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Abstract: We propose and analyze a nonlinear mathematical model of hematopoiesis, describing
the dynamics of stem cell population subject to impulsive perturbations. This is a system of two
age-structured partial differential equations with impulses. By integrating these equations over the
age, we obtain a system of two nonlinear impulsive differential equations with several discrete
delays. This system describes the evolution of the total hematopoietic stem cell populations with
impulses. We first examine the asymptotic behavior of the model in the absence of impulsions.
Secondly, we add the impulsive perturbations and we investigate the qualitative behavior of the
model including the global asymptotic stability of the trivial solution and the existence of periodic
solution in the case of periodic impulsive perturbations. Finally, numerical simulations are carried
out to illustrate the behavior of the model. This study maybe helpful to understand the reactions
observed in the hematopoietic system after different forms of stress as direct destruction by some
drugs or irradiation.
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1. Introduction
All blood cells (red cells, white cells, and platelets) are produced in the bone marrow by so-called
hematopoietic stem cells. They are pluripotent stem cells, with self-renewal and differentiation
abilities. Throughout divisions, hematopoietic stem cells produce an increasing number of differ-
entiated cells (with some well known stages, such as progenitor cells, precursor cells) until the
process leads to mature cells. These latter finally reach the blood stream and become blood cells.

According to the study of Burns and Tannock [8], the life of each pluripotent stem cell can be
divided into two distinct phases: resting phase (G0) and proliferating phase (G1 − S − G2 −M ).
The resting phase, or G0-phase, is a quiescent stage in the cellular development. Resting cells can
not divide. They can enter the proliferating phase, provided that they do not die. The proliferating
phase is the active part of the cellular development. As soon as cells enter the proliferating phase,
they are committed to divide, during mitosis. After division, each cell gives birth to two daughter
cells which enter immediately the resting phase, and complete the cycle. Proliferating cells can
also die without ending the cycle.

It is now well known that the production of blood cells is regulated by negative feedback
controls, mediated by hormones. However, the exact nature of these regulatory processes is still
not well known at this time. However, the work of Sachs [28] shows that we can reasonably think
that it strongly depends on the entire resting cell population, that is, β = β(N(t)), with N(t) the
total population of resting cells at time t. For the justification of the dependence of β on the total
G0-population N , see the works of Mackey and his collaborators [6, 7, 9, 10, 15, 19, 20, 21].

Due to the number of divisions and the quantity of cells involved in hematopoiesis, issues may
arise at different cellular levels and sometimes result in abnormalities in blood cells production,
causing the so-called dynamical hematological disorders. Most of these diseases seem to be due to
a destabilization of the pluripotent hematopoietic stem cell compartment. Among a wide variety of
these diseases are characterized by a periodic decrease in the circulating blood cells numbers, from
normal to low values, sometimes barely detectable (Haurie et al., [15]). These blood cell diseases
are known as periodic hematological diseases.

Mathematical modelling of hematopoietic stem cells dynamics has been extensively studied in
the past 30 years, with attempts to determine causes leading to a number of periodic hematological
disorders. In 1978, Mackey [19] proposed a mathematical model of hematopoietic stem cells
dynamics inspired by the work of Burns and Tannock [8]. Formed by a system of two nonlinear
delay differential equations, where the delay describes the average cell cycle duration, this model
stressed the influence of some factors (such as the apoptotic rate, the introduction rate, the cell
cycle duration) playing an important role in the appearance of periodic solutions. The model of
Mackey [19] has been recently analyzed by Pujo-Menjouet and Mackey [25] and Pujo-Menjouet
et al. [26] in order to prove the existence of long period oscillations, characterizing situations
observed in patients with chronic myelogenous leukemia. Taking into account that all stem cells
do not require the same time in cell cycle to divide, Adimy et al. [4] studied models similar to
the one proposed by Mackey [19], but with a time delay distributed according to a density with
compact support. They highlighted the role of a destabilization of the cell cycle duration in the
appearance of oscillating solutions with long periods (see [22]).
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In 1998, Haurie et al. [15] published works about cyclical neutropenia, pointing out the main
problems and questions arising in its study. They also gave a complete description of the disease.
Bernard et al. [6] proposed the first model of leukopoiesis, based on a description of mechanisms
involved in cyclical neutropenia. Their model consists of a system of two nonlinear differential
equations with two time delays that describe the cell cycle duration and the time required by a
hematopoietic stem cell to produce white blood cells by differentiation. We also mention the
recent works of Colijn and Mackey [9, 10] which deal with a complete model of hematopoiesis
taking into account the dynamics of the hematopoietic stem cell compartment as well as each of
the three blood cell type (red blood cells, white cells and platelets) compartments.

As in many biological process, the evolution of the populations of hematopoietic cells can be
characterized by the fact that at certain moments of time, due to different forms of stress as acute
irradiation as well as instantaneous increase of the population of stem cells, their state change
abruptly (see [18]). Consequently, it is natural to assume that these perturbations act instanta-
neously, that is, in the form of impulses.

Mathematical models of various biological processes and phenomena in the study of population
dynamics, biology, biotechnology, ecology, etc, can be expressed by impulsive delay differential
equations. They have attracted the interests of many researchers in the last two decades since they
provide a natural description of the motion of several real-world processes which, on the one hand,
depends on the past of the processes that often turns out to be the cause of phenomena substantially
affecting the motion and, on the other hand, is subject to short-time perturbations whose duration
is almost negligible.

Several various monographs [13, 16, 17] and many papers [12, 29, 31, 32] devoted to the
impulsive differential equations and impulsive delay differential equations, have been published.
However, as far as we know, no works are contributed to the analysis for a model of hematopoiesis
with impulsions.

In this paper, we investigate the reactions of the hematopoietic stem cell system to different
forms of stress as acute irradiation as well as instantaneous increase of the population. It is com-
monly believed that the system must react to reach the normal state as early as possible with
oscillations as small as possible.

Denote by n(t, a) the population density of resting cells at time t which have spent a time a
in their phase. Resting cells can either be lost randomly at a rate δ, which takes into account the
cellular differentiation, or enter into the proliferating phase at a rate β. In this proliferating phase,
we suppose that cells are committed to undergo cell division at some constant times τ1,..., τm after
their entry. We denote by pi(t, a), i = 1, ..., m, the population density of proliferating cells at time
t which have spent a time a in their phase and that divided at age τi (the point of cytokinesis). This
discrete structuration of the proliferating cells corresponds to a discrete version of some distributed
point of cytokinesis. The proliferating cells can be lost by apoptosis at a rate γi(a). At the point of
cytokinesis, a cell divides into two daughter cells which enter immediately the resting phase. The
full model for this situation consists of a system of reaction convection evolution equations
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



∂n

∂t
+

∂n

∂a
= − (δ + β (N(t))) n, t > 0, a > 0,

∂pi

∂t
+

∂pi

∂a
= −γi(a)pi, t > 0, 0 < a < τi, i = 1, ..., m,

(1.1)

with their associated boundary conditions




n(t, 0) = 2
∑m

i=1 pi(t, τi), t > 0,

pi(t, 0) =
∫∞
0

αiβ (N(t)) n(t, a)da = αiβ (N(t)) N(t), t > 0, i = 1, ..., m,

lim
a→∞

n(t, a) = 0, t > 0,

(1.2)

and initial data

n(0, a) = n0(a), a > 0, pi(0, a) = pi,0(a), 0 < a < τi, i = 1, .., m. (1.3)

Here N(t) =
∫∞
0

n(t, a)da denotes the total population of cells in the resting phase at time t > 0.
We assume for simplicity that the re-introduction rate β(N) is the same for all classes pi weighted
with some parameter αi ∈ [0, 1]. These parameters model the repartition of the cell population
coming from the resting phase into the different compartments of proliferating phase. Then, we
add the condition

∑m
i=1 αi = 1. We supplement our modelling by introducing some impulsions

which simulate different forms of stress at some particular times 0 < t1 < t2 < ... < tk < ....
These conditions can be expressed as follow

N(t+k ) = (1 + bk)N(tk), k = 1, 2, ..., (1.4)

where the sequence {bk}k≥1 is such that bk > −1, for k ≥ 1. The condition (1.4) corresponds to in-
stantaneous perturbations of the system by adding (bk > 0) or losing (−1 < bk < 0) hematopoietic
stem cells.

In order to tackle (1.1)-(1.4) by using delay differential equations, we assume, for simplicity,
that the functions γi(a) ≡ γi are constants. Then by employing the method of characteristics [30]
and the boundary conditions (1.2), we obtain

pi(t, τi) = αie
−γiτiβ(N(t− τi))N(t− τi), t > τi, i = 1, .., m. (1.5)

By integrating (1.1) over the age and using (1.5), the model (1.1) can be transformed into a system
of nonlinear first-order delay differential equations [19, 20, 21]

dPi(t)

dt
= −γiPi(t) + β(N(t))N(t)− αie

−γiτiβ(N(t− τi))N(t− τi), (1.6)

dN(t)

dt
= −(δ + β(N(t)))N(t) + 2

m∑
i=1

αie
−γiτiβ(N(t− τi))N(t− τi), (1.7)
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with Pi(t) =
∫ τ

0
pi(t, a)da, t > 0. This system is valid for t > τ := maxi=1,..,m(τi). Up to a time

translation, we consider this system posed for t > 0 and with associated initial conditions defined
on [−τ, 0].

The function β is supposed to be continuous and positive. Furthermore, from a reasonable
biological point of view, we assume that β is decreasing with limx→+∞ β(x) = 0. This describes
the fact that the rate of reentry into the proliferating compartment is a decreasing function of
the G0-phase population ([19], [28]). Usually, it is believed that the function β is a monotone
decreasing Hill function (see Mackey [19]), given by

β(N) = β0
θn

θn + Nn
, (1.8)

where β0 is the maximal rate of cell movement from G0 into the proliferating phase, θ is the G0

stem cells population at which the rate of cell movement from G0 into proliferation is one-half of
its maximal value (β0), and n > 0 characterizes the sensitivity of the mitotic reentry rate β with
changes in the size of G0-phase population. The Hill function β(N) has often been used in cell
cycle models to describe saturation [11].

It should be pointed out that the dynamics of the resting phase cells described by (1.7) are
independent of the dynamics of the proliferative phase cells, but the converse is not true. This
is due to the assumed dependence of β on N as well as the boundary conditions of the original
equations of the problem [19, 20]. Because of this independence, we are concerned only with
equation (1.7).

More precisely, we investigate the following model of hematopoiesis with impulsions




x′(t) = −
(
δ + β(x(t))

)
x(t) + 2

m∑
i=1

αie
−γiτiβ (x (t− τi)) x(t− τi), t 6= tk,

x(t+k ) = (1 + bk)x(tk), k = 1, 2, ...,

x(t) = ϕ(t), t ∈ [−τ, 0],

(1.9)

where x(t+k ) = lim
t→t+k

x(t), k ≥ 1.

The paper is organized as follows. In Section 2, we consider the delay system (1.9) without
impulsions, and present some results about the stationary solutions together with their stabilities.
Section 3 investigates system (1.9) in presence of impulsions. We first reduce the impulsive equa-
tion to a non-impulsive one and obtain well posedness properties for the associated Cauchy prob-
lem. Then the global asymptotic stability of the trivial solution is studied. The case of ω-periodic
impulsions is considered. Some conditions for the existence of a unique ω-periodic solution of
system (1.9) are given. Finally, numerical simulations illustrate the behavior of the model.
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2. Delay differential equations without impulsions
In this section, we consider equation (1.9) without impulsions. This particular case corresponds to
bk = 0 for all k ≥ 1. Therefore, we have the following equation





x′(t) = −
(
δ + β(x(t))

)
x(t) + 2

m∑
i=1

αie
−γiτiβ (x (t− τi)) x(t− τi), t > 0,

x(t) = ϕ(t), t ∈ [−τ, 0],
(2.1)

where ϕ ∈ C([−τ, 0],R+) is an initial condition and τ = maxi=1,...,m{τi}. Equation (2.1) has been
studied by Pujo-Menjouet et al. in [25, 26] with one discrete delay. Here we extend some of these
results to multiple discrete delays. We first have the following well posedness result.

Theorem 1. For each nonnegative initial condition ϕ ∈ C([−τ, 0],R+), equation (2.1) has a
unique nonnegative and bounded solution.

The proof of this result is classical and follows the same arguments as the ones given below in
the proof of Theorem 7.

We now consider the equilibria of equation (2.1). An equilibrium x∗ ≥ 0 is a time-independent
solution. This means that x∗ is a solution of the problem

−
(
δ + β(x∗)

)
x∗ + 2

m∑
i=1

αie
−γiτiβ (x∗) x∗ = 0.

We first concentrate ourselves on the existence of equilibria and their asymptotic stability.
Notice that x∗ = 0 is always an equilibrium of equation (2.1). It describes the extinction of the cell
populations. Searching for positive equilibrium of (2.1), that is x∗∗ > 0, we must solve

δ −
(

2
m∑

i=1

αie
−γiτi − 1

)
β (x∗∗) = 0.

We get the theorem.

Theorem 2. Assume that δ > 0. Then the following results hold.

(i) If

δ > β(0)

(
2

m∑
i=1

αie
−γiτi − 1

)
, (2.2)

then x∗ = 0 is the unique equilibrium solution of (2.1).
Moreover, this equilibrium is globally asymptotically stable.
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(ii) If we suppose that

δ < β(0)

(
2

m∑
i=1

αie
−γiτi − 1

)
, (2.3)

then (2.1) has two equilibria x∗ = 0 and x∗∗ > 0. In this case, the trivial equilibrium x∗ = 0
is unstable. If in addition we have

β =
d

dx
(xβ(x))|x=x∗∗ > 0, (2.4)

then the positive equilibrium x∗∗ is locally asymptotically stable (LAS).

Remark 3. When δ crosses the value β(0)

(
2

m∑
i=1

αie
−γiτi − 1

)
, the dynamical system undergoes

a transcritical bifurcation with a change of stability of the trivial state x∗ = 0.

Proof. We first investigate the existence of positive equilibrium. It satisfies the equation

δ −
(

2
m∑

i=1

αie
−γiτi − 1

)
β (x∗∗) = 0.

Since β is a decreasing map with image (0, β(0)], we obtain that this last equation has a solution
x∗∗ > 0 if and only if (2.3) is satisfied.

We now consider the stability of the equilibria.
First suppose that (2.2) is satisfied. Then we consider the Lyapunov functional

V (ϕ) = ϕ(0) + 2
m∑

i=1

αie
−γiτi

∫ 0

−τi

ϕ(θ)β (ϕ(θ)) dθ, ϕ ∈ C([−τ, 0],R+).

If t → x(t) is a solution of (2.1), we have

V (xt) = x(t) + 2
m∑

i=1

αie
−γiτi

∫ t

t−τi

x(θ)β (x(θ)) dθ, t > 0.

Here xt, t ≥ 0, denotes the history function defined by xt(θ) = x(t+θ) for θ ∈ [−τ, 0]. We obtain,
for t > 0,

d

dt
V (xt) = −

[
δ + β(x(t))

]
x(t) + 2

m∑
i=1

αie
−γiτiβ (x (t− τi)) x(t− τi)+

2
m∑

i=1

αie
−γiτi

[
(x(t)β(x(t))− β (x (t− τi)) x(t− τi))

]
,

= −
[
δ −

(
2

m∑
i=1

αie
−γiτi − 1

)
β(x(t))

]
x(t).
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We now set the map

u(x) =
[
δ −

(
2

m∑
i=1

e−γiτi − 1

)
β(x)

]
x.

Since β(x) ≤ β(0) for each x ≥ 0 and due to condition (2.2), we get u(x) ≥ 0 for each x ≥ 0 and

d

dt
V (ϕ) = −u(ϕ(0)), ϕ ∈ C([−τ, 0],R+).

Since β is decreasing, the function u satisfies the propriety u(x) = 0 if and only if x = 0. The
point (i) is now complete.

We now prove (ii). We first show the instability of x∗ = 0. For that purpose we look at
the characteristic equation corresponding the linearized equation about the zero equilibrium. This
characteristic equation reads

∆(λ) = λ +
[
δ + β(0)

]
− 2

m∑
i=1

αie
−(γi+λ)τiβ (0) , λ ∈ C.

Recall that the roots of the equation ∆(λ) = 0 provide the eigenvalues of the linearized equation
about x∗ = 0 and thus control the stability of this equilibrium.

The map g1 : λ ∈ R → λ +
[
δ + β(0)

]
is increasing while the map g2 : λ ∈ R →

2
m∑

i=1

αie
−(γi+λ)τiβ (0) is decreasing. Thus under condition (2.3) we have

g1(0) < g2(0),

and we can conclude that the equation ∆(λ) = 0 has a solution in the interval (0,∞). This
complete the proof of the instability result.

It remains to prove that under conditions (2.3) and (2.4) the point x∗∗ is LAS. First, recall that
x∗∗ satisfies the equation

δ −
(
2

m∑
i=1

αie
−γiτi − 1

)
β (x∗∗) = 0.

Then the local stability of this point is given by the roots of the corresponding characteristic equa-
tion. It easily reads as

∆(λ) = λ + δ + β − 2β
m∑

i=1

αie
−(γi+λ)τi . (2.5)

Let us first notice that under the condition β > 0, the map λ ∈ R → ∆(λ) is increasing. Indeed
we have

d∆

dλ
(λ) = 1 + 2β

m∑
i=1

τiαie
−(γi+λ)τi > 0, λ ∈ R.

Moreover, we have
lim

λ→−∞
∆(λ) = −∞, lim

λ→+∞
∆(λ) = +∞.
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Now, if we compute ∆(0) we get

∆(0) = δ + β − 2β
m∑

i=1

αie
−γiτi ,

=
(
1− 2

m∑
i=1

αie
−γiτi

)
(x∗∗β′ (x∗∗)) > 0.

Thus, there exists λ0 ∈ (−∞, 0) such that ∆(λ0) = 0. Let us now consider a general solution
λ = µ + iν ∈ C of the characteristic equation ∆(λ) = 0. We will prove that µ ≤ λ0 < 0. Since λ0

and λ are solutions of the characteristic equation, we have




λ0 + δ + β − 2β
m∑

i=1

αie
−(γi+λ0)τi = 0,

λ + δ + β − 2β
m∑

i=1

αie
−(γi+λ)τi = 0.

Then by taking the real part and by introducing X = λ0 − µ, we get

X = 2β
m∑

i=1

αie
−(γi+µ)τi(e−Xτi − cos(ντi)).

We argue by contradiction by assuming that X < 0. Then, for any i = 1, .., m, we have e−Xτi −
cos(ντi) > 0 which is in contradiction with X < 0. Thus X = λ0 − µ ≥ 0 and we conclude that
the solutions of the characteristic equation are located in the strip {λ ∈ C, <λ ≤ λ0 < 0}. This
completes the proof of Theorem 2.

Remark 4. The proof of the last theorem is inspired from the one of the result given by [4] in the
case of equation with distributed delay.

3. The impulsive delay differential equation
This section is devoted to the study of some properties of the impulsive equation (1.9). We first
derive some general properties and then we study the case of periodic forcing impulsions.

Throughout this section, we assume the following conditions.

(H1) 0 < t1 < t2 < · · · are fixed impulsive points such that lim
k→+∞

tk = +∞;

(H2) {bk}k≥1 is a real sequence such that bk > −1, for k = 1, 2, ....

In the sequel, we use the map t → ∏
0<tk<t

(1 + bk). We always assume that this product is equal

to unity if the number of factors is zero. Note that due to the assumption (H2), this map is positive.
Moreover, we assume that

(H3) The map t → ∏
0<tk<t

(1 + bk) is bounded.
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3.1. Reduction to a non-impulsive equation
In this section, we re-write equation (1.9) in a non-impulsive form (in a non-autonomous delay
differential form). Due to the biological motivation, we consider the system (1.9) accompanied
with the initial condition

x(t) = φ(t), t ∈ [−τ, 0], φ ∈ C
(
[−τ, 0], [0, +∞)

)
, (3.1)

with τ = max
1≤i≤m

{τi}.

We now recall some definitions of the solutions of problem (1.9) together with an initial con-
dition (3.1).

Definition 5. [29] For any φ ∈ C
(
[−τ, 0], [0, +∞)

)
, a function x defined on [−τ, +∞) with

values in R is said to be a solution of (1.9) on [−τ,∞) if we have the following
(i) x(t) = φ(t), t ∈ [−τ, 0].
(ii) x(t) is absolutely continuous on each interval (0, t1] and (tk, tk+1], k = 1, 2, · · · .
(iii) For any k = 1, 2, · · · , x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk).
(iv) x(t) satisfies the differential equation in (1.9) for almost everywhere t in [0, +∞) \ ∪k≥1{tk}
and the impulsive conditions for every t = tk, k = 1, 2, · · · .

The system (1.9) admits a unique solution for each continuous initial condition (3.1) (the proof
is similar to that in Hale and Verduyn Lunel [14]).

Under Hypothesis (H1)-(H3) and the expression of the function β, we consider the non-
impulsive delay differential equation

y′(t) = −
(
δ + β0

an(t)

an(t) + yn(t)

)
y(t) + 2β0

m∑
i=1

αie
−γiτi

an(t− τi)di(t)

an(t− τi) + yn(t− τi)
y(t− τi), (3.2)

where
a(t) = θ

∏
0<tk<t

(1 + bk)
−1, di(t) =

∏
t−τi≤tk<t

(1 + bk)
−1, i = 1, ..., m. (3.3)

On can remark that

a(t) = θ for t ∈ [−τ, 0] and di(t) =
a(t)

a(t− τi)
for t ≥ 0.

The equation (3.2) is supplemented with an initial condition

y(t) = φ(t), t ∈ [−τ, 0], φ ∈ C
(
[−τ, 0], [0, +∞)

)
. (3.4)

By a solution y(t) on [−τ, +∞) of (3.2)-(3.4), we mean an absolutely continuous function y(t)
defined on [−τ, +∞) satisfying (3.2)-(3.4).

The following lemma is useful in this paper.
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Lemma 6. Assume that (H1)-(H3) hold.
(i) If x(t) is a solution of (1.9), then y(t) =

∏
0<tk<t

(1 + bk)
−1x(t) is a solution of (3.2).

(ii) If y(t) is a solution of (3.2), then x(t) =
∏

0<tk<t

(1 + bk)y(t) is a solution of (1.9).

Proof. (i) Let x(t) be a solution of (1.9). Set y(t) =
∏

0<tk<t

(1 + bk)
−1x(t) for t ∈ [−τ, +∞).

Then, y(t) = x(t) for t ∈ [−τ, 0]. Since x(t) is absolutely continuous on (0, t1] and on each
interval (tk, tk+1], k = 1, 2, · · · , and, in view of the impulsive condition, it follows that for any
k = 1, 2, · · · ,

y(t+k ) = lim
t→t+k

∏
0<tj<t

(1 + bj)
−1x(t) =

k∏
j=1

(1 + bj)
−1x(t+k ) =

k−1∏
j=1

(1 + bj)
−1x(tk) = y(tk),

and

y(t−k ) =
k−1∏
j=1

(1 + bj)
−1x(t−k ) =

k−1∏
j=1

(1 + bj)
−1x(tk) = y(tk).

This implies that y(t) is continuous on [−τ, +∞). Furthermore, from (1.9), for any 0 < t 6= tk,
k = 1, 2, · · · , we have

∏
0<tk<t

(1 + bk)
−1x′(t) = −δ

∏
0<tk<t

(1 + bk)
−1x(t)− β0

θn

θn + xn(t)

∏
0<tk<t

(1 + bk)
−1x(t)

+ 2β0

m∑
i=1

αie
−γiτiθn

θn + xn(t− τi)

∏
0<tk<t

(1 + bk)
−1x(t− τi).

Then,

y′(t) = −
(
δ + β0

an(t)

an(t) + yn(t)

)
y(t) + 2β0

m∑
i=1

αie
−γiτi

an(t− τi)di(t)

an(t− τi) + yn(t− τi)
y(t− τi).

This implies that y(t) satisfies (3.2). Thus, y(t) =
∏

0<tk<t

(1 + bk)
−1x(t) is a solution of (3.2).

Remark that y′(t−k ) and y′(t+k ) exist but in general y′(t−k ) 6= y′(t+k ), k = 1, ...,m.
Next, we prove (ii). Let y(t) be a solution of (3.2). Set x(t) = y(t) for t ∈ [−τ, 0] and

x(t) =
∏

0<tk<t

(1 + bk)y(t) for t ∈ (0, +∞). It is easy to see that x(t) is absolutely continuous on

(0, t1] and (tk, tk+1], k = 1, 2, · · · , and from (3.2) for any t 6= tk, k = 1, 2, · · · , we have

∏
0<tk<t

(1 + bk)y
′(t) = −δ

∏
0<tk<t

(1 + bk)y(t)− β0
an(t)

an(t) + yn(t)

∏
0<tk<t

(1 + bk)y(t)

+ 2β0

m∑
i=1

αie
−γiτi

an(t− τi)di(t)

an(t− τi) + yn(t− τi)

∏
0<tk<t

(1 + bk)y(t− τi).
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That is,

x′(t) = −
(
δ + β(x(t))

)
x(t) + 2

m∑
i=1

αie
−γiτiβ(x(t− τi))x(t− τi).

This implies that x(t) satisfies the differential equation in (1.9).
On the other hand, for every tk, k = 1, 2, · · · ,

x(t+k ) = lim
t→t+k

∏
0<tj<t

(1 + bj)y(t) =
k∏

j=1

(1 + bj)y(tk) = (1 + bk)
k−1∏
j=1

(1 + bj)y(tk),

and

x(tk) =
∏

0<tj<tk

(1 + bj)y(tk) =
k−1∏
j=1

(1 + bj)y(tk).

Thus, for every k = 1, 2, · · · ,
x(t+k ) = (1 + bk)x(tk).

This implies that x(t) satisfies the impulsive conditions. Hence, x(t) is a solution of (1.9).
The proof of the lemma is complete.

We introduce the following notations. For a function f : [0, +∞) → R, we define

F = sup
t≥0
{f(t)}, F = inf

t≥0
{f(t)}.

For an ω-periodic function f , we have F = max
0≤t≤ω

{f(t)}, F = min
0≤t≤ω

{f(t)}.

Theorem 7. Let the assumptions (H1)-(H3) be satisfied. The solutions of (1.9) associated with
nonnegative initial conditions (3.1) are nonnegative and bounded.

Proof. We first prove that the solutions of (3.2) are nonnegative. Indeed, assume that there exists
a T > 0 and 0 < ε < min

i=1,...,m
{τi} such that y(t) ≥ 0 for t < T , y(T ) = 0 and y(t) < 0, y′(t) < 0

for T < t < T + ε. Then from (3.2) we have, for T < t < T + ε,

0 > y′(t) = −
(
δ +β0

an(t)

an(t) + yn(t)

)
y(t)+ 2β0

m∑
i=1

αie
−γiτi

an(t− τi)di(t)

an(t− τi) + yn(t− τi)
y(t− τi) > 0.

Consequently, y(t) is a nonnegative function.
Now, let us prove that the solutions of (3.2) are bounded. Define the function g : [0, +∞) →

R+∗ by

g(y) = 2β0
A

n
K

An + yn
,

where
K = max

i=1,...,m
{αie

−γiτiDi}.
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Recall that the notations A, A and Di mean

A = sup
t≥0
{a(t)}, A = inf

t≥0
{a(t)} and Di = sup

t≥0
{di(t)}.

Let us first notice that the function g is decreasing and tend to 0 when y tends to infinity.
Therefore, we can find a real number χ0 > 0 such that g(y) ≤ δ

2m
for any y > χ0. Thus, we have

g(y)y ≤
{

g(0)χ0 if 0 ≤ y ≤ χ0,
δ

2m
y if y > χ0.

Define the quantity

χ1 :=
2mχ0

δ
g(0).

Let x > χ1 and y ∈ [0, x] be given. Then we have

g(y)y ≤
{

g(0)χ0 = δ
2m

χ1 < δ
2m

x if 0 ≤ y ≤ χ0,
δ

2m
x if y > χ0.

(3.5)

Assume now that y(t) is unbounded. Then, one can find a t0 > 0 such that

0 ≤ y(t) ≤ y(t0) for t ∈ [t0 − τ, t0] and y(t0) > χ1.

Thus, from (3.2) one has

y′(t0) = −δy(t0)− β0
an(t0)

an(t0) + yn(t0)
y(t0) + 2β0

m∑
i=1

αie
−γiτi

an(t0 − τi)di(t0)

an(t0 − τi) + yn(t0 − τi)
y(t0 − τi),

≤ −δy(t0)− β0
an(t0)

an(t0) + yn(t0)
y(t0) +

m∑
i=1

g(y(t0 − τi))y(t0 − τi).

Using (3.5), we get

y′(t0) ≤ −δy(t0)− β0
an(t0)

an(t0) + yn(t0)
y(t0) +

δ

2
y(t0) < 0.

This leads to a contradiction. We deduce that t → y(t) is bounded and the proof of the theorem is
complete by using Lemma 6.

3.2. Global asymptotic stability of the trivial solution
In this part, we give a sufficient condition for the global asymptotic stability of the solution x = 0
of system (1.9). Let V : R+ × C([−τ, 0],R+) → R be the function defined by

V (t, ϕ) = ϕ(0) + 2β(0)
m∑

i=1

αie
−γiτi

∫ 0

−τi

an(t + θ)di(t + θ + τi)

an(t + θ) + ϕn(θ)
ϕ(θ)dθ.
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Then using the same technique as in the proof of Theorem 2, we obtain that the derivative of
V (t, ϕ) along the solutions of equation (3.2) satisfies

d

dt
V (t, ϕ) 6 −

[
δ − β0

(
2

m∑
i=1

αie
−γiτiDi − 1

)
an(t)

an(t) + ϕn(0)

]
ϕ(0).

By the assumption (3.6), we establish that V is a Lyapunov functional. Then we obtain the follow-
ing result.

Theorem 8. Assume that

δ > β0
A

n

An

(
2

m∑
i=1

αie
−γiτiDi − 1

)
. (3.6)

Then, the trivial equilibrium of the impulsive system (1.9) is globally asymptotically stable.

3.3. Periodic impulsions and existence of periodic solution
In this section, we consider system (1.9) with periodic impulsions. Thus, we assume that

(H4) The function t → ∏
0<tk<t

(1 + bk) is periodic on the interval [0, +∞) with period ω > 0.

Remind that the function t → ∏
0<tk<t

(1 + bk) is equal to one for t ≤ 0 and also for t = pω, for

p ∈ N.
In this part, we prove that there exists a unique positive ω-periodic solution x∗(t) of system

(1.9). More precisely, we have the following result.

Theorem 9. Let the assumptions (H1)-(H4) and the inequality

δ < β0
An

A
n

(
2

m∑
i=1

αie
−γikiωDi − 1

)
(3.7)

be satisfied, and τi = kiω, for i = 1, . . . , m, where (ki)i=1,...,m are some positive integers and
Di = inf

t≥0
{di(t)}. Then, there exists a unique ω-periodic solution of (1.9).

Remark 10. The assumption τi = kiω corresponds to a concept thus takes advantage of rhythmic-
ity of the cell-cycle to see the effect of ω-periodic impulsions on the system.

The proof of this result relies on some properties of the following ordinary differential system




x′(t) = −
(
δ + β(x(t))

)
x(t) +

(
2

m∑
i=1

αie
−γikiω

)
β(x(t))x(t),

x(t+k ) = (1 + bk)x(tk), k = 1, 2, . . . ,
(3.8)
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or equivalently the following non-autonomous ordinary differential equation

y′(t) = −δy(t) + β0
an(t)

an(t) + yn(t)

(
2

m∑
i=1

αie
−γikiωdi(t)− 1

)
y(t). (3.9)

Remark that as the function t → ∏
0<tk<t

(1 + bk) is periodic on the interval [0, +∞) with period

ω > 0, we have

di(t) =

{
a(t)

θ
, if t < kiω,

1, if t ≥ kiω.

Now, we give sufficient conditions for the existence of ω-periodic solution x∗(t) of (3.8).

Lemma 11. Let the assumptions (H1)-(H4) be satisfied together with the inequality (3.7). Then,
there exists a unique positive ω-periodic solution x∗(t) of system (3.8). Moreover, any nonnegative
solution t → x(t) is attracted by the periodic solution. This means

lim
t→+∞

(
x(t)− x∗(t)

)
= 0.

Proof. To prove the lemma, it suffices to prove that equation (3.9) has a unique positive and attrac-
tive ω-periodic solution y∗(t). First, we use the classical Brouwer’s fixed point theorem to prove
the existence of x∗. For that purpose, we consider the two following functions

f1(z) = −δ + β0
An

A
n

+ zn

(
2

m∑
i=1

αie
−γikiωDi − 1

)
, (3.10)

and

f2(z) = −δ + β0
A

n

An + zn

(
2

m∑
i=1

αie
−γikiωDi − 1

)
. (3.11)

First, note that lim
z→∞

f1(z) = lim
z→∞

f2(z) = −δ < 0. Then, due to (3.7) we have f2(0) > f1(0) > 0.

Thus, we conclude that the equation f1(z) = 0 (resp. f2(z) = 0) has a unique positive root z1

(resp. z2), that is, f1(z1) = 0 (resp. f2(z2) = 0). In addition, we have f1(z) < f2(z), for all z > 0.
Then 0 < z1 < z2. It should be pointed out that the function f1 is positive (resp. negative) on
the interval [0, z1) (resp. on (z1, +∞)) while the function f2 is positive (resp. negative) on [0, z2)
(resp. on (z2, +∞)). For any z0 > 0, we denote by y(t, 0, z0) the solution of (3.9) with initial
value z0. We claim that if z0 ∈ [z1, z2] then the solution y ≡ y(., 0, z0) satisfies y(t, 0, z0) ∈ [z1, z2]
for any t > 0. Suppose that there exists t1 > 0 such that y(t1) > z2. Let t∗ be defined by
t∗ = inf

{
t > 0 : y(t) > z2

}
. Then there exists a t̄ ≥ t∗, t̄ 6= tk such that y(t̄) > z2 and
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y′(t̄) ≥ 0. Since y(t̄) > z2, we derive from (3.9) that

y′(t̄) = −δy(t̄) + β0
an(t̄)

an(t̄) + yn(t̄)

(
2

m∑
i=1

αie
−γikiωdi(t)− 1

)
y(t̄),

≤ y(t̄)

[
− δ + β0

A
n

An + yn(t̄)

(
2

m∑
i=1

αie
−γikiωDi − 1

)]
,

= y(t̄)f2(y(t̄)),

< y(t̄)f2(z2),

= 0.

This contradicts the fact that y′(t̄) ≥ 0 and proves the claim result. Using a similar argument, we
can show that y(t) ≥ z1 for all t ≥ 0. Hence, in particular, y(ω) = y(ω, 0, z0) ∈ [z1, z2] for any
z0 ∈ [z1, z2].

We define a mapping G : [z1, z2] → [z1, z2] as follows: for each z0 ∈ [z1, z2], G(z0) =
y(ω, 0, z0). Since the solution y(t) = y(t, 0, z0) depends continuously on the initial value z0, it
follows that G is a continuous function and maps the interval [z1, z2] into itself. By the Brouwer’s
fixed point theorem, G has a fixed point z∗0 . Then, y∗(ω, 0, z∗0) = G(z∗0) = z∗0 . This means that the
positive function y∗ is an ω-periodic solution of (3.9). In view of the periodicity of t → ∏

0<tk<t

(1 +

bk) on [0, +∞), it follows that the positive function x∗ defined by x∗(t) =
∏

0<tk<t

(1 + bk)y
∗(t)

is an ω-periodic solution of (3.8). The uniqueness of this solution will be a consequence of its
attractiveness. We now consider the attractiveness of the periodic solution constructed above. Let
x∗ be a ω-periodic positive solution of (3.8). Then, t → y∗(t) =

∏
0<tk<t

(1 + bk)
−1x∗(t) is an ω-

periodic positive solution of (3.9). Let t → x(t) be any other positive solution of (3.8). We consider
the corresponding solution of (3.9), that is, t → y(t) =

∏
0<tk<t

(1 + bk)
−1x(t). As the functions y∗

and y are continuous and by the uniqueness property of the solutions of (3.9), we conclude that the
map t → y(t) never cross the map t → y∗(t). Then, we can assume that y(t) > y∗(t) for t > 0.
Note that the case where y(t) < y∗(t) for t > 0 can be handled with similar arguments.

Set
y(t) = y∗(t)ev(t), t > 0.

Then, v(t) > 0 for t > 0 and we have

v′(t) =
(

ln
y(t)

y∗(t)

)′
=

y′(t)
y(t)

− y∗
′
(t)

y∗(t)
,

= β0

(
2

m∑
i=1

αie
−γikiωdi(t)− 1

) an(t)y∗n(t)
[
1− env(t)

]
[
an(t) + y∗n(t)env(t)

][
an(t) + y∗n(t)

] .

(3.12)

Thanks to (3.7), we know that 2
n∑

i=1

e−γikiωdi(t)−1 > 0, t > 0. Note that 1− env(t) < 0 for t > 0.

It follows that v′(t) < 0. Thus t → v(t) is decreasing and therefore lim
t→∞

v(t) = L ∈ [0, +∞).
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Now we shall prove that L = 0. For that purpose, let us suppose that L > 0. Then there exist
0 < α < L and T > 0 such that for t ≥ T > 0, L − α < v(t) < L + α. On the other hand, as
1− env(t) < 0 and using (3.12) for t ≥ T , we get

v′(t) ≤ β0

(
2

m∑
i=1

αie
−γikiωDi − 1

) An(Y ∗)n

(
A

n
+ (Y

∗
)nen(L+α)

)(
A

n
+ (Y

∗
)n

)
(
1− en(L−α)

)
, (3.13)

where
Y
∗

= sup
t≥0
{y∗(t)}, Y ∗ = inf

t≥0
{y∗(t)}.

By integrating (3.13) from T to t > T we obtain

v(t)− v(T ) ≤ H
(
1− en(L−α)

)
(t− T ),

where H is a positive constant given by

H = β0

(
2

m∑
i=1

αie
−γikiωDi − 1

) An(Y ∗)n

(
A

n
+ (Y

∗
)nen(L+α)

)(
A

n
+ (Y

∗
)n

) .

When t → +∞, we immediately lead to a contradiction. Thus, L = 0 and therefore t → v(t)
tends to zero as t → 0. Consequently, we obtain

lim
t→∞

(
x(t)− x∗(t)

)
= lim

t→∞

[
y∗(t)

∏
0<tk<t

(1 + bk)
(
ev(t) − 1

)]
= 0.

Finally, the attractiveness of this periodic solution implies the uniqueness of non-negative and
ω-periodic solution of equation (3.9). The proof is complete.

We now come on the proof of Theorem 9.

Proof of Theorem 9. In view of Lemma 11, equation (3.9) has a unique ω-periodic solution y∗(t).
However, y∗(t) is also an ω-periodic solution of (3.2). Thus, by Lemma 6 the map t → x∗(t) =∏
0<tk<t

(1 + bk)y
∗(t) is an ω-periodic solution of (1.9). On the other hand, if x∗(t) is an ω-periodic

and positive solution of (1.9), it is also a positive and ω-periodic solution of (3.9). Finally, by
Lemma 11, the ω-periodic solution of (1.9) is unique.

4. Numerical simulations
This section is devoted to numerical simulations for equation (2.1). We only consider one de-
lay, that is m = 1. This means that there is only one compartment of proliferating phase. The
corresponding delay will be simply denoted by τ instead of τ1. We consider some fixed parameters

β0 = 1.77 day−1, γ = γ1 = 0.1 day−1, θ = 1, α1 = 1, n = 3. (4.1)
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Next we investigate different situations depending on the behavior of the equation without
impulsion. Then we add some impulsions to see their action on the system.

We first consider the case where the population of cells goes to extinction without impulsion
and we add only one impulsion with different intensities.

Figure 1: Evolution of the population of cells x(t) in function of time with τ = 3 days and δ = 0.3
day−1. The population goes to zero without impulsion (up left). Different intensities of one impul-
sion, b1 = 0.8 (up right) and b1 = 2 (bottom), are given.

Next, we consider the case where the population of cells without impulsion stabilizes to a non
trivial steady state.
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Figure 2: Evolution of the population of cells x(t) in function of time with τ = 1.2 day, γ = 0.2
day−1 and δ = 0.05 day−1. The population goes to a positive equilibrium without impulsion (up
left). Different intensities of one impulsion, b1 = −0.5 (middle left) and b1 = 0.5 (middle right) are
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considered. ω-Periodic impulsions with ω = 2 days and two impulsions per period with identical
intensities, b1 = b2 = −0.5 (bottom left), b1 = b2 = 0.5 (bottom right) and b1 = 5 (bottom) are
given.

Figure 3: Evolution of the population of cells x(t) in function of time with τ = 1.8 day, γ = 0.3
day−1 and δ = 0.05 day−1. The population goes to a positive equilibrium: without impulsion (left)
and with one impulsion with intensity b1 = −0.8 (right).

The action of only one impulsion does not destabilized the dynamic of the system with im-
pulses. As shown in Figures 1, 2 and 3, we observe that after one impulse, the system comes back
to its original behavior (with overshot). The application of an infinite number of impulsions (in
particular periodic impulsions) can generate a more complex dynamics as the ones presented in
Figures 2 and 4. The dynamics seems to exhibit a non-periodic dynamics when the parameters are
far from the assumptions of Theorem 9. However, the application of negative periodic impulses
(bk < 0) allows to keep the density of stem cells quite low during a certain time. After that, the
system recovers its initial behavior due to the attractiveness of stationary or periodic solutions.
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Figure 4: Evolution of x(t) in function of time with τ = 6 days and δ = 0.02 day−1: without
impulsion (up left), with ω-periodic (ω = 2 days) impulsions and with two identical impulsions
per period b1 = b2 = −0.5 (bottom left), b1 = b2 = 0.5 (bottom right).

5. Conclusion
In this paper, we proposed a mathematical model of hematopoietic stem cell dynamics with im-
pulse perturbations. The resulting age-structured model was reduced to a delay differential equa-
tion with impulses. The delay equation without impulses was studied. Existence and stability of
steady states were investigated. We proposed a Lyapunov functional to prove the global asymp-
totic stability of the trivial steady state. This equilibrium describes cell population extinction. We
showed that the instability of this equilibrium occurs when a positive steady state appears (the
dynamical system undergoes a transcritical bifurcation). Then, we obtained a sufficient condition
for the local asymptotic stability of the positive steady state. The second part of this work has
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been devoted to the influence of impulsive perturbations on the model. We transformed the de-
lay differential equation with impulses into a non-autonomous delay differential equation without
impulsion. We proved positivity and boundedness properties of the solutions and we obtained a
sufficient condition for the global stability of the zero solution using Lyapunov function. In the
third part, we gave some results concerning the influence of periodic impulses on the delay differ-
ential equation. Then we focused on the existence and uniqueness of the periodic solution. Finally,
numerical simulations have been fulfilled in order to understand the dynamics with conditions far
from our mathematical assumptions. As a conclusion, we obtained that the application of impulses
does not allow the total destabilization of the dynamic of the model. This property seems to be a
consequence of the stability of the steady states in the case of non impulsive equation: the model
without impulsion exhibits a monostable dynamics (with only one attractor) and does not allow, in
the case of impulsive perturbations, the total destabilization of the dynamics of the system. How-
ever, the infinite number of impulsions can generate some non-periodic oscillations and complex
dynamics with high amplitudes.
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