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Abstract. We propose a mathematical spatial and age structured model to describe the spatial
spread of Salmonella among laying hens in industrial hen houses. We provide a mathematical study
of traveling pulses of infection and describe a minimal speed property for such a problem. The
dependence with respect to some heterogeneities of the medium is also discussed. Finally, based
on biological data, the parameters of the model are estimated to provide some information on the
propagation speed of the bacteria.
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1. Introduction.

1.1. Biological problem. Salmonella is a major cause of food-borne illness
in humans. Poultry products, mostly eggs and egg products, are most often the
source of human contamination. Salmonella enteritidis is the strain which is most
often found in such cases [13, 18]. Indeed, this bacterium may durably colonize the
gastrointestinal tracks of fowls as well as their systemic organs such as spleen or liver;
but, in most cases, it will not result in any visible clinical signs of disease which
would help the farmer to identify contamination. This silent carrier-state will in
turn lead to horizontal transmission within the flock after fecal shedding [28] or, for
Salmonella enteritidis, into vertical transmission through the transovarian route [19].
Salmonella may be transmitted between animals or indirectly through contaminated
environment (including water and feed; see, for example, [15, 28]). Many procedures
exist to help prevent contamination by Salmonella, e.g., selection for increased animal
genetic resistance [4] and vaccination [3, 50], but none of them results in zero risk.

In industrial hen houses, two housing system types are used: cages or floor rearing.
In the cage systems, the population of hens is confined to cages that can contain up
to fifty hens. The cages are aligned in separate rows allowing the farmer access to
the animals (see the example in Figure 1.1). With floor rearing, the flock of hens is
equally distributed within the hen house.

A number of field studies published in the last five years in the European Union
have evaluated the effects of different housing systems on the Salmonella risk in laying
hen flocks. These studies showed a higher prevalence of Salmonella in flocks housed
in conventional cages compared with those reared on floor [25, 29, 46]. However,
previous studies have detected a lower incidence of Salmonella in conventional cage
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Fig. 1.1. Schematic representation of a generic industrial hen house (top view) showing four
rows of cages of hens (in gray) separated by free spaces allowing farmers to take care of the animals.
For modeling, we assimilate the hen house to a cylindrical domain Σ = R×Ω where Ω ⊂ Rd.

systems than cage-free systems [20, 26, 35]. These results are unclear and variable (see
the overview of all observational studies in [45]) even between different cage systems.

1.2. Mathematical problem. Several models have already been proposed to
study Salmonella spread within laying flocks [31, 32, 33, 51]; see also [42] and the
references cited therein.

All of these models assume an indirect transmission of the disease through the
bacteria density in the environment; see also [16, 17] for another example. In [31], a
compartmental model based on a system of ODEs was considered: infected hens were
structured with respect to the age of infection because transmission of bacteria from
hens to eggs was assumed to depend on this variable.

This model was used in [33] to study the effect of genetic selection and vaccination
on the disease propagation.

In [32], a spatial structure was added: the bacteria disperse via a diffusion process
within the hen house, whereas the hen population is motionless since it is confined
in cages. However, the total number of hens is assumed to be constant in time and
uniform in space.

Recently, an individual-based model version of [32] including stochastic variability
of the immune response of hens was proposed in [51] to take into account the host
response to bacterial infection. Moreover, the hen population was not uniform in
space but distributed in rows as in Figure 1.1. The outputs of this model will be used
for calibration in our numerical experiments (section 7).

In this article, we introduce an extension of [31, 32] in which the hen distribution is
not necessarily uniform, as in [51]. Moreover, we use a slightly more general modeling
of the excretion rate of the bacteria by hens by taking into account the time elapsed
since infection as a variable of the model.

We aim to understand the effect of different housing systems and, more generally,
the effect of the heterogeneity of the hens’ density on the epidemiology of Salmonella
to suggest configurations that would keep the epizootic risk minimal.

As industrial hen houses are usually much longer than wide and as the diffusion
of the bacteria is slow (see [51]), we model the hen house as a stripe denoted by
Σ = R × (0, L), where L is the width of the hen house, and we denote a point of Σ
by (x, y), with x ∈ R and y ∈ (0, L). However, our mathematical analysis is still valid
if we consider a general cylindrical domain Σ = R × Ω, where Ω ⊂ Rd, with d ∈ N∗

some bounded open set with sufficiently smooth boundary.
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Table 1.1

State variables of model (1.1).

C(t, x, y) Density of bacteria in the environment at time t and position (x, y)
S(t, x, y) Density of susceptible hens at time t and position (x, y)
i(a, t, x, y) Density of infected hens with respect to infection age a

at time t and position (x, y)

The model we will consider reads as follows:

∂S(t, x, y)

∂t
= −σS(t, x, y)C(t, x, y),

∂i(t, a, x, y)

∂t
+
∂i(t, a, x, y)

∂a
= 0,

i(t, 0, x, y) = σS(t, x, y)C(t, x, y),

∂C(t, x, y)

∂t
= DΔx,yC(t, x, y)− αC(t, x, y) +

∫ ∞

0

β(a)i(t, a, x, y)da,

(1.1)

together with nonflux boundary conditions (reflecting the confinement of the popula-
tions in the domain):

(1.2) ∇C(t, x, y) · νΣ(x, y) = 0, (t, x, y) ∈ (0,∞)× R× ∂Ω.

Here t > 0 while (x, y) ∈ R×Ω, and νΣ(x, y) denotes the outward unit normal vector
of Σ at (x, y) ∈ R× ∂Ω. This model is supplemented with initial data

(1.3) S(0, x, y) = S0(x, y), i(0, a, x, y) = i0(a, x, y), C(0, x, y) = C0(x, y),

with S0 ∈ L∞
+ (Σ), i0 ∈ L1

(
0,∞;L∞

+ (Σ)
)
, and C0 ∈ Cb+

(
Σ
)
. Here Cb

(
Σ
)
denotes

the Banach space of bounded and continuous functions on Σ endowed with the usual
supremum norm, while Cb+

(
Σ
)
denotes its positive cone, consisting of the everywhere

positive functions.
The density of bacteria in the environment at time t ≥ 0 located at a position

(x, y) is denoted by C(t, x, y). Let S(t, x, y) be the density of susceptible hens (those
capable of contracting the disease) at time t and position (x, y). Now let i(t, a, x, y) be
the density of hens infected at time t with respect to age of infection a (more precisely,
a is the elapsed time since infection) and position (x, y). The term β(a)i(t, a, x, y)
represents the density of bacteria excreted by hens infected with respect to the age of
their infection a at time t and position (x, y). The flux of excreted bacteria at time t
and position (x, y) is modeled by the expression

∫∞
0 β(a)i(t, a, x, y)da, while the flux

of newly infected hens corresponds to the boundary condition for i at age a = 0,
namely, the third equation in (1.1). Furthermore, in the above system, σ denotes the
transmission rate, α denotes the mortality rate of the bacteria, and D is the diffusion
coefficient for their dispersal in the environment.

Our goal is to study the ability of a spatially localized initial infection to propagate
into the susceptible population. In what follows, we shall focus on the situation when
the initial distribution of susceptible hens, namely, S0 ≡ S0(x, y), will depend only
on y ∈ Ω. This assumption means that hens are homogeneously distributed over
the length of the cylindrical domain Σ and spatial heterogeneities are due to the row
structure (or stripped structure) in the repartition of hens only (see Figure 1.1).

We will discuss the propagation phenomenon for (1.1)–(1.3) with respect to the so-
called basic reproduction number (denoted by R0 in what follows). When propagation
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of infection takes place (namely, when R0 > 1), we will show that the infection persists
and spreads into the spatial domain with an asymptotic speed of spread (also called
spreading speed) c∗ together with an asymptotic pulse shape. This spreading speed
of infection is then determined, and it will be shown that system (1.1) is linearly
determinate, which means that the spreading speed can be determined from the linear
equation obtained by linearizing around the zero state. Moreover, we prove that the
asymptotic speed of spread coincides with the minimal speed of traveling waves for
(1.1). (We refer the reader to van den Bosch, Metz, and Diekmann [44], Mollison
[27], or Weinberger, Lewis, and Li [49] for some discussions and results on the linear
conjecture in various contexts.)

The derivation of the above-mentioned results will be obtained by using ideas
similar to those developed in [9, 10] and [37] (see also [34] and [40]; we also refer the
reader to Britton [7]). If we introduce the auxiliary function U ≡ U(t, x, y) defined
by

U(t, x, y) = σ

∫ t

0

C(s, x, y)ds = ln
S0(x, y)

S(t, x, y)
,

it satisfies the nonlocal parabolic equation

(∂t −Δx,y + α)U(t, x, y) = σ

∫ t

0

β(a)S0(x, y)
(
1− e−U(t−a,x,y)

)
da+ u0(t, x, y),

∇yU(t, x, y) · νΩ(y) = 0, t > 0, x ∈ R, y ∈ ∂Ω,

U(0, x, y) ≡ 0,

(1.4)

wherein u0 is a given function depending on the initial data for the infective com-
ponents. Note that function U represents the local (spatial) history of the bacterial
density. A mathematical study of the spreading properties of such an equation will
provide information on the original system of (1.1)–(1.3).

The study of asymptotic speed of spread for reaction-diffusion equations has a
long history (we refer the reader to the works of Aronson and Weinberger [1, 2]). It
has been extended in various contexts and applications. See, for instance, the works of
Diekmann [8, 10] and Thieme [38, 39] for research on the asymptotic speed of spread
for scalar integral equations. Many extensions have been provided during the last
decade, including the study of integral equations without monotonicity assumption
(see [14, 41] and the references therein), systems of integral equations (see [34]), time-
delay reaction-diffusion equations (see, for instance, [21] and the references therein),
and spatially periodic (and also more general) environments (see, for instance, [5, 22,
48] and the references therein).

However, none of the above-mentioned results exactly applies to (1.4) because of
the geometry of the problem (spatial heterogeneity on the section Ω).

We will first derive some results for the auxiliary variable U . This will be used to
obtain information on the original variables of system (1.1)–(1.3). Finally qualitative
properties of the spreading speed with respect to the dispersal of the bacteria and
to the heterogeneity of the spatial distribution (row structure) of the hens will be
studied in order to derive some biological hints to eradicate or at least slow down the
propagation of the disease.

The paper is organized as follows: In section 2 we present the main mathematical
results of this work. Section 3 is concerned with preliminary results including well-
posedness of (1.1)–(1.3), definition of traveling waves, and basic properties of some
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characteristic equation. Section 4 is devoted to the study of the asymptotic speed of
spread, while section 5 deals with existence of traveling wave solutions. The influence
of the heterogeneities is studied in section 6, followed by numerical experiments in
section 7 and concluding remarks in section 8.

2. Main results. In this section, we will give an exposition of the main results
of this work. First of all, we will normalize the diffusion coefficient D to 1 by using
a simple rescaling argument (x, y) = 1√

D
(x, y). Thus, throughout this work, we will

always assume that D = 1.
These results are related to dynamical properties of system (1.1)–(1.2) together

with (1.3). Let us introduce for each function γ ∈ L∞(Ω) the principal eigenvalue
Λ(γ) ∈ R of the following elliptic problem:

Δψ + γ(y)ψ = Λ(γ)ψ in Ω,

∇ψ(y) · νΩ(y) = 0 for each y ∈ ∂Ω,

ψ(y) > 0 for each y ∈ Ω,

(2.1)

wherein the vector νΩ(y) denotes the outward normal unit vector of Ω at y ∈ ∂Ω.
Next, we make an assumption concerning the age distribution of the bacteria

excretion rate of hens.
Assumption 2.1. We assume that

β ∈ L1
+(0,∞) ∩ L∞

+ (0,∞).

We also make an assumption on the initial data.
Assumption 2.2. We assume that S0(x, y) ≡ S0(y) with S0 ∈ L∞

+ (Ω), C0 ∈
Cb+(Σ), while i0 ∈ L1

(
0,∞;L∞(Σ)

)
. Here Cb(Σ) denotes the space of continuous

and bounded functions from Σ into R, while Cb+(Σ) denotes its positive cone.
We furthermore assume that the infective initial data are spatially localized; namely,

the function û := û(x, y) = C0(x, y)+ ‖β‖L1(0,∞)‖i0(·, x, y)‖L1(0,∞) is a nonzero, pos-

itive, continuous function over Σ and with a compact support.
With Assumptions 2.1 and 2.2, we set

(2.2) R0 =
1

α
Λ

(
σ

∫ ∞

0

β(l)dl S0(·)
)
.

As will be seen latter, the above parameter will play the role of an epidemic threshold.
If one forgets the spatial heterogeneity by setting S0(y) ≡ S0 > 0 for the moment, R0

reads as follows:

(2.3) R0 = σS0 × 1

α
×
∫ ∞

0

β(a)da.

In such a case, the first term in (2.3) describes the number of susceptible hens infected
by unit of time and bacteria. This is weighted by the average lifetime of a bacterium.
Finally the last term represents the number of new bacteria produced by these infected
hens during their infectious period. Hence, in the spatially homogeneous setting, R0

describes the number of bacteria produced by a single bacteria introduced in the
infection-free environment.

We will now describe the different behaviors of the system with respect to the
value of R0 (see (2.2)). Our first result shows that when R0 ≤ 1 then the infection
cannot persist into the population and does not spread.
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Theorem 2.3. Let Assumptions 2.1 and 2.2 be satisfied. If R0 ≤ 1, then the
solution (S, i, C) of (1.1) with initial data (S0, i0, C0) satisfies

lim
t→∞ sup

(x,y)∈Σ

C(t, x, y) = 0,

lim
t→∞ sup

(x,y)∈Σ

i(t, 0, x, y) = 0,

and for each function ε : (0,∞) → [0,∞) such that ε(t) → ∞ as t→ ∞, one has

lim
t→∞ sup

|x|≥ε(t), y∈Ω

|S0(y)− S(t, x, y)| = 0.

When R0 > 1, let us now define the quantity Γ ∈ (0,∞) by

(2.4) Γ = sup
x>0

1

x2

{
x+ α− Λ

(
σ

∫ ∞

0

β(l)e−lxdl S0(·)
)}

,

where Λ is defined in (2.1), and c∗ by

(2.5) c∗ =
1√
Γ
.

The above quantities will allow us to describe some dynamical properties of the prop-
agation of the epizootic.

Theorem 2.4 (asymptotic pulse shape of infection). Let Assumptions 2.1 and
2.2 be satisfied. If R0 > 1, then the epizootic persists, in the sense that

(2.6) lim inf
t→∞ sup

(x,y)∈Σ

C(t, x, y) > 0,

and there exists δ > 0 such that for each ϕ ∈ L1
+(Ω)

(2.7) lim inf
t→∞ sup

x∈R

∫
Ω

ϕ(y)i(t, 0, x, y)dy ≥ δ

∫
Ω

ϕ(y)S0(y)dy.

Furthermore, (1.1)–(1.3) has the following spreading speed property:
(i) For each c > c∗, one has

lim
t→∞ sup

|x|≥ct, y∈Ω

C(t, x, y) = 0, lim
t→∞ sup

|x|≥ct, y∈Ω

i(t, 0, x, y) = 0.

(ii) For each c ∈ (0, c∗), one has

lim
t→∞ sup

|x|≤ct, y∈Ω

C(t, x, y) = 0, lim
t→∞ sup

|x|≤ct, y∈Ω

i(t, 0, x, y) = 0.

Furthermore, the density of susceptible has an asymptotic traveling wave shape, in the
following sense:

(iii) For each c > c∗, one has

lim
t→∞ sup

|x|≥ct

‖S(t, x, ·)− S0(·)‖L∞(Ω) = 0.
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(iv) There exists η > 0 such that for each c ∈ (0, c∗), one has

lim sup
t→∞

sup
|x|≤ct

S(t, x, y) ≤ S0(y)e
−η,

uniformly with respect to y ∈ Ω.
The above result shows that the C-component as well as the density of newly

infected animals (at age of infection zero) of the system propagate into the spatial
domain with an asymptotic pulse shape and with asymptotic speed of spread c∗.
However, we are not able to prove that the width of this pulse solution remains
bounded with respect to time.

We furthermore expect that similarly to the classical Fisher-KPP equation, the
motion of the level line exhibits a logarithmic phase (see, for instance, [6, 43] for the
one-dimensional Fisher-KPP equation). In the context of (time distributed) nonlocal
equations, such a result seems to be unknown. For reaction-diffusion equations with
discrete time delay, one can obtain such a logarithmic phase as a consequence of
precise estimates of the corresponding heat kernel derived in Theorem 2.3 in [24].
Such a step seems to be crucial in order to understand the approach to waves.

We now deal with the existence and nonexistence results of traveling solutions
for system (1.1)–(1.3). A precise definition of such solutions will be given in the
next section. It will be shown that the existence of wave solutions for (1.1)–(1.3) is
equivalent to finding a speed c > 0 and a positive and bounded profile solution of the
following nonlocal elliptic equation:

− (Δx,y + c∂x − α)u(x, y) =
σ

c
S0(y)

∫ ∞

x

β

(
l − x

c

)
u(l, y)e−

σ
c

∫∞
l

u(s,y)dsdl,

∇yu(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

lim
x→±∞u(x, y) = 0 ∀y ∈ Ω.

Note that it is related to a given and fixed function S0 ≡ S0(y).
Theorem 2.5. Let S0 ∈ L∞

+ (Ω) be given. Let Assumption 2.1 be satisfied. If
R0 ≤ 1, then system (1.1) does not have any traveling wave solution.

Our next result is concerned with the existence of traveling waves.
Theorem 2.6 (existence). Let S0 ∈ L∞

+ (Ω) be given. Let Assumption 2.1 be
satisfied. Recalling (2.2), we assume that R0 > 1. Then, for each c ≥ c∗, system
(1.1) has a traveling wave solution with the wave speed c.

Our next result deals with a nonexistence result for sufficiently small wave speeds.
Theorem 2.7 (minimal wave speed). Let S0 ∈ L∞

+ (Ω) be given. Let Assumption
2.1 be satisfied. If R0 > 1, then system (1.1) does have a traveling wave solution for
all wave speeds c ∈ (0, c∗), where c∗ is defined in (2.5).

In the above-mentioned results, one may observe that R0 provides an epidemic
threshold but also that c∗ is the minimal wave speed of the system. Due to Theorem
2.4, the minimal wave speed coincides with the spreading speed of the disease for
spatially localized infective initial data.

We now aim to understand the influence of the heterogeneity of the function S0

on the minimal speed of propagation. For such a study, we will assume that Ω is
a one-dimensional interval (0, L) so that Σ = R × (0, L) becomes a two-dimensional
strip. Next for each N0 > 0, we consider the set

A(N0) =

{
S0 ∈ L∞

+ (0, L) :
1

L

∫ L

0

S0(y)dy = N0

}
,
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and we explicitly write down the dependence of R0, Γ, and c
∗ with respect to S0.

Theorem 2.8. Let Assumption 2.1 be satisfied. For each N0 > 0, we have

inf
S0∈A(N0)

R0(S0) = R0 (N0) =
σN0

α

∫ ∞

0

β(l)dl.

Moreover if

σN0

α

∫ ∞

0

β(l)dl > 1,

then

inf
S0∈A(N0)

c∗(S0) = c∗(N0).

This result means that the minimum wave speed observed for a spatially hetero-
geneous distribution of hens is always larger than the minimum wave speed observed
for the corresponding averaged spatially homogeneous one.

According to the value of the biological parameters (see section 7), it is relevant
to look at the slow diffusion asymptotic D → 0. Due to the rescaling argument
explained at the beginning of this section, when dealing with Ω = (0, L), this slow
diffusion asymptotic corresponds to the asymptotic L → ∞. We make the following
assumption.

Assumption 2.9. We assume that Ω = ΩL = (0, L) for some L > 0, and we
consider S0 ≡ SL defined by

SL(y) = S̃0

( y
L

)
,

where S̃0 ∈ L∞
+ (0, 1) is fixed.

We derive the asymptotic behavior of R0 = R0(L) as well as the corresponding
minimal wave speed c∗ = c∗(L) with respect to L when L→ ∞.

Theorem 2.10 (slow diffusion asymptotic). Let Assumption 2.9 be satisfied.
Then the map L �→ R0(L) is increasing and we have

(2.8) lim
L→∞

R0(L) = R∞
0 :=

σ‖S̃0‖∞
α

∫ ∞

0

β(l)dl.

If R∞
0 > 1, then c∗(L) is well defined for large enough values of L, the map L �→ c∗(L)

is increasing, and we have

lim
L→∞

c∗(L) =
1√
Γ∞

,

wherein we have set

Γ∞ = sup
x>0

1

x2

{
x+ α− σ‖S̃0‖∞

∫ ∞

0

β(l)e−lxdl

}
.

This result proves that the minimum wave speed observed for the heterogeneous
distribution of hens is close to the one for the homogeneous one, where the constant
hen density is equal to the maximum density of the heterogeneous distribution.

D
ow

nl
oa

de
d 

11
/1

5/
12

 to
 1

47
.2

10
.1

06
.1

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROPAGATION OF SALMONELLA 1121

3. Preliminaries.

3.1. Weak solution of system (1.1)–(1.3). The aim of this section is to con-
sider system (1.1)–(1.3). We will prove the existence and uniqueness of suitable weak
solutions and give various reformulations of this problem in terms of a scalar non-
local parabolic equation or scalar integral equation for which comparison arguments
can be applied. Let us assume that S0 ≡ S0(x, y) ∈ L∞

+ (Σ), C0 ∈ Cb+(Σ), and

i0 ∈ L1
(
0,∞;L∞(Σ)

)
. Then let us first notice that the second equation in (1.1) can

be integrated along the characteristic to lead us to

(3.1) i(t, a, x, y) =

{
i(t− a, 0, x, y) if t > a ≥ 0,

i0(a− t, x, y) if 0 ≤ t < a,

so that the boundary condition at a = 0 allows us to reduce the system to the following
problem:

(3.2)

⎧⎪⎨⎪⎩
S(t, x, y) = S0(x, y)e

−σ
∫ t
0
C(s,x,y)ds,

∂C(t,x,y)
∂t = Δx,yC(t, x, y)− αC(t, x, y) +

∫∞
0
β(a)i(t, a, x, y)da,

∇C(t, x, y) · νΣ(x, y) = 0, (t, x, y) ∈ (0,∞)× R× ∂Ω,

with

(3.3) i(t, a, x, y) =

{
σS(t− a, x, y)C(t− a, x, y) if t > a ≥ 0,

i0(a− t, x, y) if 0 ≤ t < a.

This allows us to reduce the problem to the following scalar equation for C:

(∂t −Δx,y + α)C(t, x, y) =

∫ t

0

β(a)σS0(x, y)C(t− a, x, y)e−σ
∫

t−a
0

C(s,x,y)dsda

+

∫ ∞

t

β(a)i0(a− t, x, y)da,

∇C(t, x, y) · νΣ(x, y) = 0 for (t, x, y) ∈ (0,∞)× R× ∂Ω,

C(0, x, y) = C0(x, y) for (x, y) ∈ Σ.

(3.4)

This reformulation allows us to provide the following definition of a weak solution
for system (1.1)–(1.3).

Definition 3.1. Let S0 ∈ L∞
+ (Σ), C0 ∈ Cb+(Σ), and i0 ∈ L1

(
0,∞;L∞

+ (Σ)
)
be

given. The 3-uplet (S, i, C) is said to be a weak solution of (1.1)–(1.3) on [0, T ] if
(i) function C ∈ C0

(
[0, T ] × Σ

) ∩W 1,2
p,loc ((0, T ) × Σ) for each p ∈ (1,∞) and

satisfies (3.4) for almost all (t, x, y) ∈ (0, T )× Σ;
(ii) function S satisfies

S(t, x, y) = S0(x, y)e
−σ

∫
t
0
C(s,x,y)ds,

while i satisfies (3.3).
We will now look for an equivalent formulation of the weak solution of (1.1)–

(1.3). Let (S, i, C) be a weak solution of (1.1)–(1.3) on [0, T ]. According to the above
definition, function C satisfies

(∂t −Δx,y + α)C(t, x, y) =
∂

∂t

∫ t

0

β(a)S0(x, y)
(
1− e−σ

∫ t−a
0

C(s,x,y)ds
)
da

+

∫ ∞

t

σβ(a)i0(a− t, x, y)da,

∇C(t, x, y) · νΣ(x, y) = 0, (t, x, y) ∈ (0,∞)× R× ∂Ω,
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together with the initial data C(0, x, y) = C0(x, y). As a consequence, setting

U(t, x, y) = σ

∫ t

0

C(s, x, y)ds

leads us to the equation

(∂t −Δx,y + α)U(t, x, y) = σ

∫ t

0

β(a)S0(x, y)
(
1− e−U(t−a,x,y)

)
da+ u0(t, x, y),

∇yU(t, x, y) · νΩ(y) = 0, t > 0, x ∈ R, y ∈ ∂Ω,

U(0, x, y) ≡ 0,

(3.5)

wherein we have set

(3.6) u0(t, x, y) = σ

(
C0(x, y) +

∫ t

0

∫ ∞

s

β(a)i0(a− s, x, y)dads

)
,

and where U ∈ W 1,2
p,loc ((0, T ) × Σ) for each p ∈ (1,∞) is increasing with respect to

time t and C = 1
σ∂tU also belongs to W 1,2

p,loc ((0, T )× Σ) for each p ∈ (1,∞).
Then the following lemma holds true.
Lemma 3.2. Assume that S0 ∈ L∞

+ (Σ), C0 ∈ Cb+(Σ), and i0 ∈ L1
(
0,∞;L∞

+ (Σ)
)
.

Then system (3.5)–(3.6) has a unique positive and globally defined solution U ∈
C0

(
[0,∞)× Σ

)
such that

U(t, x, y) ≤M (S0, C0, i0) ∀(t, x, y) ∈ [0,∞)× Σ,

with M (S0, C0, i0) :=
σ

α

(‖S0‖∞‖β‖L1 + ‖C0‖∞ + ‖β‖L1‖i0‖L1(L∞)

)
,

and for each p ∈ (1,∞), we have U ∈ W 1,2
p,loc ((0,∞)×Σ) and (3.5) is satisfied almost

everywhere. Furthermore, for each p ∈ (1,∞), ∂tU ∈ W 1,2
p,loc ((0,∞) × Σ), ∂tU ≥ 0,

and the function C := 1
σ∂tU satisfies (3.4) almost everywhere. In addition, C is

uniformly bounded. More specifically, one has

C(t, x, y) ≤ e−αt‖C0‖∞ +
‖β‖∞
α

(‖S0‖∞M (S0, C0, i0) + σ‖i0‖L1(L∞)

)
.

The above lemma therefore proves the existence and uniqueness of a globally
defined weak solution of (1.1)–(1.3). It also provides the expression of the solution in
terms of U , the solution of (3.5), as well as a uniform estimate of the C-component of
(1.1)–(1.3). This reformulation will be extensively used in what follows to prove the
results mentioned in the previous section. Note that the comparison principle can be
applied to (3.5).

3.2. Traveling wave formulation. The aim of this section is to deal with a
traveling wave solution for (1.1). To achieve it, let us first give the definition of a
complete orbit for (1.1).

Definition 3.3 (entire weak solution). We will say that the 3-uplet (S, i, C)
with S : R × Σ → R+, i : R × (0,∞) × Σ → R+, and C : R × Σ → R+ is an entire
weak solution of (1.1)–(1.2) if for each s ∈ R, one has

(i) S(s, ·) ∈ L∞
+ (Σ), i(s, ·, ·) ∈ L1

(
0,∞;L∞

+ (Σ)
)
and C(s, ·) ∈ Cb+

(
Σ
)
;
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(ii) (S(s + ·, ·), i(s + ·, ·, ·), C(s + ·, ·) is a weak solution of (1.1) on [0,∞) with
initial data (S(s, ·), i(s, ·, ·), C(s, ·)).

We are now able to deal with the definition of a traveling wave for (1.1).
A traveling wave solution with speed c > 0 for system (1.1) is an entire weak

solution with a constant profile and moving in space in the x-direction at the constant
speed c. It consists in looking at special solutions of the form

(3.7) S(t, x, y) = w(x− ct, y), i(t, a, x, y) = v(a, x− ct, y), C(t, x, y) = u(x− ct, y).

Since we are interested in propagation of epizootics, we will impose that ahead of the
infective front, the density of susceptible is not yet affected by the epizootic so that

w(∞, y) ≡ S0(y),

where S0 ∈ L∞
+ (Ω) is a given heterogeneity on the section Ω of the cylinder Σ.

Therefore, we will impose the following behavior on the solutions:

lim
ξ→∞

(w(ξ, y), v(a, ξ, y), u(ξ, y)) = (S0(y), 0, 0) almost everywhere,

lim
ξ→−∞

(v(a, ξ, y), u(ξ, y)) = (0, 0) almost everywhere.
(3.8)

Ahead of the front (x → ∞), the environment is not affected by the disease yet.
However, behind the front (x → −∞), the population of susceptible hens has been
affected and w(−∞, y) is unknown (the density of susceptible hens after the epizootics)
and the infected component has a pulse-like shape.

As will be developed later in this section, one will have the following result.
Lemma 3.4. A profile (w, v, u) is a wave solution with speed c > 0 of (1.1) with

conditions (3.8) if and only if
(i) function u satisfies

− (Δx,y + c∂x − α)u(x, y) =
σ

c
S0(y)

∫ ∞

x

β

(
l − x

c

)
u(l, y)e−

σ
c

∫∞
l

u(s,y)dsdl,

∇yu(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

lim
x→±∞u(x, y) = 0 ∀y ∈ Ω;

(3.9)

(ii) functions w and v satisfy

w(x, y) = S0(y)e
− ∫ ∞

x
u(l,y)dl, v(a, x, y) = σu(x + ca, y)w(x+ ca, y).

Proof. Note that from the definition of entire weak solutions, for each s ∈ R and
t ≥ 0, function i satisfies

i(t+ s, a, x, y) = i(t+ s− a, 0, x, y) if t > a > 0.

Due to the definition of traveling waves, i(t, a, x, y) = v(a, x − ct, y), and hence for
each s ∈ R,

v(a− c(t+ s), x, y) = v(0, x− c(t− a+ s), y) if t > a > 0.

Setting s = −t, we deduce that there exists a function V such that

v(a, x, y) = v(0, x+ ca, y) := V (x+ ca, y).
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As a consequence, one obtains that traveling wave solutions are special entire solutions
of (1.1) of the form

S(t, x, y) = w(x − ct, y), i(t, a, x, y) = V (x− c(t− a), y), C(t, x, y) = u(x− ct, y).

Moreover, for each t ∈ R and s ≥ 0, one has

w(x − c(t+ s), y) = w(x− ct, y)e−σ
∫

t+s
t

u(x−cl,y)dl = w(x − ct, y)e−σ
∫

s
0
u(x−ct−cl,y)dl.

Setting ξ = x− ct yields

w(ξ − cs, y) = w(ξ, y)e−σ
∫

s
0
u(ξ−cl,y)dl = w(ξ, y)e−

σ
c

∫ ξ
ξ−cs

u(l,y)dl,

so that

w(ξ, y) = w(ξ + cs, y)e−
σ
c

∫ ξ+cs
ξ

u(l,y)dl,

and due to (3.8), letting s→ −∞ leads us to

w(ξ, y) = S0(y)e
− σ

c

∫ ∞
ξ

u(l,y)dl.

Similarly

V (ξ, y) = σw(ξ, y)u(ξ, y)

and

(Δξ,y + c∂ξ − α)u(ξ, y) +

∫ ∞

0

σβ(a)w(ξ + ca, y)u(ξ + ca, y)da = 0.

As a consequence of the above algebra, if (w, v, u) is a traveling wave of (1.1)
together with (3.8), one obtains that

v(a, x, y) = V (x+ ca, y), with ∀x ∈ R,

∫ ∞

x

V (l, y)dl <∞ almost everywhere,

and

w(x, y) = S0(y)e
− σ

c

∫ ∞
x

u(l,y)dl,

and finally⎧⎪⎨⎪⎩
− (Δx,y + c∂x − α)u(x, y) = σ

c S0(y)
∫∞
x
β
(
l−x
c

)
u(l, y)e−

σ
c

∫∞
l

u(s,y)dsdl,

∇yu(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

limx→±∞ u(x, y) = 0 ∀y ∈ Ω.

Conversely, let u : Σ → R+ be a positive and bounded solution of (3.9) for some
given c > 0. Assume furthermore that u ∈ L1 ((0,∞)× Ω). Next, setting

w(x, y) = S0(y)e
− ∫ ∞

x
u(l,y)dl, V (ξ, y) = σu(ξ, y)w(ξ, y),

one gets that (3.8) holds true. Setting

S(t, x, y) = w(x − ct, y), i(t, a, x, y) = V (x+ ca− ct, y), C(t, x) = u(x− ct, y),

one easily obtains that (S, i, C) is an entire weak solution of (1.1).
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Let us first derive some initial qualitative properties of the wave solutions.
Lemma 3.5. Let c > 0 be given. Let u be a positive bounded solution of (3.9).

Then u ∈ C
(
Σ
)
, and for each y ∈ Ω one has

u(·, y) ∈ L1(R),

and function U(y) := σ
c

∫
R
u(x, y)dy satisfies

−ΔU(y) + αU(y) = σS0(y)

∫ ∞

0

β (a) da
(
1− e−U(y)

)
,

∇yU(y) · νΩ(y) = 0 ∀y ∈ ∂Ω.

Proof. First note that the map (x, y) → S0(y)
∫∞
x β

(
l−x
c

)
u(l, y)e−

∫∞
l

u(s,y)dsdl

is bounded on Σ, and therefore elliptic regularity implies that u ∈ W 2,p
loc (Σ). As a

consequence, the convergence limx→±∞ u(x, y) = 0 for each y ∈ Ω holds true for the
topology of C1

(
Ω
)
. For each M > 0, consider UM ∈ C

(
Ω
)
defined by

UM (y) =

∫ M

−M

u(x, y)dx.

It satisfies

− (ux(M, y)− ux(−M, y) + cu(M, y)− cu(−M, y))−ΔUM (y) + αUM (y)

=
σ

c
S0(y)

∫ M

−M

∫ ∞

x

β

(
l− x

c

)
u(l, y)e−

σ
c

∫ ∞
l

u(s,y)dsdl.

Consider the set A ⊂ Ω defined by

A =

{
y ∈ Ω :

∫ ∞

0

u(l, y)dy <∞
}
.

Note that for each y ∈ A, one has∫ ∞

x

σ

c
β

(
l − x

c

)
u(l, y)e−

σ
c

∫ ∞
l

u(s,y)dsdl = ∂x

∫ ∞

0

β
(a
c

)(
1− e−

σ
c

∫ ∞
a−x

u(s,y)ds
)
da,

while for all y ∈ Ω \A,∫ ∞

x

σβ

(
l − x

c

)
u(l, y)e−

∫ ∞
l

u(s,y)dsdl = 0.

Therefore one gets

− (ux(M, y)− ux(−M, y) + cu(M, y)− cu(−M, y))−ΔUM (y)αUM (y)

= S0(y)

∫ ∞

0

β
(a
c

)(
e−

σ
c

∫ ∞
a+M

u(s,y)ds − e−
σ
c

∫ ∞
a−M

u(s,y)ds
)
da,

∇yUM (y) · νΩ(y) = 0 ∀y ∈ ∂Ω.

Letting M → ∞ and using the Lebesgue convergence theorem leads us to elliptic
estimates, and the family {UM} is bounded in W 2,p(Ω) for each p ∈ (1,∞). As a
consequence, there exists a sequence {Mn}n≥0 tending to ∞ as n→ ∞ such that

UMn(y) → V (y) :=

∫
R

u(x, y)dy for the topology of C1
(
Ω
)
.
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Furthermore, letting n→ ∞ into the above equation leads us to

−ΔV (y) + αV (y) = S0(y)

∫ ∞

0

β
(a
c

)
da

(
1− e−

σ
c V (y)

)
,

∇yV (y) · νΩ(y) = 0 ∀y ∈ ∂Ω.

The result follows by setting U = σ
c V .

This preliminary results allow us to prove Theorem 2.5. Indeed the following
result classically holds true.

Lemma 3.6. Let Assumption 2.1 be satisfied. Then the elliptic logistic-type
problem

−ΔU(y) + αU(y) = σS0(y)

∫ ∞

0

β (a) da
(
1− e−U(y)

)
,

∇yU(y) · νΩ(y) = 0 ∀y ∈ ∂Ω

has a nontrivial solution denoted by U∗ ≡ U∗(y) if and only if R0 > 1. Furthermore,
when it exists, it is unique.

As seen above, wave solutions for system (1.1) have been reformulated in terms
of (3.9). This will now give another very useful alternative formulation.

Lemma 3.7. Let Assumption 2.1 be satisfied and assume that R0 > 1. Let c > 0
and let u be a positive solution of (3.9). Then the map Û ≡ Û(x, y) defined by

Û(x, y) =
σ

c

∫ ∞

x

u(l, y)dy

is a nonincreasing—with respect to x—solution of the equation

− (Δ + c∂x − α) Û(x, y) = σS0(y)

∫ ∞

0

β (l)
(
1− e−Û(x+cl,y)

)
dl,

∇yÛ(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

lim
x→∞ Û(x, y) = 0, lim

x→−∞ Û(x, y) = U∗(y) ∀y ∈ Ω.

(3.10)

On the other hand, if Û is a nonincreasing solution of (3.10) for some c > 0, then
u ≡ u(x, y) defined by

u(x, y) = − c

σ
∂xÛ(x, y)

is a positive solution of (3.9) with c > 0.
The proof of this result exactly follows the same argument as that of Lemma 3.5.

3.3. Basic properties of a characteristic equation. In this section, we in-
troduce a characteristic equation that will be used in what follows, and we study some
important properties of this last equation. Let S0 ≡ S0(y) ∈ L∞

+ (Ω) \ {0} be given.
Recalling definition (2.1), we consider the function L : [0,∞)× [0,∞) → R defined by

(3.11) L(λ, c) = λ2 − cλ− α+ Λ
(
σβ̂(cλ)S0(·)

)
,

where we have set for each function δ ∈ L1(0,∞) ∩ L∞(0,∞), δ̂ : [0,∞) → R the
Laplace transform of δ, that is,

δ̂(s) =

∫ ∞

0

δ(l)e−sldl ∀s ∈ [0,∞).
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Let us notice that for each (λ, c) ∈ [0,∞)2 the quantity L(λ, c) is the principal
eigenvalue of the following elliptic operator acting on W 2,∞ (

Ω
)
:

(3.12) Aλ,cϕ = Δyϕ+
(
λ2 − cλ− α+ σβ̂(λc)S0(y)

)
ϕ,

supplemented with Neumann homogeneous boundary conditions.
Then the following useful lemma holds true.
Lemma 3.8. We have the following:
(i) For each c ≥ 0, the map λ→ L(λ, c) is convex.
(ii) For each λ > 0, the map c→ L(λ, c) is nonincreasing.
(iii) Recalling definition (2.2), if R0 > 1, there exists a unique c∗ > 0 such that

L(λ, c) > 0 ∀λ ≥ 0 for any c ∈ [0, c∗),

and for each c > c∗, the equation L(λ, c) = 0 has two solutions, 0 < λ1(c) <
λ2(c).

Proof. The proof of this result relies on the variational representation of L. Indeed
let us recall that, for each function γ ∈ L∞(Ω), one has

Λ(γ) = − inf
ϕ∈H1(Ω), ‖ϕ‖L2(Ω)=1

{∫
Ω

|∇ϕ(y)|2 − γ(y)ϕ(y)2dy

}
.

We refer the reader to, for instance, Theorem 11.4 in [36] for the proof of such a
variational formula. As a consequence, for each (λ, c) ∈ [0,∞)2, one has
(3.13)

−L(λ, c) = inf
u∈H1(Ω)

‖u‖
L2(Ω)

=1

{∫
Ω

(
|∇u(y)|2 −

(
λ2 − cλ− α+ σβ̂(λc)S0(y)

)
u2(y)

)
dy

}
.

Recalling that the infimum of concave functions is also concave, (i) follows. The same
argument applies for decreasing maps, so that (ii) holds true. Finally, (iii) follows
from (i) and (ii) since L(0, c) ≡ α (R0 − 1) > 0 and⎧⎨⎩ lim

c→∞L(λ, c) = −∞ ∀λ > 0 and

lim
λ→∞

L(λ, c) = ∞ ∀c ≥ 0.

This completes the proof of the lemma.
From the above lemma, one can state the following definition.
Definition 3.9 (minimal wave speed). If R0 > 1, we set

c∗ = inf {c > 0 : ∃λ > 0 L(λ, c) < 0} .

According to (iii) in Lemma 3.8, we have c∗ ∈ (0,∞). This quantity is referred to as
the minimal wave speed.

From the above definition as well as definition (3.11), it is easy to check that c∗

is also defined by

c∗ =
1√
Γ
,

wherein Γ is defined in (2.4).
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4. Spreading speed properties. The aim of this section is to prove Theorems
2.3 and 2.4.

4.1. The case R0 ≤ 1. The aim of this section is to prove Theorem 2.3. The
dynamical properties of (1.1)–(1.3) when R0 ≤ 1 are rather simple, and the epizootic
cannot propagate and uniformly dies out. In order to prove this result we will first
prove the following lemma.

Lemma 4.1. Let Assumptions 2.1 and 2.2 be satisfied and assume that R0 ≤ 1.
Let {tk}k≥0 be a given sequence of positive numbers tending to ∞ as k → ∞. Let
{xk}k≥0 be a sequence of real numbers such that |xk| → ∞ as k → ∞. Then one has
up to a subsequence

lim
k→∞

U(t+ tk, x+ xk, y) = 0 locally uniformly for (t, x, y) ∈ R× Σ,

where U is the solution of (3.5).
Proof. Assume, without loss of generality, that xk → ∞ as k → ∞. Then consider

the sequence of map {Uk} defined by Uk(t, x, y) = U(t+ tk, x+ xk, y), which satisfies

(∂t −Δx,y + α)Uk(t, x, y) = σ

∫ t+tk

0

β(a)S0(y)
(
1− e−Uk(t−a,x,y)

)
da

+ u0(t+ tk, x+ xk, y),

∇yUk(t, x, y) · νΩ(y) = 0, t > −tk, x ∈ R, y ∈ ∂Ω,

Uk(−tk, x, y) ≡ 0.

(4.1)

Note that for each k ≥ 0, Uk is increasing with respect to time. Due to Lemma 3.2
and parabolic regularity, one may assume that {Uk}k≥0 converges to some function
U∞ ≡ U∞(t, x, y) locally uniformly for (t, x, y) ∈ R× Σ, which satisfies

(∂t −Δx,y + α)U∞(t, x, y) = σ

∫ ∞

0

β(a)S0(y)
(
1− e−U∞(t−a,x,y)

)
da,

∇yU∞(t, x, y) · νΩ(y) = 0, t ∈ R, x ∈ R, y ∈ ∂Ω.

(4.2)

We claim that U∞ ≡ 0. To prove this, since U∞ is increasing with respect to time,
let us consider

Û(x, y) := lim
t→∞U∞(t, x, y).

Note that it satisfies

(−Δx,y + α) Û(x, y) = σ

∫ ∞

0

β(a)daS0(y)
(
1− e−Û(x,y)

)
,

∇yÛ(x, y) · νΩ(y) = 0, t ∈ R, x ∈ R, y ∈ ∂Ω.

(4.3)

Since R0 ≤ 1, the only positive solution of the above equation is the zero solution
Û ≡ 0, and the result follows.

It remains to prove Theorem 2.3.
Proof of Theorem 2.3. We will first prove that the C-component uniformly dies

out. Let us first notice that since the U(t, x, y) is uniformly bounded, and due to the
definition of U , one obtains that

lim
t→∞C(t, x, y) = 0 locally uniformly for (x, y) ∈ Σ.
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Assume that there exists a sequence (xk, yk) ∈ (0,∞)× Σ with tk → ∞ and

lim inf
k→∞

C(tk, xk, yk) > 0.

Due to the aforementioned remark, one obtains that |xk| → ∞. Next consider
Uk(t, x, y) := U(t + tk, x + xk, y). Then, due to Lemma 3.2 and parabolic regu-
larity, one gets that ∂tUk(0, 0, yk) → 0 as k → ∞, a contradiction. This completes
the proof of the result for the C-component of the system.

To complete the proof of Theorem 2.3, it remains to prove the behavior of the S-
and i-components. Let ε : [0,∞) → [0,∞) be a given function such that ε(t) → ∞ as
t→ ∞. Then according to Lemma 4.1 one obtains that

lim
t→∞ sup

|x|≥ε(t), y∈Ω

U(t, x, y) = 0.

The result therefore follows from the expression of S given in Definition 3.2. The result
for the i-component directly follows from the expression of i given in (3.3).

4.2. Outer spreading speed. The following lemma holds true.
Lemma 4.2. Let Assumptions 2.1 and 2.2 be satisfied. Assume furthermore that

R0 > 1. Then for each c > c∗ defined in (2.5) one has

lim
t→∞ sup

|x|≥ct

sup
y∈Ω

U(t, x, y)ds = 0,

where U is the solution of (3.5).
Proof. Let c > c∗ be given. According to Definition 3.9, there exists λ > 0 such

that

L(λ, c) < 0.

Let ϕ > 0 be defined as

Δϕ+ σβ̂(cλ)S0(y)ϕ = Λ
(
σβ̂(cλ)S0(·)

)
ϕ.

Consider the map U(t, x, y) = Me−λ(x−ct)ϕ(y), where M > 0 constant that will
be chosen latter on so that

(∂t −Δx,y + α)U(t, x, y)− σ

∫ t

0

β(a)S0(y)U(t− a, x, y)da− u0(t, x, y) ≥ 0.

This leads us to{
cλ− λ2 + α+ σβ̂(cλ)S0(y)− Λ

(
σβ̂(cλ)S0(·)

)}
e−λ(x−ct)ϕ(y)

− e−λ(x−ct)ϕ(y)σ

∫ t

0

β(a)S0(y)e
−cλa − 1

M
u0(t, x, y) ≥ 0.

This can be rewritten as

− L(λ, c)e−λ(x−ct)ϕ(y)

+ σS0(y)e
−λ(x−ct)ϕ(y)

{
β̂(cλ)−

∫ t

0

β(a)e−cλada

}
− 1

M
u0(t, x, y) ≥ 0.

D
ow

nl
oa

de
d 

11
/1

5/
12

 to
 1

47
.2

10
.1

06
.1

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1130 C. BEAUMONT, J.-B. BURIE, A. DUCROT, AND P. ZONGO

Now according to Assumption 2.2 there exists some constant N such that

u0(t, x, y) ≤ Ne−λxϕ(y) ∀(x, y) ∈ Σ,

so that it is sufficient to have

−L(λ, c)eλct + σS0(y)e
λct

{∫ ∞

t

β(a)e−λada

}
≥ N

M
.

Since −L(λ, c) > 0, the result follows when M > 0 is large enough.
Using the same supersolution argument, one can derive the following result for

the C-equation.
Lemma 4.3. Let Assumptions 2.1 and 2.2 be satisfied. Then for each c > c∗ one

has

lim
t→∞ sup

|x|≥ct

sup
y∈Ω

C(t, x, y)ds = 0.

If furthermore i0 ≡ 0, then there exists M > 0 such that

C(t, x, y) ≤Me−λ∗(x−c∗t),

where λ∗ > 0 satisfies

L (λ∗, c∗) = 0.

This lemma completes the proof of Theorem 2.4 (i) for the C-component. The
proof of the outer spreading speed for the i-component comes from (3.3). Let us also
notice that using such a formulation for i, one can also obtain that for each τ ≥ 0,
h > 0, and c > c∗,

lim
t→∞ sup

|x|≥ct; y∈Ω

∫ τ+h

τ

i(t, a, x, y)da = 0.

Note that the outer spreading speed for the S-component (namely, Theorem 2.4 (iii))
follows from the expression of S given in Definition 3.1.

4.3. Inner spreading speed and consequences. The aim of this section is
to deal with the inner spreading speed and discuss some important consequences of
this. Our first result relies on deriving the inner spreading speed for function U , the
solution of (3.5). The result reads as follows.

Theorem 4.4. Let Assumptions 2.1 and 2.2 be satisfied. Assume furthermore
that R0 > 1. Then for each c ∈ (0, c∗) one has

lim inf
t→∞ inf

|x|≤ct
U(t, x, y) ≥ U∗(y),

uniformly with respect to y ∈ Ω. Here remember that U∗ is the unique nonnegative
solution provided by Lemma 3.6.

The proof of this result will rely on the introduction of a suitable and well-known
auxiliary reaction-diffusion equation with time delay to compare with the solution U .
Do to this, for each τ > 0 and δ ∈ [0, 1), let us consider

R(τ, δ) =
1

α
Λ

(
σ(1− δ)

∫ τ

0

β(a)daS0(·)
)
.
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Since R0 > 1, there exists τ0 > 0 and δ0 > 0 such that

R(τ, δ) > 1 ∀τ > τ0, δ ∈ (0, δ0).

Next, for each τ > τ0 and δ ∈ (0, δ0), consider the map

Lτ,δ(λ, c) = λ2 − cλ− α+ Λ
(
(1− δ)σβ̂1(0,τ)(cλ)S0(·)

)
,

and let us define c∗τ,δ similarly to c∗ (see Definition 3.9).
Lemma 4.5. One has for each τ > τ0

c∗τ,δ ↗ c∗τ,0 as δ ↘ 0

and

c∗τ,0 ↗ c∗ as τ ↗ ∞.

Proof. Let τ > τ0 be given. Then since Lτ,δ ≤ Lτ,0 ≤ L, one obtains from the
definition of c∗ that

c∗τ,δ ≤ c∗τ,0 ∀δ ∈ [0, δ0).

Consider a sequence {δn}n≥0 ⊂ [0, δ0) that is decreasing and tends to zero. Next
consider the following for each n ≥ 0: c∗n := c∗τ,δn . Since Lτ,δ is decreasing with
respect to δ, it is easy to see that the sequence {c∗n}n≥0 is increasing. Furthermore,
from the definition of c∗n, for each n ≥ 0 there exists λn > 0 such that

Lτ,δn(λn, cn) = 0.

Therefore λ2n − c∗nλn − α ≤ 0 so that {λn}n≥0 is bounded. Up to a subsequence, one
may assume that λn → λ∞ ≥ 0, so that if we denote by ĉ := limn→∞ c∗n, one has

Lτ,0 (λ∞, ĉ) = 0.

As a consequence, one obtains that c∗τ ≥ ĉ and the result follows.
Next let us consider the following auxiliary reaction-diffusion equation with time

delay:

(∂t −Δ+ α) V (t, x, y) = σS0(y)

∫ 0

−τ

β(−θ)f (Vt(θ, x, y)) dθ, t > 0, (x, y) ∈ Σ,

∇yV (t, x, y) · νΩ(y) = 0, t > 0, (x, y) ∈ R× ∂Ω,

(4.4)

supplemented with some initial datum

V0(θ, x, y) = v0(θ, x, y), (θ, (x, y)) ∈ [−τ, 0]× Σ.

Here we have set Vt(θ, x, y) = V (t+ θ, x, y).
From the theory developed by Liang and Zhao in [21] and the first property in

Lemma 4.5, the following result holds true.
Lemma 4.6. Let Assumption 2.1 be satisfied. Let τ > τ0 be given. Then for each

c ∈ (
0, c∗τ,0

)
and each v0 ≡ v0(θ, x, y) belonging in C+

(
[−τ, 0];C (

Σ
)) \ {0}, there

exists δ > 0 such that

lim inf
t→∞ inf

|x|≤ct, y∈Ω
V (t, x, y) ≥ δ.
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We are now able to use (4.4) as well as Lemma 4.6 to prove the following first
result.

Lemma 4.7. Let Assumptions 2.1 and 2.2 be satisfied. Assume furthermore that
R0 > 1. Then for each c ∈ (0, c∗) there exists δ > 0 such that

lim inf
t→∞ inf

|x|≤ct, y∈Ω
U(t, x, y) ≥ δ.

Proof. Let c ∈ (0, c∗) be given. Then according to Lemma 4.5, there exists τ > 0
large enough such that

c < c∗τ,0.

Consider U as a solution of (3.5). Then for each t > τ one has

(∂t −Δ+ α)U(t, x)− σS0(y)

∫ τ

0

β(a)f (U(t− a, x, y)) ≥ 0.

As a consequence, if we choose v0 ≡ v0(θ, x, y) such that

v0 ∈ C+

(
[−τ, 0];C (

Σ
)) \ {0},

v0(θ, x, y) ≤ U(τ + θ, x, y) ∀(θ, x, y) ∈ [−τ, 0]× Σ,

one obtains from the comparison principle that

Vt(θ, x, y) ≤ U(t+ τ + θ, x, y) ∀t ≥ 0, ∀(θ, x, y) ∈ [−τ, 0]× Σ,

wherein Vt denotes the solution of (4.4) with initial datum v0. Since c ∈
(
0, c∗τ,0

)
, the

result follows by applying Lemma 4.6.
Next let us prove the following lemma.
Lemma 4.8. Let Assumption 2.1 be satisfied. Assume that there exists c0 > 0

and δ > 0 such that

lim inf
t→∞ inf

|x|≤c0t, y∈Ω
U(t, x, y) ≥ δ.

Then for each sequence {tk} tending to ∞ and {xk} ⊂ R such that

lim
k→∞

|xk| = ∞ and lim sup
k→∞

|xk|
tk

< c0,

up to a subsequence one has

lim
k→∞

U(t+ tk, x+ xk, y) = U∗(y)

locally uniformly for (t, x, y) ∈ R× Σ.
Proof. Let us notice that for each (t, x, y) ∈ R × Σ there exists k0 > 0 large

enough such that

|x+ xk| < c0(t+ tk) ∀k ≥ k0.

As a consequence, if we set Uk(t, x, y) := U(t+ tk, x+xk, y), one obtains that for each
(t, x, y) ∈ R× Σ, there exists k1 > 0 large enough such that

Uk(t, x, y) ≥ δ

2
.
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Due to this property as well as parabolic estimates, one may assume (possibly up to a
subsequence) that Uk(t, x, y) converges locally uniformly to some function U∞(t, x, y)
satisfying

U∞(t, x, y) ≥ δ

2
∀(t, x, y) ∈ R× Σ,

and since |xk| → ∞, U∞ satisfies, for all (t, x, y) ∈ R× Σ,

(∂t −Δx,y + α)U∞(t, x, y) = σS0(y)

∫ ∞

0

β(a)
(
1− e−U∞(t−a,x,y)

)
da,

∇yU∞(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ R× R× ∂Ω.

Then one obtains that U∞(t, x, y) ≡ U∗(y) and the result follows.
As a consequence, one obtains the following result that completes the proof of

Theorem 4.4.
Lemma 4.9. Let Assumption 2.1 be satisfied. Assume that there exist c0 > 0 and

δ > 0 such that

lim inf
t→∞ inf

|x|≤c0t, y∈Ω
U(t, x, y) ≥ δ.

Then one has for each c ∈ (0, c0)

lim inf
t→∞ inf

|x|≤ct
U(t, x, y) ≥ U∗(y)

uniformly with respect to y ∈ Ω.
Proof. Let us argue by contradiction by assuming that there exist c ∈ (0, c0), a

sequence {tk}k≥0 tending to infinity as k → ∞, a sequence {xk}k≥0 with |xk| ≤ ctk,
{yk} ⊂ Ω, and ε > 0 such that

(4.5) U(tk, xk, yk) < U∗(yk)− ε ∀k ≥ 0.

Let us first assume that up to a subsequence, |xk| → ∞ as k → ∞ while yk → y∞ ∈ Ω
as k → ∞. Then due to Lemma 4.8 one gets

lim
k→∞

U(tk, xk, yk) = U∗(y∞),

a contradiction. As a consequence, the sequence {xk} is bounded, and up to a sub-
sequence, it converges to x∞ while yk → y∞. Next recall that U is increasing with
respect to time and uniformly bounded due to Lemma 3.2 so that there exists a map
U ≡ U(x, y) such that

lim
t→∞U(t, x, y) = U(x, y)

locally uniformly for (x, y) ∈ Σ and where U satisfies

(−Δx,y + α)U(x, y) = σ

∫ ∞

0

β(a)daS0(x, y)
(
1− e−U(x,y)

)
da+ û0(x, y),

∇yU(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

and wherein we have set

û0(x, y) = σ

(
C0(x, y) +

∫ ∞

0

∫ ∞

s

β(a)i0(a− s, x, y)dads

)
.
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Since û0 ≥ 0, one obtains that U(x, y) ≥ U∗(y) and therefore

lim
k→∞

U(tk, xk, yk) = U (x∞, y∞) ≥ U∗ (y∞) ,

a contradiction with (4.5). The result follows.
In order to prove that the C-component has an asymptotic pulse shape, let us

prove the following result.
Lemma 4.10. Let Assumption 2.1 be satisfied. Assume that there exist c0 > 0

and δ > 0 such that

lim inf
t→∞ inf

|x|≤c0t, y∈Ω
U(t, x, y) ≥ δ.

Then one has for each c ∈ (0, c0)

lim
t→∞ sup

|x|≤ct, y∈Ω

C(t, x, y) = 0.

This result follows from Lemma 4.8 together with the same arguments as that
of Lemma 4.9. The details are left to the reader. Note that this lemma completes
the proof of Theorem 2.4 (ii) for the C-component. Once again, the proof of the
behavior for i-component comes from (3.3), while the inner spreading speed for the
S-component (namely, Theorem 2.4 (iv)) follows from the expression of S given in
Definition 3.2. Here again, using such a formulation for i, one can also obtain that
for each τ ≥ 0, h > 0, and c ∈ (0, c∗),

lim
t→∞ sup

|x|≤ct; y∈Ω

∫ τ+h

τ

i(t, a, x, y)da = 0.

We are now able to prove the first part of Theorem 2.4, which is the persistence
of the disease.

Proof of the first part of Theorem 2.4: (2.6) and (2.7). Let us first derive a
stronger result than the one stated in (2.6). To be more precise, let us prove that the
following lemma holds true.

Lemma 4.11 (stronger form of (2.6)). Let Assumptions 2.2 and 2.1 be satisfied.
If R0 > 1, then the epizootic persists, in the sense that

lim inf
t→∞ sup

x∈R

min
y∈Ω

C(t, x, y) > 0.

Proof. We will argue by contradiction by assuming that there exists a sequence
{tk}k≥0 tending to infinity as k → ∞ and such that

lim inf
k→∞

sup
x∈R

min
y∈Ω

C (tk, x, y) = 0.

Note that due to the spreading speed property for U provided by Theorem 4.4 and
Lemma 4.2, for each ε > 0, there exists a sequence {xk}k≥0 ⊂ R such that for all
y ∈ Ω

(4.6) ε ≤ U(tk, xk, y) ≤ inf
y∈Ω

U∗(y)− ε,

where U∗ is provided by Lemma 3.6. For each k ≥ 0, consider {yk} ⊂ Ω such that

min
y∈Ω

C (tk, xk, y) = C (tk, xk, yk) .
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PROPAGATION OF SALMONELLA 1135

Without loss of generality, one may assume

lim
k→∞

yk = y∞ ∈ Ω.

Consider now the sequence of map Uk(t, x, y) = U(t+ tk, x+ xk, y). Then it satisfies

(∂t −Δ+ α)Uk(t, x, y) = σS0(y)

∫ ∞

0

β(a)
(
1− e−Uk(t−a,x,y)

)
da,

∇yUk(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ (−tk,∞)× R× ∂Ω.

Due to parabolic estimates, one may assume that Uk → U∞, for some function U∞,
locally uniformly. Furthermore, if we remember that

Uk(t, x, y) =

∫ t+tk

0

C(s, x + xk, y)ds,

one concludes that

∂tUk(t, x, y) = C(t+ tk, x+ xk, y),

so that, due to the definition of {yk},
∂tU∞(0, x, y∞) ≡ 0,

and due to (4.6), U∞ satisfies for each y ∈ Ω

ε ≤ U∞(0, 0, y) ≤ inf
y∈Ω

U∗(y)− ε,

while U∞ satisfies

(∂t −Δx,y + α)U∞(t, x, y) = σS0(y)

∫ ∞

0

β(a)
(
1− e−U∞(t−a,x,y)

)
da,

∇yU∞(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ R× R× ∂Ω.

Let us notice that the condition ∂tU∞ (0, x, y∞) ≡ 0 together with the strong com-
parison principle implies that

∂tU∞(t, x, y) ≡ 0 ∀(t, x, y) ∈ R× R× Ω,

so that U∞(t, x, y) ≡ U∞(x, y), which satisfies

(4.7) ε ≤ U∞(0, y) ≤ inf
y∈Ω

U∗(y)− ε,

while U∞ satisfies

(α−Δx,y)U∞(x, y) = σS0(y)

∫ ∞

0

β(a)da
(
1− e−U∞(x,y)

)
,

∇yU∞(x, y) · νΩ(y) = 0, (x, y) ∈ R× R× ∂Ω.

If one finally considers a smooth positive function w0 ≡ w0(x, y) such that

w0(x, y) ≤ U∞(x, y), ∀(x, y) ∈ Σ,
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1136 C. BEAUMONT, J.-B. BURIE, A. DUCROT, AND P. ZONGO

(note that the latter is possible since U∞ �≡ 0 (see (4.7))), due to the comparison
principle, one obtains that

w(t, x, y) ≤ U∞(x, y) ∀(t, x, y) ∈ [0,∞)× Σ,

wherein we have set w as the solution of the Fisher-KPP equation:

(∂t −Δx,y + α)w(t, x, y) = σS0(y)

∫ ∞

0

β(a)da
(
1− e−w(t,x,y)

)
,

∇yw(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ (0,∞)× R× ∂Ω,

w(0, x, y) = w0(x, y).

Recall that R0 > 1 and w0 �≡ 0, so that

lim
t→∞w(t, x, y) = U∗(y) locally uniformly,

and therefore U∗(y) ≤ U∞(x, y) for all (x, y) ∈ Σ, a contradiction with (4.7). This
completes the proof of the lemma and therefore (2.6).

In order to consider the proof of (2.7), recall that relation (ii) of Definition 3.1
holds true. Then according to Lemma 3.2 there exists some constant K > 0 such that
for all t > 0, (x, y) ∈ Σ,

i(t, 0, x, y) ≥ KS0(y)C(t, x, y) ≥ KS0(y)min
y∈Ω

C(t, x, y).

Then for each ϕ ∈ L1
+(Ω) one has∫

Ω

ϕ(y)i(t, 0, x, y)dy ≥ K

(∫
Ω

ϕ(y)S0(y)dy

)
min
y∈Ω

C(t, x, y).

If we set δ > 0 defined by

δ := lim inf
t→∞ sup

x∈R

min
y∈Ω

C(t, x, y),

then (2.7) follows.
Remark 4.12. Using once again the formula (ii) in Definition 3.1, one can prove

that there exists δ > 0 such that for each τ ≥ 0 and h > 0 one has for each ϕ ∈ L1
+(Ω)

lim inf
t→∞ sup

x∈R

∫
Ω

∫ τ+h

τ

ϕ(y)i(t, a, x, y)dady ≥ hδ

∫
Ω

ϕ(y)S0(y)dy.

5. Proofs of Theorems 2.6 and 2.7.

5.1. Proof of Theorem 2.6. The proof of the existence of traveling wave so-
lutions for system (1.1) is strongly related to Lemma 3.7. According to this reformu-
lation, to prove Theorem 2.6, it is sufficient to prove the following lemma.

Lemma 5.1. Let Assumption 2.1 be satisfied. Let S0 ∈ L∞
+ (Ω) be given and

assume that R0 > 1. Then for each c ≥ c∗, system (3.10) has a nonincreasing

solution Û .
Due to the applicability of the comparison principle for this nonlocal elliptic

problem, the proof of this result is standard. The case c > c∗ can be handled by
the construction of suitable sub- and supersolutions. The problem is then solved by
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PROPAGATION OF SALMONELLA 1137

using a monotone iterative scheme. The case c = c∗ is obtained by passing to the
limit c ↘ c∗ and using an arbitrary normalization of the solution to take care of the
translation invariance. We refer the reader to, for instance, the works of Diekmann
[9, 10], Liang and Zhao [21], Thieme and Zhao [41], the monograph of Rass and
Radcliffe [34] (and the references cited therein), and Zou and Wu [52] (we also refer
the reader to [11, 12, 23, 47] and the references cited therein for examples of fixed
point arguments).

Here we will only give a sketch of the proof in the case c > c∗ and, more precisely,
we only focus on the construction of suitable sub- and supersolutions for system (3.10).

Let c > c∗ be given and fixed. Since c > c∗, according to Definition 3.9 and
Lemma 3.8 (iii), the equation L(λ, c) = 0 has two solutions denoted by 0 < λ < λ∗.
Consider now an associated eigenvector ϕ ∈ W 2,∞(Ω) corresponding to the following
eigenvalue problem:

Δϕ+
(
λ2 − cλ− α+ σS0(y)β̂(λc)

)
ϕ = 0 in Ω,

∇ϕ(y) · νΩ(y) = 0, y ∈ ∂Ω and ϕ > 0.

Next consider the maps defined by

u(x, y) = e−λxϕ(y).

Then the following lemma holds true.
Lemma 5.2. Functions u satisfy

− (Δ + c∂x − α)u(x, y) = σS0(y)

∫ ∞

0

β(a)u(x+ ca, y)da,

∇u(x, y) · νΣ(x, y) = 0, (x, y) ∈ R× ∂Ω.

According to Lemma 3.8 (iii) and due to the definition of λ, there exists η ∈ (0, λ)
such that

L(λ + η, c) < 0.

Consider ϕη ∈ W 2,∞(Ω) a nonnegative eigenvector of operator Aλ+η,c (defined in
(3.12)) associated to its principal eigenvalue L(λ + η, c). Then the following lemma
holds true.

Lemma 5.3. Let κ > 0 be given. There exists k = kκ > 0 large enough such that
the map

w(x, y) = e−λxϕ(y)− ke−(λ+η)xϕη(y)

satisfies
(5.1)

− (Δ + c∂x + α)w(x, y) ≤ σS0(y)

∫ ∞

0

β(a)w(x + ca, y)
(
1− κe−λ(x+ca)ϕ(y)

)+

da

on the set {(x, y) ∈ R× Ω : w(x, y) ≥ 0}.
Proof. Let us set

(5.2) xk =
1

η
ln
k infΩ ϕη

supΩ ϕ
.
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Then we have

Σk := [xk,∞)× Ω ⊂ {(x, y) ∈ R× Ω : w(x, y) ≥ 0}.
We shall show that (5.1) holds true in Σk when k is large enough. Let us first choose
k > 0 so that

(5.3) 1 ≥ κe−λxϕ(y) ∀(x, y) ∈ Σk.

Next, inequality (5.1) can be rewritten for all (x, y) ∈ Σk as

e−λx
(
σS0(y)β̂(cλ)

)
ϕ+ ke−(λ+η)x

(
L(λ + η, c)ϕη − σS0(y)β̂ (c(λ+ η))ϕη

)
≤ σS0(y)

∫ ∞

0

β(a)e−λ(x+ca)ϕ(y)
(
1− κe−λ(x+ca)ϕ(y)

)
da

− kσS0(y)

∫ ∞

0

β(a)σe−(λ+η)(x+ca)ϕη(y)
(
1− κe−λ(x+ca)ϕ(y)

)
da.

This in turn can be rewritten as

kL(λ + η, c)ϕη ≤ −κσS0(y)ϕ(y)
2e(η−λ)x

∫ ∞

0

β(l)e−2λcldl

+ kκσS0(y)ϕη(y)ϕ(y)e
−λx

∫ ∞

0

β(l)e−(2λ+η)cldl.

Recalling that L(λ+ η, c) < 0, one obtains that

κσS0(y)ϕ(y)
2e(η−λ)xβ̂(2λc)

≤ kϕη(y)
{
−L(λ+ η, c) + κσS0(y)ϕη(y)ϕ(y)e

−λxβ̂ ((2λ+ η) c)
}
.

Therefore since η − λ < 0, for (5.1) to be satisfied, it is sufficient to have

κσ sup
y∈Ω

{S0(y)ϕ(y)
2}e(η−λ)xk β̂(2λc) ≤ k inf

Ω
ϕη {−L(λ+ η, c)} .

Recalling definition (5.2), this can be rewritten as

κσ sup
y∈Ω

{S0(y)ϕ(y)
2}

{
infΩ ϕη

supΩ ϕ

}1−λ
η

β̂(2λc) ≤ k
λ
η inf

Ω
ϕη {−L(λ+ η, c)} .

The latter inequality holds true when k is large enough. This completes the proof of
the lemma.

To complete the sketch of the proof of existence of traveling waves for (3.10), let
us notice that there exists κ > 0 large enough such that

(5.4) 1− e−U ≥ U (1− κU) ∀U ≥ 0.

Next we set

U(x, y) = min (U∗(y), u(x, y)) ,

where U∗ is defined by Lemma 3.6, while u is defined in Lemma 5.2. For κ > 0 defined
in (5.4), we consider

U(x, y) = max (w(x, y), 0) ,
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wherein w is defined in Lemma 5.3. Using these functions as sub- and supersolutions,
one checks by using a monotone iterative scheme, for instance, that Lemma 5.1 holds
true for any c > c∗. The details are left to the reader, as is the limit argument c↘ c∗

used to obtain the existence of solution for this critical speed (we refer the reader to,
for instance, [11] for such an argument).

5.2. Proof of Theorem 2.7. The aim of this section is to prove Theorem 2.7.
The proof of this result is related to Lemma 3.7 and Theorem 4.4. Let us assume that
R0 > 1, and let us argue by contradiction by assuming that there exists a traveling
solution of system (1.1) for some wave speed c ∈ (0, c∗). Then according to Lemma

3.7, this implies that there exists Û , a nonincreasing solution of the following equation:

− (Δ + c∂x − α) Û(x, y) = σS0(y)

∫ ∞

0

β (l)
(
1− e−Û(x+cl,y)

)
dl,

∇yÛ(x, y) · νΩ(y) = 0, x ∈ R, y ∈ ∂Ω,

lim
x→∞ Û(x, y) = 0, lim

x→−∞ Û(x, y) = U∗(y) ∀y ∈ Ω.

(5.5)

Let us notice that the function U(t, x, y) = Û(x − ct, y) satisfies

(∂t −Δ− α)U(t, x, y) = σS0(y)

∫ ∞

0

β (l)
(
1− e−U(t−l,x,y)

)
dl,

∇yU(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ R× Σ.

This can be rewritten as

(∂t −Δ− α)U(t, x, y) = σS0(y)

∫ t

0

β (l)
(
1− e−U(t−l,x,y)

)
dl + U0(t, x, y),

∇yU(t, x, y) · νΩ(y) = 0, (t, x, y) ∈ R× Σ,

with

U0(t, x, y) = σS0(y)

∫ ∞

t

β (l)
(
1− e−U(t−l,x,y)

)
dl.

According to the spreading speed property provided by Theorem 4.4, if we choose
c0 ∈ (c, c∗), one obtains that

lim inf
t→∞ U(t, c0t, y) ≥ U∗(y)

uniformly with respect to y ∈ Ω. If we come back to the definition of U in terms of
function Û , this can be rewritten as

lim inf
t→∞ Û ((c0 − c) t, y) ≥ U∗(y).

However, since c0 − c > 0, (5.5) provides that

lim
x→∞ Û (x, y) = 0,

which leads us to a contradiction and completes the proof of Theorem 2.7.
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6. Minimization of the parameter R0 and of the propagation speed.

6.1. Proof of Theorem 2.8. The proof of Theorem 2.8 is a direct consequence
of the following lemma.

Lemma 6.1. Let m > 0 be given. Then one has

inf
γ∈Aad(m)

Λ(γ) = Λ (m) ,

where

Aad(m) =

{
γ ∈ L∞

+ (Ω) :
1

|Ω|
∫
Ω

γ(y)dy = m

}
.

Proof. Let us recall that for each γ ∈ Aad(m) one has

Λ(γ) = − inf
ϕ∈H1(Ω), ‖ϕ‖L2(Ω)=1

{∫
Ω

|∇ϕ(y)|2 − γ(y)ϕ(y)2dy

}
.

This implies (by taking ϕ(y) ≡ |Ω|−1/2) that for each γ ∈ Aad(m)

Λ(γ) ≥ 1

|Ω|
∫
Ω

γ(y)dy ≥ m.

Thus we get that

m ≤ inf
γ∈Aad(m)

Λ(γ).

On the other hand, one has m ∈ Aad(m) and Λ(m) = m. This completes the proof
of the lemma.

6.2. Proof of Theorem 2.10. The aim of this section is to prove Theorem
2.10. Recalling Assumption 2.9, let us first notice that for each L > 0 one has

Λ(SL) = − inf
ϕ∈H1(0,1), ‖ϕ‖L2(0,1)=1

{
1

L2

∫
Ω

|∇ϕ(y)|2 − S0(y)ϕ(y)
2dy

}
.

Thus, the above variational formulation shows that the map L �→ Λ(SL) is increasing.
Thus, due to the definition of R0(L) given in (2.2), one concludes that the map
L �→ R0(L) is increasing. Moreover, since we have

lim
L↗∞

Λ(SL) = ‖S0‖∞,

we get that

lim
L→∞

R0(L) = R∞
0 :=

σ‖S0‖∞
α

∫ ∞

0

β(l)dl.

The monotonic property as well as the converge of the minimal wave speed c∗(L)
when L→ ∞ follow the same arguments.
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Table 7.1

Baseline values of the model parameters.

Description Dimension Values Sources

α Mortality rate of the bacteria Day−1 0.1 [32, 33, 51]
D Diffusion coeff. of bacterial dispersion m2 ·Day−1 0.01 [32, 51]
θ Normalization param. for excretion rate cfu ·Day−2 413.22 [51]
τ1 Length of the latency period Day 1 [42, 51]
τ2 Length of the infectious period Day 23 [32, 33, 51]
Lx Length of the hen house m 30 from [51]
Ly Width of the hen house m 15 from [51]
σ Transmission rate Day−1 10−5 estimated from [51]

7. Numerical experiments. In this section, we present some numerical simu-
lations to illustrate our theoretical results. We used a finite difference method (see,
e.g., [30]). The numerical scheme is detailed in the appendix and was implemented
using MATLAB (www.matlab.org).

For the computation, the ideal case of an infinite domain in the x-direction will be
approximated by setting Σ = (0, Lx)× Ω with Ω = (0, Ly), where Lx and Ly are the
length and width of the hen house, respectively. Then we supplement model equations
(1.1)–(1.2) with no flux boundary conditions at x = 0 and x = Lx by setting

(7.1) ∇C(t, x, y) · νΣ(x, y) = 0, (t, y) ∈ (0,∞)× R× Ω, x = 0, Lx.

We start this section by retrieving relevant values for the parameters of model
(1.1)–(1.2)–(7.1) from previous works [31, 32, 33, 51].

7.1. Model calibration. The list of the parameters of our model as well as
their values are summarized in Table 7.1.

The values of the the mortality rate of the bacteria, α, for the diffusion coefficient
of bacteria in the environment, D, are explicitly given in [32, 33, 51] and equal 0.1
Day−1 and 0.01 m2 ·Day−1, respectively.

We choose the excretion rate of hens with respect to age a to be a function of the
form

(7.2) β(a) =

{
θ · (τ1 − a)(a− (τ1 + τ2)) if a ∈ [τ1; τ1 + τ2],
0 otherwise,

where τ1 (resp., τ2) is the mean duration of the latency (resp., infectious) period, and
θ is set to 413.22 cfu ·Day−2 so that the maximal value of β equals 5.104 cfu (colony
forming unit) as in [51]. As in [42, 51], animals begin to excrete bacteria one day
post-inoculation, hence τ1 = 1 Day. Since hens excrete bacteria in the environment
at digestive and systemic states, then the length of the infectious period τ2 is the
sum of the average durations of the digestive period and of the systemic period, i.e.,
τ2 = 2 + 21 = 23 Days from [32, 33].

In what follows, we will focus on the density of infectious hens at time t and
position (x, y) defined as

(7.3) I(t, x, y) =

∫ τ1+τ2

τ1

i(t, s, x, y)ds.

To estimate a realistic value of the disease transmission σ, we numerically repro-
duce the results of one of the simulation scenarios described on Figure 8(a) in [51].
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(a) Distribution of susceptible hens at
Day 0 in the hen house.
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(b) Distribution of susceptible hens at
Day 0 along the section of the hen house.

(c) Density of infectious hens at Days 0,
100, and 180 in the hen house.

(d) Evolution of the infectious hens density
summed along the x-direction.

Fig. 7.1. Results of simulations achieved with estimated parameters in Table 7.1. (a), (b)
Distribution of susceptible hens at Day 0. (c) Superimposed infectious hens densities I defined by
(7.3) at Days 0, 100, and 180; the epizootic starts at Day 0 in the corner located at (0,0) and reaches

the last row around Day 100 as in Figure 8(a) in [51]. (d) Infectious hens density
∫ 30
0

I(t, x, y) dx
depending on width (y) and time (t) in days; the result is similar to Figure 8(a) in [51].

In this scenario, the hen house is 15 m wide (Ly) and 30 m long (Lx). Moreover,
the distribution of the hens in the hen house is not uniform. Indeed the hen house
contains 8 rows of cages separated by hen-free intervals of 1 m, the hens density in the
cages is uniform and equals 10 hens per m2. The corresponding initial distribution of
the hens density S0(y) is displayed in Figures 7.1(a) and (b). At Day 0, one hen in
the corner is inoculated.

Now notice that the higher the value of the disease transmission rate σ, the sooner
the disease will reach the last row at the other side of the hen house. In Figure 8(a)
in [51], it took an average time of 100 days for the epizootic to reach this row. By
a bisection process we found that for our model, all other parameters being set as
above, the corresponding value of σ is approximately 10−5 cfu−1 ·Day−1, i.e., it is the
lowest value of σ for which the epizootic reaches the last row within 100 days. The
result of this simulation is given in Figures 7.1(c) and (d). Notice that the result of
this simulation as displayed in Figure 7.1(d) is visually similar to Figure 8(a) in [51]
as expected. Finally, in this scenario the corresponding epidemic threshold computed
with formula (2.2) is R0(S0) = 5.26.

7.2. Influence of heterogeneities in the hen density on the speed of
propagation. We now perform some simulations of the calibrated model (1.1). We
change the dimensions of the simulated hen house by setting its width Ly to 13 m

D
ow

nl
oa

de
d 

11
/1

5/
12

 to
 1

47
.2

10
.1

06
.1

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROPAGATION OF SALMONELLA 1143

(a) (b)

(c) (d)

Fig. 7.2. Results of test case 1: For a homogeneous distribution of susceptible hens S0 at
Day 0 shown in (a), the corresponding densities of infectious hens I at Days 0, 150, and 300 are
superimposed in (b). They take the form of a traveling wave solution that travels in the x-direction.
Similarly for the heterogeneous distribution in (c), the corresponding densities of infectious hens are
superimposed in (d). The velocity of the traveling wave is higher for the heterogeneous distribution.

and length Lx to 100 m in order to be closer to the ideal case of an infinite domain
R× (0, Ly) as assumed for our theoretical results. This is also in good agreement with
the dimensions of a real industrial hen house. The duration of the simulations is set
to 300 days, which corresponds to the sojourn time of laying hens in a poultry house
before being completely removed and changed.

We compare the value of the numerically observed disease propagation speed c
along the x-axis for different distributions (along the section) of the hen density S0(y)
in two test cases. Note that in our model the distribution of the hen density along

the x-direction is uniform. In what follows, we impose that
∫ 13

0
S0(y)dy = 160. This

is some kind of normalization assumption motivated by the fact that in the case of
a homogeneous distribution the threshold R0 is proportional to the hen density (see
(2.3)).
Test case 1. To illustrate Theorem 2.8, we compare the epidemic thresholds R0 and

wave speeds c obtained for a homogeneous hen distribution S0 (Figure 7.2(a))
and for a heterogeneous one (Figure 7.2(c)). The results of the simulation at
Days 0, 150, and 200 are superimposed in Figure 7.2(b) for the homogeneous
distribution, and in Figure 7.2(d) for the heterogeneous one.
For the homogeneous distribution, the speed of propagation is c ≈ 19.80
cm/day with epidemic thresholds R0(S0) = 11.27 as given by formula (2.2).
For the heterogeneous distribution, c and R0 are higher, as predicted by
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(a) (b)

(c) (d)

Fig. 7.3. Results of test case 2: For two heterogeneous distributions of susceptible hens S0 at
Day 0 shown in (a) (resp., (c)), the corresponding densities of infectious hens I at Days 0, 150,
and 300 are superimposed in (b) (resp., (d)). The velocity of the observed traveling wave is higher
for the heterogeneous distribution S0 in (c) that has a higher maximum than the one in (a).

Theorem 2.8: the speed of propagation is equal to c ≈ 22.88 cm/day and
R0(S0) = 17.35

Test case 2. We now use two different initial distributions of hen density in a hen
house of 4 rows of contiguous cages as shown in Figures 7.3(a) and (c). The
corresponding simulations are displayed in Figures 7.3(b) and (d). Both dis-
tributions are heterogeneous since the hen density equals 0 between rows,
though the hens density in the cages is uniform for the first one.
We cannot use Theorem 2.8 to predict which distribution yields a higher
value of R0 and c anymore. But according to Theorem 2.10 (slow diffusion
asymptotic), which proves that these values are increasing functions of ‖S0‖∞,
the epidemic threshold R0 and wave speeds c should be higher for the initial
distribution (d) (provided the diffusion coefficient D is small enough).
For the first distribution as shown in Figure 7.3(a), the computed speed of
propagation is c ≈ 22.00 cm/day and the epidemic threshold is R0(S0) =
13.02, and R∞

0 (S0) = 18.32 is the value given by (2.8) (slow diffusion asymp-
totic value). For the initialization shown in Figure 7.3(c) the speed is c ≈
23.47 cm/day with R0(S0) = 16.04 and R∞

0 (S0) = 25.65. These results are in
agreement with Theorem 2.10 though there is a strong discrepancy between
the values of asymptotic epidemic thresholds R∞

0 (S0) and R0(S0).
All in all, test cases 1 and 2 confirm the results provided by the mathematical

analysis.
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8. Concluding remarks. In this article, we formulated a spatial age structured
model to describe the spread of Salmonella in laying hens in industrial hen houses.
Mathematical and numerical analyses of the model have been achieved. Under suitable
assumptions, the existence of a traveling wave solution is proved. This existence
property is related to the value of the epidemic threshold number R0. This latter is
correlated to the spatial distribution of susceptible hens.

Biologically relevant parameters have been estimated and used to fulfill numerical
simulations of the model. These simulations, together with Theorem 2.8, indicate that
to decrease or even stop a Salmonella epizootic, the best configuration for the hens
repartition is the homogeneous one.

In the case of a hen house set with cages in rows, numerical simulations also
indicate that the hen density should be uniform in the rows for the propagation and
disease risk to be minimal; that is, the number of hens should be the same in all
the cages, and in the case of rows with several cages stacked vertically, the number of
stacked cages should be kept constant; moreover, hen density peaks should be avoided.
This is in agreement with Theorem 2.10, which proves that, considering only the hen
density, the disease risk and propagation speed depend only on the maximal value
of the hen density inside the hen house. It is worth noting that such conditions are
usually observed when hens are reared in cages, while when they are reared on floor,
observed densities may vary to a larger extent.

Finally, this study indicates that homogeneous floor rearing seems to be a better
housing system with regards to speed of bacterial propagation. Further investigations
are needed to evaluate the difference between an on-floor cage system and a cage-free
one. However, we suspect that a cage-free system (that induces a local motion of
animals) may increase the spreading speed of the disease.

Appendix. Numerical method for solving model (1.1). The method is
based on a forward finite difference scheme in time, a centered finite difference scheme
in space, and a backward finite difference scheme in age (or equivalently a method of
characteristics).

The time interval (0, T ) is partitioned into subintervals (tn, tn+1), with a time
step δt = tn+1 − tn, n = 0, 1, 2, . . . , N .

The trapezoidal rule is used to approximate integral
∫∞
0
β(a)i(t, a, x, y)da. We

assume as in section 7 that there exists a latency period so that β(0) = 0 and that there
exists Amax such that β(a) = 0 if a ≥ Amax. The age interval (0, Amax) is partitioned
into subintervals (a�, a�+1), with an age step δa = a�+1 − a�, � = 0, 1, 2, . . . , A; we set
δa = δt for simplicity.

We use a uniform Cartesian grid (xk, yj) on the domain Σ = (0, Lx) × (0, Ly),
and we let δx and δy be the corresponding space steps.

Let Cn
k,j , S

n
k,j be an approximation of C(tn, xk, yj), S

n
k,j = S(tn, xk, yj), respec-

tively, and in�,k,j an approximation of i(tn, a�, xk, yj). An approximate solution of the
model (1.1)–(1.2)–(7.1) is given by

Sn+1
k,j − Sn

k,j

δt
= −σSn+1

k,j Cn+1
k,j ,(A.1)

in+1
�,k,j − in�,k,j

δt
= − i

n
�,k,j − in�−1,k,j

δa
,(A.2)

in+1
0,k,j = σSn+1

k,j Cn+1
k,j ,(A.3)
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Cn+1
k,j − Cn

k,j

δt
=

D

(δx)2

(
Cn+1

k+1,j − 2Cn+1
k,j + Cn+1

k−1,j

)
+

D

(δy)2

(
Cn+1

k,j+1 − 2Cn+1
k,j + Cn+1

k,j−1

)
− αCn+1

k,j + δa

A−1∑
�=1

β�i
n+1
�,k,j ,

(A.4)

Cn+1
0,j = Cn+1

1,j , Cn+1
Nx−1,j = Cn+1

Nx,j
, Cn+1

k,0 = Cn+1
k,1 , Cn+1

k,Ny−1 = Cn+1
k,Ny

.(A.5)

Now let n be given. Assume Cn
k,j , S

n
k,j , and i

n
�,k,j for all k, j, � have been computed.

We first compute in+1
�,k,j for all k, j, and � �= 0 thanks to (A.2). Then after some algebraic

manipulation, one can rewrite (A.4)–(A.5) in the form of a sparse block tridiagonal
linear system that yields Cn+1

k,j for all k, j. We then use (A.1)–(A.2) to find Sn+1
k,j and

in+1
0,k,j for all k, j.

This scheme is implicit in time, which guarantees its stability.
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