j = 2,3, . . . , are simple and can be enumerated in such a way
that

0 � · · · � �z3 = �z2 < z1.

Proof. The equation Φ(λ) = 0 with λ � 0 reads as finding λ � 0 such that

(λ + 1)n+1 = αe−τλ.

Since α > 1 the existence and uniqueness of z1 follows.
We now consider a root z such that �z � 0 and z /∈ [0,∞). Then there exists k = 0, . . . ,n + 1 such

that

z = −1 + pe−hze
i2kπ
n+1 , with p = α

1
n+1 , h = τ

n + 1
.

Since z is not real, we obtain that

�z < −1 + pe−h�z

and the result follows. �
Lemma 6.2. Let α > 1 and τ > 0 be given. There exists ε0 > 0 such that for each ε ∈ (0, ε0) the equation

Ψ (ε,λ) = 0, �λ � 0,

has exactly two real roots λ1(ε) and λ∞(ε) such that

0 < z1 < λ1(ε) < 2(p − 1) < ε−1/4 < λ∞(ε) < ε−1/2. (6.1)

Moreover, all the roots with positive real part, denoted by {λ j(ε)} j�1 , are simple and we have

lim
ε→0

λ j(ε) = z j, ∀ j � 1.

Proof. Set p = α
1

n+1 and note that

Ψ (ε,0) = Φ(0) > 0, Ψ (ε, z1) = εP (z1) > 0.

Next we have for any sufficiently small ε > 0,

Ψ (ε,2p − 1) = (
e−τ (2p−1) − 2n+1 + ε2n+1(2p − 1)2)α < 0.

Next let us notice that Ψ (ε, ε−1/2) > 0. Finally we have

Ψ
(
ε, ε−1/4)= (

ε1/2 − 1
)(

ε−1/4 + 1
)n+1 + αe−τε−1/4 ∼ −ε−(n+1)/4 < 0.
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This completes the proof of (6.1). To complete the proof we will show that there exists ε0 > 0 such
that for each ε ∈ (0, ε0), the equation Ψ (ε,λ) = 0 has unique root in the half plane P = {λ ∈ C: �λ >

2p − 1}. To do so we apply Rouché’s theorem and show that when ε > 0 is small enough then the
maps Ψ (ε,λ) and the polynomial λ → (ελ2 − 1)(λ + 1)n+1 have the same number of roots in some
rectangle Rε = [2p − 1,2p − 1 + bε] × [−cε, cε], wherein bε > 0 and cε > 0 are large enough. The
details of the proof of this result are similar to the one used for Lemma 13 in [11]. �

As a direct consequence of the above lemmas we obtain the following result:

Lemma 6.3. Let α > 1, τ > 0 and n � 0 be given. Then there exists ĉ > 0 such that any c � ĉ satisfies As-
sumption 4.6.

From this lemma we shall show the following result:

Proposition 6.4. Let α > 1, τ > 0 and n � 0 be given. Then any c > c∗ satisfies Assumption 4.6.

Proof. To prove this result we shall argue by continuation. Let us consider c > c∗ and consider a
root of the equation �−(c, λ) = 0 with �λ = λ1(c) provided by Lemma 4.1. Let us write this root as
λ = λ1(c) + iω with ω � 0. Then we shall show that ω = 0. To do so let us notice that λ satisfies∣∣∣∣λ2

c2
− 1

∣∣∣∣� α
e−τλ1(c)

|1 + λ|n+1

� α
e−τλ1(c)

|1 + λ1(c)|n+1
�
∣∣∣∣λ1(c)2

c2
− 1

∣∣∣∣.
This re-writes as

ω2
(

ω2

c2
+ 2 + 2λ1(c)2

c2

)
� 0,

so that ω = 0 and the result follows. �
6.2. On Assumption 5.5

We now study Assumption 5.5 and we will state the following result.

Proposition 6.5. Let α > e2 be given and n � 0 be given. Let c : (0,∞) → (0,∞) be a function such that

lim inf
τ→∞ τ c(τ ) > Γ (α) := π√

lnα − 2
. (6.2)

Then there exists τ ∗ = τ ∗(α,n) such that for each τ > τ ∗ and each c > c(τ ), the equation

(
λ2

τ 2c2
− 1

)(
1 + λ

τ

)n+1

= (lnα − 1)e−λ

does not have any solution in the strip

S = {
λ ∈ C: �λ � 0 and �λ ∈ [−2π,2π ]},
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Before proving this result, let us show the following lemma:

Lemma 6.6. Let α > e2 be given. Then for each γ ∈ (Γ (α),∞), the equation(
λ2

γ 2
− 1

)
= (lnα − 1)e−λ,

does not have any solution in S.

Proof. To prove this result, let us first notice that for each γ > 0, the equation(
λ2

γ 2
− 1

)
= (lnα − 1)e−λ,

does not have any solution λ = −μ± 2π i for some μ > 0. Next it is easily checked that this equation
has a solution λ = iω with ω ∈ [−2π,2π ] if and only if γ = Γ (α). Finally let us notice that when
γ → ∞, this equation does not have any solution in S . Indeed, let {γm}m�0 be a given sequence
tending to ∞ and assume by contradiction that there exists for each m � 0 a solution λm ∈ S of the
equation (

λ2
m

γ 2
m

− 1

)
= (lnα − 1)e−λm .

Let us first notice that {λm} is unbounded because since α > e2, the equation −1 = (lnα − 1)e−λ does
not have any solution in S . Thus, possibly up to a subsequence, one may assume that

μm := −�λm → ∞, νm = �λm → ν∞ ∈ [−2π,2π ].
As a consequence we obtain that for each m � 0,(

1

γ 2
m

− 1

λ2
m

)
= (lnα − 1)

e−λm

λ2
m

.

By letting m → ∞, the left-hand side of the above equality remains bounded while the right-hand
side is unbounded. This leads to a contradiction.

The proof of the result now directly follows from standard results on holomorphic maps. �
Proof of Proposition 6.5. Assume by contradiction, that there exists a sequence {τm → ∞}m�0, a
sequence {cm}m�0 ⊂ [0,∞) such that cm � c(τm) and a sequence {λm}m�0 ⊂ S such that for each
m � 0,

λ2
m(1 + λm

τm
)n+1

τ 2
mc2

m
=
(

1 + λm

τm

)n+1

− (1 − lnα)e−λm .

We first claim that {λm}m�0 is unbounded. Indeed if it is not unbounded, up to a subsequence, one
may suppose that λm → λ∞ ∈ S . Note also that due to (6.2) one gets that (up to a subsequence)
cmτm → γ ∈ (Γ (α),∞]. First assume that γ = ∞. Then passing to the limit m → ∞ one obtains that

1 = (1 − lnα)e−λ∞ ,

a contradiction with λ∞ ∈ S .
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Fig. 1. Initial distribution of the population u(0, s, x).

Next assume that γ ∈ (Γ (α),∞). Then, passing to the limit one obtains that λ∞ ∈ S satisfies

(
λ2∞
γ 2

− 1

)
= (lnα − 1)e−λ∞ .

Due to Lemma 6.6, one can observe that the above equation does not have any solution in S . This
leads us to a contradiction and proves the claim.

Using this result, up to a subsequence, one may assume that

�λm := −μm → −∞, �λm → ν0 ∈ [−2π,2π ].

As a consequence, one obtains that for each m � 0,

(
1

τ 2
mc2

m
− 1

λ2
m

)(
1

λm
+ 1

τm

)n+1

= (lnα − 1)
e−λm

λn+3
m

.

The right-hand side of the above expression goes to infinity in modulus while the left-hand side is
bounded. This leads us to a contradiction that completes the proof of the result. �

To conclude this section and the proof of Theorem 1.2, let us notice that (i) follows from Corol-
lary 5.2. The point (ii) follows from Theorem 5.6 together with Propositions 6.4 and 6.5 while (iii) is
a consequence of Corollary 5.8. This completes the proof of Theorem 1.2.

7. Numerical simulations

In this section we come back to the evolution problem (1.1) and fulfill some numerical simulations
of this model for various values of the parameter α in order to illustrate Theorem 1.2 as well as The-
orem 4.5. For that purpose we choose g(s) ≡ 1, μ(s) ≡ 0 and γ given in Assumption 1.1 (with μ = 1).
Initially the population we shall consider is given in Fig. 1. Moreover we choose τ = 3 and n = 1.
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Fig. 2. Distribution of the population u(t, s, x) at some time t for α = e0.5 with s = 0 on the left.

Fig. 3. Distribution of the population u(t, s, x) at some time t for α = e1.5 with s = 0 on the left.

In order to deal with bounded domains in the size variable and also in space, one considers that
a maximal size is Smax = 10 and we supplement the Laplace operator arising in the birth process of
Eq. (1.1) together with homogeneous Neumann boundary conditions. Finally, system (1.1) is solved by
using a numerical integration along the characteristic curves for the size variable while the spatial
dispersal is solved by using a finite difference approximation. As shown in the figures the population
invades the empty landscape where α is large enough, namely α > 1. After settling some place, the
population reaches either some constant state (with monotone invasion) (see Fig. 2), either exhibits
some damped oscillations (or outbreaks in the population density) (see Fig. 3) or sustained oscilla-
tions giving rise to (numerically stable) spatio-temporal pattern formation and propagation (see Figs. 4
and 5). One can notice that the two first possibilities are explained by Theorem 4.5 while the third
situation is partially explained by Theorem 1.2. Here one can notice that the conditions on α given
in Theorem 1.2 re-writes as α ∈ (e2,αM) with αM ≈ e2.83. However, as shown in Fig. 5, this parame-
ter restriction seems to be a technical one. Indeed the parameter value α = e5 does not match with
the assumptions of this theoretical result but the corresponding evolution problem also numerically
exhibits some spatio-temporal pattern propagation.
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Fig. 4. Distribution of the population u(t, s, x) at some time t for α = e2.8 with s = 0 on the left.

Fig. 5. Distribution of the population u(t, s, x) at some time t for α = e5 with s = 0 on the left.
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