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Abstract

In this work we study the existence of wave solutions for a scalar
reaction-diffusion equation of bistable type posed in a multi-dimensional
periodic medium. Roughly speaking our result states that bistability en-
sures the existence of waves for both balanced and unbalanced reaction
term. Here the term wave is used to describe either pulsating travelling
wave or standing transition solution. As a special case we study a two-
dimensional heterogeneous Allen–Cahn equation in both cases of slowly
varying medium and rapidly oscillating medium. We prove that bista-
bility occurs in these two situations and we conclude to the existence of
waves connecting u = 0 and u = 1. Moreover in a rapidly oscillating
medium we derive a sufficient condition that guarantees the existence of
pulsating travelling waves with positive speed in each direction.

Key words: Bistable reaction-diffusion equation, periodic heterogeneities, pul-
sating travelling waves, standing transition.

1 Introduction

In this work we consider a nonlinear diffusion equation of the form

∂u

∂t
− div (A(x)∇u) = F (x, u). (1)

This equation is posed on the whole space x ∈ RN , where N is some given
positive integer, and the spatial heterogeneities are assumed to be ZN−periodic.
To be more precise we denote by TN = RN/ZN the N−dimensional torus. We
assume that A : TN → SN is a symmetric matrix valued function of the class
C1+γ for some exponent γ ∈ (0, 1), that is furthermore assumed to be uniformly
elliptic in the sense that there exists some constant α > 0 such that

α‖ξ‖2 ≤ ξTA(x)ξ ≤ α−1‖ξ‖2, ∀(x, ξ) ∈ TN × RN .
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Moreover we assume that the function F : TN × R→ R is continuous, Cγ in x
uniformly with respect to u ∈ R, of the class C1 in u uniformly with respect to
x ∈ TN while the partial derivative Fu is continuous on TN×R. In this work we
shall focus on Problem (1) under the so-called bistable assumption. In order to
state our main assumption, let us introduce the following initial data parabolic
problem endowed together periodic boundary conditions, namely posed on the
torus TN : {

∂u
∂t − div (A(x)∇u) = F (x, u), t > 0, x ∈ TN ,
u(0, .) = u0 ∈ C

(
TN
)
.

(2)

Then our main bistability assumption is stated below and it is related to the
dynamical properties of Problem (2).

Assumption 1.1 (Bistable assumption) We assume that:

(i) System (2) has two stable stationary states ψ− < ψ+ with ψ± ∈ C2
(
TN
)
.

(ii) If E denotes the set of stationary solutions of (2) in C2
(
TN
)

between ψ−

and ψ+, then all points in E \ {ψ±} are unstable with respect to (2).

In such a case, we say (2) is bistable between ψ− and ψ+.

Let us comment the above assumptions (i), (ii). Here stable (resp. unstable)
means linearly stable (resp. unstable). To formally expressed this assumption,
let us denote for each function q ≡ q(x) ∈ L∞

(
TN
)

the quantity Λ(q) ∈ R
defined as the principle periodic eigenvalue associated to the elliptic operator
div(A(x)∇·) + q(x)·. Let us furthermore recall that due to Krein-Rutmann the-
orem, such a principle periodic eigenvalue is simple and associated to a positive
eigenvector. Hence Assumption 1.1 re-writes as

Λ(qψ) < 0, ∀ψ ∈ {ψ±} and Λ(qψ) > 0, ∀ψ ∈ E \ {ψ±},

wherein we have set qψ(x) := Fu (x, ψ(x)) for any ψ ∈ E .
Before going further let us recall that for q ∈ L∞(TN ), the real number Λ(q)

can be expressed in term of Rayleigh quotient as follows:

−Λ(q) = inf
φ∈C1(TN )\{0}

∫
TN

[
∇φA(x)∇φ− q(x)φ2

]
dx∫

TN φ2dx

= inf
φ∈C1

c (RN )\{0}

∫
TN

[
∇φA(x)∇φ− q(x)φ2

]
dx∫

TN φ2dx
,

wherein C1
c denotes the set of C1−functions with compact support. Note that

this number can also be expressed in term of generalized eigenvalue λ1 and we
refer to [2, 8] and the references therein for more details.

The aim of the work is to study the existence of waves for Problem (1)
connecting the two stable stationary states u ≡ ψ− and u ≡ ψ+. To reach this
goal let us first recall the definition of a pulsating travelling wave that generalises
the usual notion of travelling wave for homogeneous reaction-diffusion equation.
Following [29, 30, 31] we define pulsating travelling waves for Problem (1) as
follows:
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Definition 1.2 (Pulsating wave) A pair (U, c) with U : R × TN → R and
c ∈ R is said to be a pulsating travelling wave of Problem (1) with effective
speed c in the direction e ∈ SN−1 connecting ψ± if the two following conditions
are satisfied:

(i) The map u(t, x) := U(x · e − ct, x) is an entire (classical) solution of the
parabolic problem (1).

(ii) The profile U satisfies

lim
s→±∞

U(s, x) = ψ±(x) uniformly for x ∈ TN .

In the sequel we shall say that a pulsating travelling wave (U, c) of Problem (1)
is:

(a) a standing pulsating wave if c = 0;

(b) a moving pulsating wave if c 6= 0.

Let us first notice that if (U, c) is a pulsating travelling wave of (1) in the
direction e ∈ SN−1 then it satisfies the limit condition (ii) in the above definition
as well as the semi-linear degenerate elliptic equation

L0U(s, x) + c∂sU + F (x, U) = 0, ∀(s, x) ∈ R× TN , (3)

wherein L0 denotes the degenerate elliptic operator

L0U = (e∂s +∇x)
T

[A(x) (e∂s +∇x)U ] .

Note also that the above definition of moving pulsating wave is equivalent
to the notion of pulsating waves introduced in [26] and further developed in
[4] (see also the references therein). To precise this let us recall that according
to [4, 26] an entire solution u ≡ u(t, x) of Problem (1) is said be a pulsating
travelling wave solution (of (1)) in the direction e ∈ SN−1 and effective speed
c 6= 0 if the two following conditions are satisfied

(i) u
(
t+ k·e

c , x
)

= u(t, x+ k), ∀(t, x, k) ∈ R× RN × ZN .

(ii) If we denote by e⊥ = {y ∈ RN : y · e = 0}, then

lim
r→±∞

|u(t, re+ y)− ψ±(re+ y)| = 0,

wherein the above limits holds locally uniformly for t ∈ R and uniformly
with respect to y ∈ e⊥.

Now observe that if (U, c) is a moving pulsating wave (in the direction e ∈ SN−1)
then u(t, x) := U(x · e − ct, x) becomes a pulsating wave with speed c in the
sense of [4, 26]. Reciprocally if u ≡ u(t, x) is a pulsating wave in the direction
e ∈ SN−1 and effective speed c 6= 0 then U(s, x) := u

(
x·e−s
c , x

)
is a moving
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pulsating wave (with speed c in the direction e) in the sense of Definition 1.2.

As it will be noticed below (see Remark 1.7 below) Problem (1) may admit
a stationary solution that is not a standing pulsating wave. For that reason we
introduce a weaker notion of standing wave that we call standing transition.
The precise definition of such a solution is detailed below.

Definition 1.3 (Standing transition) A function u ≡ u(x) is said to be a
standing transition for Problem (1) in the direction e ∈ SN−1 if u ∈ C2(RN )
is a stationary solution of (1) that satisfies the following asymptotic behaviour:

lim
r→±∞

sup
y∈e⊥

|u(re+ y)− ψ±(re+ y)| = 0.

Remark 1.4 Let us observe that if U is a standing pulsating wave profile –
in the sense of Definition 1.2 – in the direction e ∈ SN−1 then the function
u(x) := U(x · e, x) is a standing transition for Problem (1).

Note that when the medium is independent of x ∈ TN , namely A(x) = IN
and F (x, u) = f(u), then up to normalisation, bistable equation corresponds
to a reaction term f = f(u) such that f(0) = f(θ) = f(1) = 0 for some value
θ ∈ (0, 1) with f < 0 on (0, θ), f > 0 on (θ, 1) and f ′(0), f ′(1) < 0 while
f ′(θ) > 0. In such a case existence and uniqueness of travelling wave solution
is known since the works of Aronson and Weinberger [3] and Fife and McLeod
[17]. We also refer to the monograph of Volpert et al [28] for more results
about scalar equations but also monotone systems. A numerous number of
results have also been obtained in higher dimensions. We refer for instance to
Berestycki and Nirenberg [7] for travelling wave on cylinders, Hamel and Omrani
[19] and Volpert and Volpert [27] for multistable nonlinearities on cylinders.

For explicit x−periodic dependence, only few results has been obtained in
the bistable case. We may refer to the works of Xin [29, 30, 31] who used refined
perturbation arguments to obtain the existence of waves when F (x, u) = f(u)
and the diffusivity matrix is close to identity. Recently Fang and Zhao [15] prove
the existence of one-dimensional pulsating wave under a bistability assumption.
Let us stress that this result is obtained as a special case of their Banach lattice
valued results. Such a bistablity assumption has recently been investigated by
Ding et al in [13]. The authors derived some conditions for bistability to hold
true for a one-dimensional Allen–Cahn equation. Let us mention that existence
of one-dimensional pulsating travelling waves with positive wave speed has been
obtained by Ducrot et al [14] using intersection number arguments under a bista-
bility assumption and a weak attractiveness property of one stationary state.
Finally let us mention the work of Le Guilcher [11] who proves the existence
of pulsating travelling waves for a class of one-dimensional reaction-diffusion
equations using the construction of plane-like solutions and some intersection
number arguments. As mentioned before, for the multi-dimensional problem,
the works of Xin mentioned above seem to be the only works dealing with multi-
dimensional meda. Here we would like to obtain a result in the spirit of Fang
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and Zhao’s results [15] for one-dimensional reaction-diffusion equations in the
multi-dimensional context. Roughly speaking we shall prove that bistability
ensures the existence wave, in the sense that either moving pulsating wave or
standing transition do exist. In order to state our main results we introduce the
quantity I defined by

I =

∫
TN

dx

∫ ψ+(x)

ψ−(x)

F (x, s)ds. (4)

The reaction term is said to be balanced (resp. unbalanced) between ψ− and
ψ+ when I = 0 (resp. I 6= 0).
Our first result is concerned with the balanced case and deals with the existence
of standing transition. It reads as follows.

Theorem 1.5 (Case I = 0) Let Assumption 1.1 be satisfied. Assume that
I = 0. Then for each direction e ∈ SN−1 Problem (1) has a standing transition
solution ue in the direction e according to Definition 1.3. Moreover these profiles
ue satisfy the following almost monotonicity property: for each x ∈ RN and each
k, k′ ∈ ZN :

k · e < k′ · e ⇒ ue(x+ k) < ue(x+ k′). (5)

The almost monotonicity described above is also refereed as the so-called Birkhoff
property. We refer to [12] and the references therein. Concerning this result, we
would like to mention the existence of standing transition (also called plane-like
solution) for periodic Allen–Cahn equations with double well potential. Such
solutions have been obtained as energy functional minimisers in some suitable
spaces. We refer to [12] and the references cited therein for more details. Note
that these results are not based on a bistability hypothesis. Actually if we
consider a TN−periodic potential W = W (x, u) (TN−periodic in x) such that
W (x,±1) = 0 and W (x, u) > 0 for all x ∈ TN and u ∈ (−1, 1), we do not know
if Problem (2) with F (x, u) = W ′u(x, u) satisfies the bistable assumption be-
tween −1 and 1. A typical example is given by the usual balanced Allen–Cahn
potential W (x, u) = Q(x)(1− u2)2 with Q : TN → (0,∞). As it will be seen in
the applications below, for large diffusion coefficient this problem turns out to
satisfy the bistable assumption at least in space dimension one and two.

Next our second result is concerned with the unbalanced case, namely I 6= 0,
and it reads as the following dichotomy result.

Theorem 1.6 (Case I 6= 0) Let Assumption 1.1 be satisfied. Assume that
I 6= 0. Then for each direction e ∈ SN−1 Problem (1) has either:

1. A moving pulsating travelling wave solution (Ue, ce) in the direction e
according to Definition 1.2. Moreover this travelling wave profile is non-
decreasing with respect to its first variable and one has sign (ce) = −sign (I);
Or

2. An almost monotonic (see (5)) standing transition solution ue ≡ ue(x) in
the direction e according to Definition 1.3.

5



As it will be recalled in the next remark, the unbalanced condition is not suffi-
cient to ensure that the speed is non-zero. However some results in this direction
has been obtained in [13] in the one-dimensional framework. For higher dimen-
sional problem such a question remains largely open. A very specific example
is discussed in Remark 1.11 below. We also refer to Corollary 1.12 below.

Remark 1.7 Xin in [32] (see Section 4 of that paper) described an example
of one-dimensional unbalanced problem admitting a standing transition solution
connecting u = 0 to u = 1. This example reads as the one-dimensional problem
(1) with

A(x) = 1 + δa(x) and F (x, u) = µu(1− u)

(
u− 1

2
+ δ

)
,

wherein a(x) is a given suitable periodic function while µ > 0 and 0 < δ << 1
are suitable parameters.
However using the profile equation as described in (3) (see also Remark 2.2) it
is easy to check that the existence of standing pulsating wave in the sense of
Definition 1.2 implies that the nonlinearity is balanced. As a consequence the
standing transition constructed by Xin is not a standing pulsating wave.

Before going to the proof of these results, let us recall that if (U ≡ U(s, x), c)
is a pulsating travelling wave solution for (1) in the direction e ∈ SN−1 and speed
c ∈ R then it satisfies the semi-linear degenerate elliptic equation (3) and this
profile equation is supplemented together with the following limit behaviour at
s = ±∞:

lim
s→±∞

U(s, x) = ψ±(x) uniformly w.r.t. x ∈ TN . (6)

In order to deal with such an equation and overcome the lack of strict ellipticity
of operator L0 we shall first study a regularized problem defined for each ε > 0
by

LεU + c∂sU + F (x, U) = 0, ∀(s, x) ∈ R× TN , (7)

with Lε := ε∂ss+L0. The regularized profile equation is supplemented with the
limit behaviour (6). Such a regularisation procedure has been widely used to
study pulsating front and we refer for instance to [4]. Let us now observe that
when (U, c) is a solution (7) then the function v(t, z, x) := U(z−ct, x) becomes a
usual travelling wave solution with speed c of the following uniformly parabolic
problem on the cylinder R× TN :

∂tv =
[
ε∂zz + (e∂z +∇x)

T
[A(x) (e∂z +∇x)]

]
v + F (x, v). (8)

Hence our strategy to prove Theorems 1.5 and 1.6 is to prove first the existence of
travelling wave solutions for the bistable parabolic equation (8) on the cylinder
R×TN and then to pass to the limit ε→ 0 to conclude that Theorems 1.5 and
1.6 hold true.
After proving the existence of travelling wave solution for (8) (see Proposition
2.1), a main step is to obtain a uniform bound independent of ε ∈ (0, 1] for
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the family of corresponding wave speed cε. This point is reached in Lemma
2.4 in Section 2. From a technical point of view passing to the limit ε → 0
will require some compactness estimate. This step is reached using bounded
variation estimates as well as Helly type compactness theorem.

Remark 1.8 Let us mention that our proofs can be extended to more general
problems of the form

∂tu− div (A(x)∇u) + V (x) · ∇u = F (x, u),

where V : TN → RN is a given smooth advection term. In that case, under
bistability assumption, the above equation has either a moving pulsating wave
or a standing transition. However because of the advection term, balanced non-
linearity does not necessarily ensure the existence of a standing transition. The
characterization of periodic heterogeneities leading to the existence of such sta-
tionary solution remains an open problem (See [13, 32] and Remark 1.7 above
for examples without advection term).

As an application of the above results we consider the two-dimensional
parabolic problem

∂tu = d2∆u+ f(x, u) with f(x, u) = r(x)u (u− a(x)) (1− u) , (9)

with t > 0 and x ∈ R2 . Here d2 > 0 denotes the diffusion coefficient while
a, r ∈ Cγ(T2) (for some γ ∈ (0, 1)) are given functions such that 0 < a(x) < 1
and r(x) > 0. This problem corresponds to the so-called Allen–Cahn equation
arising in mathematical physics and describing phase fields separation. This
equation is also called Nagumo equation and we refer the reader to [24]. Such
an equation also arises in Ecology and it is refereed in this context to the so-
called strong Allee-effect.

For the above problem we shall provide some sufficient conditions for bista-
bility to hold true between the two stable stationary states u = 0 and u = 1.
This study will be performed using two types of asymptotic: small diffusion
coefficient d << 1 and large diffusion coefficient d >> 1. The condition d << 1
corresponds to a slowly varying heterogeneity while d >> 1 corresponds to the
homogenization limit. To see this if we set v(t, x) = u(t, xd) then the function
v satisfies

∂v

∂t
= ∆v + f(dx, v),

and the heterogeneity slowly varies when d << 1 and rapidly oscillates when
d >> 1 according the rescaled variable dx.

In this context our first result reads as follows:

Theorem 1.9 (Slowly varying medium d << 1) Under the above assump-
tions, let us furthermore assume that 0 < a(x) < 1

2 for all x ∈ T2, then there
exists d0 > 0 small enough such that for all d ∈ (0, d0) Problem (9) admits in
each direction either a moving pulsating travelling wave or a standing transition
connecting 0 and 1.
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Note that the condition a(x) < 1
2 ensures that the nonlinearity f(x, u) is never

balanced, in the sense that one has

min
x∈T2

∫ 1

0

f(x, u)du > 0.

For the one-dimensional problem, Ding et al [13] conclude from such a non-
balanced assumption that the wave speed is non-zero. This is based on the
complete classification for the entire solutions of the ODE problem p′′(x) +
f(x∞, p(x)) = 0 for some fixed heterogeneity x∞ ∈ R. In the two dimensional
context that we consider here, we are not able to conclude that the wave speed
is non-zero.
When function a = a(x) crosses the valued 1

2 then stable sharp layered sta-
tionary solutions may appear and in that case, we expect that Problem (9)
exhibits a multistable dynamics. We refer to the work of Angenent et al [1] for
a detailed description of the stable solutions for the one-dimensional problem
equipped with Neumann boundary conditions.

Our next result is concerned with large diffusion asymptotic and reads as:

Theorem 1.10 (Homogenization limit d >> 1) There exists d∗ > 0 large
enough such that for each d > d∗ Problem (9) admits in each direction either a
moving pulsating travelling wave or a standing transition connecting 0 and 1.

The proof of Theorem 1.9 and Theorem 1.10 will be given in Section 5. Here
we would like to mention that our proof is not based on a perturbation argu-
ment of travelling wave for some ”limit” problem but we will prove a persistence
property for bistability. This property will not follow from the classification of
the solutions of the elliptic problem 0 = ∆p(x)+f(x∞, p(x)) for some fixed het-
erogeneity but on the classification of a smaller class of solutions called weakly
stable and provided by Dancer in [9].

Remark 1.11 As a specific case of (9) one can look at row structure hetero-
geneities, namely r(x) = r(x2) and a(x) = a(x2) for all x = (x1, x2) ∈ T1 ×T1.
In that case one can improve Theorem 1.9 in the sense that no standing transi-
tion between 0 and 1 exists in the direction of the rows, that is in the direction
of the vector e0 = (1, 0) ∈ S1.
Under such a row structure Theorem 1.10 can also be improved. Indeed if we
furthermore assume that the homogeneized nonlinearity is unbalanced, that reads
as ∫

T1

r(x2)a(x2)dx2 6=
1

2

∫
T1

r(x2)dx2,

then no standing transition between 0 and 1 exists in the direction of the rows.
In these specific situations Theorems 1.9 and 1.10 ensure the existence of moving
pulsating wave solutions in the direction of the rows respectively for small and
large diffusion asymptotic. That point will be discussed in Appendix B. Under
this framework we suspect that for each direction the wave solutions provided
by Theorems 1.9 and 1.10 are always moving pulsating wave solutions. This
remains to be an open problem.
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The above remark provides simple examples of Problem (9) which admit a
moving pulsating wave solution at least in some particular direction. Below we
shall provide an other example that admits moving pulsating wave solutions in
each direction. Our precise result reads as follows.

Corollary 1.12 Let a, r ∈ Cγ(T2) (for some γ ∈ (0, 1)) be two given functions
such that 0 < a(x) < 1, r(x) > 0 and

θ :=

∫
T2 r(x)a(x)dx∫

T2 r(x)dx
<

1

2
. (10)

Then there exists d0 ≥ 1 large enough such that for each d ≥ d0, Problem (9)
admits moving pulsating waves between u = 0 and u = 1 in any given direction
e ∈ S1.

Remark 1.13 In order to prove this corollary we shall prove that under the
above set of assumptions Problem (9) does not admit any almost monotonic
stationary transition between u = 0 and u = 1 in any given direction. Hence
the dichotomy result stated in Theorem 1.10 leads to the existence of moving
pulsating wave solutions in each direction.

This work is organized as follows. In Section 2 we investigate the existence of
travelling wave solution for the regularized parabolic problem (8) with periodic
boundary conditions. In Section 3 we derive compactness estimates and we
pass to the limit ε→ 0 to conclude to Theorem 1.5 and a part of Theorem 1.6
while the proof of Theorem 1.6 is completed in Section 4. Finally Section 5 is
concerned with the proof of Theorem 1.9, Theorem 1.10 and its corollary.

2 Travelling wave solutions for (8)

As explained above we shall start by studying travelling wave solutions for the
parabolic problem (8) posed on the cylinder R × TN for some given and fixed
ε > 0. Concerning this problem, our result reads as follows.

Proposition 2.1 Let Assumption 1.1 be satisfied. Let ε > 0 be given. Then
Problem (7) and (6) has a solution (Uε, cε) ∈ C2(R× TN )× R such that

∂sU
ε(s, x) > 0, ∀(s, x) ∈ R× TN .

Remark 2.2 (Sign of the wave speed) Let us notice that multiplying (7) by
∂sU

ε and integrating over the cylinder R× TN yields, recalling (4),

cε
∫
R×TN

|∂sUε|2dsdx+ I = 0. (11)

This means that two cases occur depending upon the sign of the quantity I:

Case 1: if I 6= 0 then sign cε = −sign (I) for all ε > 0.
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Case 2: If I = 0 then cε = 0 for all ε > 0.

In order to prove this proposition we shall make use of the deep results
proved by Fang and Zhao in [15] about the existence of bistable travelling wave
for monotone semiflows. We shall apply the aforementioned work to Problem
(8). To that aim consider the Banach lattice X = C(TN ) of all continuous
functions on the torus TN endowed with its usual order generated by its positive
cone X+ consisting of all nonnegative continuous functions. Note that since TN
is compact then one can identify C(R;C(TN )) and C(R× TN ) when these two
spaces are endowed with the open compact topology. Then we consider the
convex sets

C± = {φ ∈ C(R;X ) : ψ−(·) ≤ φ(z)(·) ≤ ψ+(·), ∀z ∈ R},
X± = {ψ ∈ X : ψ−(·) ≤ ψ(·) ≤ ψ+(·)}.

Recalling that ψ± are both stationary solutions of (8), the strong parabolic
comparison principle ensures that (8) generates a strongly monotone semiflow
{T (t)}t≥0 on C± such that T (t)X± ⊂ X± for all t ≥ 0. In the sequel of this
section we shall write

v(t, z, x;φ) = [T (t)φ] (z, x), ∀(z, x) ∈ R× TN , φ ∈ C±.

Next due to parabolic regularity, for each t > 0, the nonlinear operator T (t) is
compact on C± with respect to the open compact topology. Furthermore the
map (t, ψ) 7→ T (t)ψ is continuous from [0,∞)×C± to C± (endowed together with
the open compact topology). Finally let us notice that since all the coefficients
in (8) are independent of z, the semiflow T is translation invariant with respect
to all translation with respect to z. Now note that for each ψ ∈ X±, the map
t→ T (t)ψ ∈ X± corresponds to the solution of (2) with initial data ψ.

It remains to check the so-called counter propagation property . In order to
recall this important property, let us fix ψ ∈ E \ {ψ±} and consider the sets

C−(ψ) =

φ = φ(z, x) ∈ C± :

φ(z, .) = ψ for z < −1

lim sup
z→∞, x∈TN

(φ(z, x)− ψ(x)) < 0

 ,

C+(ψ) =

φ = φ(z, x) ∈ C± :

φ(z, .) = ψ for z > 1

lim sup
z→−∞, x∈TN

(φ(z, x)− ψ(x)) > 0

 .

Next according to [20, 21] we define the so-called leftward and rightward spread-
ing speed, respectively denoted by c−∗ (ψ) and c+∗ (ψ), by

c−∗ (ψ) = sup

{
c ∈ R : lim

t→∞
sup

z≥−ct,x∈TN

|v(t, z, x;φ)− ψ−(x)| = 0, ∀φ ∈ C−(ψ)

}
,

c+∗ (ψ) = sup

{
c ∈ R : lim

t→∞
sup

z≤ct,x∈TN

|v(t, z, x;φ)− ψ+(x)| = 0, ∀φ ∈ C+(ψ)

}
.
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Then the main property we will check to apply the result of Fang and Zhao [15]
reads as follows:

Claim 2.3 The following holds true:

c−∗ (ψ) + c+∗ (ψ) > 0, ∀ψ ∈ E \ {ψ±}.

Note that this claim ends the proof of Proposition 2.1 using the results of Fang
and Zhao [15].
The proof of Claim 2.3 is similar to the proof of Lemma 2.9 in [13]. The details
of the proof are omitted. Let us mention that the key point argument is that
the set E \ {ψ±} is totally unordered because of Assumption 1.1 and the strong
comparison principle.

We now derive a uniform estimate for the family of wave speeds with respect
to ε small enough.

Lemma 2.4 (Uniform estimate for the wave speed) The following esti-
mate holds true: There exists some constant K > 0 such that for each ε ∈ (0, 1]
one has |cε| ≤ K.

Proof. We shall only prove a lower bound for the wave speed. The upper
bound follows from similar arguments.

Let ε ∈ (0, 1] be given. Let ψ ∈ E \ {ψ±} be given. Consider a function
φ0 ∈ C± such that

ψ ≤ φ0 ≤ ψ+,

φ0(z, ·) = ψ if z ≤ 0 and φ0(z, ·) = ψ+ if z ≥ 1.

Hence up to shift (with respect to z) one may assume that

φ0(z, x) ≥ Uε(z, x), ∀(z, x) ∈ R× TN .

Hence the comparison principle applies and yields

v(t, z, x;φ0) ≥ Uε(z − cεt, x). (12)

However the function v can be re-written as follows v(t, z, x;φ0) = ψ(x) +
w(t, z, x) where w ≥ 0 is the solution of

∂tw =
[
ε∂zz + (e∂z +∇x)

T
A(x) (e∂z +∇x)

]
w +G(x,w),

with G(x,w) = F (x, ψ(x) + w) − ψ(x) and supplemented together with the
initial data w(0, z, x) = w0(z, x) := φ0(z, x) − ψ(x) ≥ 0. Moreover there exists
M > 0 large enough such that for all 0 ≤ w ≤ ‖ψ+ − ψ‖∞:

G(x,w) ≤Mw, ∀x ∈ TN .

Therefore one obtains that 0 ≤ w ≤ w where w denotes the solution of the
linear parabolic equation:

∂tw =
[
ε∂zz + (e∂z +∇x)

T
A(x) (e∂z +∇x)

]
w +Mw,

w(0, z, x) = w0(z, x).
(13)

To complete the proof of the lower bound, we claim that
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Claim 2.5 There exists c > 0 large enough and independent of ε ∈ (0, 1] such
that

lim
t→∞

w(t,−ct, x) = 0 uniformly for x ∈ TN .

Assuming for a while that this claim holds true, let us observe that (12) ensures
that

lim sup
t→∞

Uε(−ct− cεt, x) ≤ ψ(x), ∀x ∈ TN .

The behaviour at z =∞ of Uε implies that

−c ≤ cε, ∀ε ∈ (0, 1],

and the uniform lower bound follows.
Now it remains to prove Claim 2.5. To that aim we look for a super-solution of
(13) of the form:

W (t, z, x) = Keµ(z+κt)θ(x),

where K > 0, µ > 0, κ > 0 and the function θ will be chosen latter on.
Consider for each λ ∈ RN the elliptic operator Lλ : C2(TN ) → C(TN )

defined by

Lλφ = div (A(x)∇φ) + 2λ ·A(x)∇φ+ [div (A(x)λ) + λ ·A(x)λ]φ. (14)

Let us now consider for each µ > 0 the principle eigenvalue problem:{
Φε(µ)θµ = Lµeθµ +

(
M + µ2ε

)
θµ,

θµ ∈ C2
(
TN
)
, θµ > 0.

Then according to Nadin in [23] one obtains the following variational represen-
tation for this principle eigenvalue:

−Φε(µ) = min
α∈A

[∫
TN

∇αA(x)∇α−M − µ2 (ε+De(α))

]
, (15)

with A = {α ∈ C1(TN ) :
∫
TN α

2 = 1} and

De(α) = min
χ∈C1(TN )

∫
TN

(e+∇χ(x))A(x) (e+∇χ(x)) dx.

From this representation formula one obtains that Φε ≤ Φ1 for all ε ∈ (0, 1]
while

lim
µ→∞

Φ1(µ)

µ
=∞.

Now let us fix µ > 0 such that Φ1(µ) > 0 and fix κ > Φ1(µ)
µ . Consider θ = θµ,ε >

0 the eigenvector associated to Φε(µ) normalized such that 0 < θµ,ε(x) ≤ 1 for
all x ∈ TN . Consider now K = Kε > 0 large enough such that

w0(z, x) ≤ Keµzθµ,ε(x), ∀(z, x) ∈ R× TN .
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Then note that one has

∂tW − [ε∂zz + (e∂z +∇x)A(x)(e∂e +∇x)]W −MW

=Keµ(z+κt)θµ,ε(x) [µκ− Φε(µ)]

≥Keµ(z+κt)θµ,ε(x) [µκ− Φ1(µ)] > 0.

Thus the comparison principle implies that

w(t, z, x) ≤ Keµ(z+κt)θµ,ε(x),

and Claim 2.5 follows by choosing c = −κ− 1.

Because of this uniform bound we shall split the proof of Theorem 1.4 and
1.5 into two parts according to the following alternative: either

lim
ε→0

cε = 0, (16)

or
lim sup
ε→0

|cε| ∈ (0,∞). (17)

These two cases will lead to the following results that will be proved in the next
sections.

Proposition 2.6 Under Assumption 1.1, if (16) is satisfied then Problem (1)
has an almost monotonic standing transition in the given direction e ∈ SN−1.

Note that because of Remark 2.2, this proposition proves both Theorem 1.5 and
the second part of Theorem 1.6.
On the other hand, in the case where (17) is satisfied, the following proposition
holds true:

Proposition 2.7 Under Assumption 1.1, if (17) is satisfied then Problem (1)
has a non-decreasing - moving - pulsating wave solution (Ue, ce) in the given
direction e ∈ SN−1. Moreover one has sign (ce) = −sign (I).

Note that this proposition proves the first part of Theorem 1.6.
Hence, to conclude the proof of both Theorem 1.5 and 1.6, it is sufficient to
focus on the proof of the above two propositions. Proposition 2.6 will be proved
in the next section (Section 3) while Proposition 2.7 will be proved in Section
4.

3 Proof of Proposition 2.6

This section is devoted to proof of Proposition 2.6. Recall that e ∈ SN−1 is given
and fixed and we assume throughout this section that the family of travelling
wave solutions (Uε, cε) provided by Proposition 2.1 satisfies (16). Here recall
that the travelling wave profile Uε ≡ Uε(s, x) satisfies the equation on R× TN{

ε∂ssU
ε + cε∂sU

ε + (e∂s +∇x)
T
A(x) (e∂s +∇x) + F (x, Uε) = 0,

lims→±∞ Uε(s, x) = ψ±(x) uniformly for x ∈ TN .
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Next let us introduce the function uε ≡ uε(t, x) defined by

uε(t, x) := Uε(x · e+ t, x), (18)

and note that uε satisfies the problem:

ε∂ttu
ε + cε∂tu

ε + div (A(x)∇uε) + F (x, uε) = 0, ∀(t, x) ∈ R× RN . (19)

Now we aim at deriving compactness properties for the family of functions
{uε}ε∈(0,1]. This is summarized in the following lemma.

Lemma 3.1 (Compactness) Let {εn}n≥0 ⊂ (0,∞) be a given sequence tend-
ing to 0 as n → ∞. Let {tn}n≥0 ⊂ R be a given time sequence. Consider the
sequence of function un ≡ un(t, x) defined by un(t, x) = uεn(t + tn, x). Then
there exists a subsequence {nk}k≥0 and a function u ≡ u(t, x) ∈ L∞(R × RN ),
increasing with respect to t, such that

(i) the map t 7→ u(t, ·) is right continuous from R to L1
loc(RN ) and has at

most a countable set of discontinuities, denoted by D.

(ii) ψ−(·) ≤ u(t, ·) ≤ ψ+(·) for all t ∈ R and for all t ∈ R, k ∈ ZN :

u(t+ k · e, ·) = u(u, ·+ k) in L1
loc(RN ). (20)

(iii) The following convergences hold true as k →∞:

unk
(t, x)→ u(t, x) strongly in L1

loc(R× RN ),

and for each t ∈ R \D one has:

unk
(t, ·) ⇀ u(t, ·) weakly in L1

loc(RN ).

(iv) The function u satisfies for all t ∈ R, u(t, ·) ∈
⋂
p>1W

2,p
loc (RN ) and for all

t ∈ R
div (A(x)∇u(t, x)) + F (x, u(t, x)) = 0 a.e. x ∈ RN . (21)

There exists
(
ψ, ψ̃

)
∈ E2 with ψ ≤ ψ̃ such that

lim
t→−∞

u(t, ·) = ψ and lim
t→∞

u(t, ·) = ψ̃ locally uniformly in RN .

(v) If we set e⊥ = {y ∈ RN : e · y = 0} then for each given t ∈ R one has

lim
r→−∞

sup
y∈e⊥

|u(t, re+y)−ψ(re+y)| = lim
r→∞

sup
y∈e⊥

|u(t, re+y)−ψ̃(re+y)| = 0.

The proof of the above compactness lemma is based on bounded variation esti-
mates as well as Banach lattice valued Helly theorem.
Proof. In order to proceed to the proof of this lemma, let us first recall the
definition of the bounded variation of a L1−function. Let Ω ⊂ Rp be a bounded
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open set and let v ∈ L1(Ω) be a given function. The bounded variation (or total
variation) of v in Ω is defined by

V (v; Ω) := sup

{∫
Ω

vdiv Φ : Φ ∈ C1
c (Ω) and ‖Φ‖∞ ≤ 1

}
.

Using this definition we first claim that:

Claim 3.2 For each bounded open set Ω ⊂ R×RN , there exists some constant
M(Ω) > 0 such that one has

V (un; Ω) ≤M(Ω), ∀n ≥ 0.

In order to prove this claim, we shall make use of two key ingredients. First
we shall obtain a uniform estimate of ‖∇xuε‖∞. Then we complete the deriva-
tion of such an estimate by using the monotonicity of un with respect to t. As
mentioned above, let us first notice that Theorem 1.6 in [5] applies to (19) and
this ensures that there exists some constant K > 0 such that

‖∇xun‖∞ ≤ K, ∀n ≥ 0.

Let Ω ⊂ R × RN be given. Now let a < b and r > 0 be given such that
Ω ⊂ (a, b) × B(0, r) where B(0, r) denotes the ball centred at the origin with

radius r in RN . Let Φ =
(

Φ0, Φ̃
)
∈ C1(Ω)× C1

c (Ω)N be given. Then one has:∣∣∣∣∫
Ω

un(t, x)divt,xΦ(t, x)dtdx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

∂tun(t, x)Φ0(t, x)dtdx

∣∣∣∣
+

∣∣∣∣∫
Ω

∇xun(t, x) · Φ̃(t, x)dtdx

∣∣∣∣ .
Hence since ∂tun > 0 and ψ− ≤ un ≤ ψ+ one obtains:∣∣∣∣∫

Ω

un(t, x)divt,xΦ(t, x)dtdx

∣∣∣∣ ≤ ‖Φ0‖∞
∫
B(0,r)

∫ b

a

∂tundtdx+K‖Φ̃‖∞|Ω|

≤ ‖Φ‖∞

{
K|Ω|+

∫
B(0,r)

[ψ+ − ψ−]dx

}
.

This completes the proof of Claim 3.2.
Now let us recall that for each open ball B(0, κ) ⊂ RN with radius κ > 0,

the space L1(B(0, κ)) is a Banach lattice with order continuous norm (see for
instance [22, 25]). Now let us recall that for each κ ∈ N\{0} and each n ≥ 0 the
function uκn : t 7→ un(t, ·)|B(0,κ) in increasing with value in L1(B(0;κ)). Hence
applying the characterisation of Banach lattice with order continuous norm
derived in [10] (see Theorem 1), one obtains that for κ = 1 that there exists a
subsequence u1

ϕ1(n) and a right continuous function u1 : R → L1(B(0, 1)) with

at most a countable set of discontinuities D1 such that

u1
ϕ1(n)(t, ·) ⇀ u1(t, ·) weakly in L1(B(0, 1)), ∀t ∈ R \D1.
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Still applying this result with κ = 2, there exists a subsequence u2
ϕ1◦ϕ1(n) and a

right continuous function u2 : R→ L1(B(0, 2)) with at most a countable set of
discontinuities D2 such that

u2
ϕ2◦ϕ1(n)(t, ·) ⇀ u2(t, ·) weakly in L1(B(0, 2)), ∀t ∈ R \D2.

In addition one gets u2(t, ·)|B(0;1) ≡ u1(t, ·) and D1 ⊂ D2. Continuing such a
procedure and using a diagonal extraction process, one obtains that there exists
a subsequence {nk}k≥0 and a right continuous function u : R→ L1

loc(RN ) with
a most a countable set of discontinuities D such that for each % > 0

unk(t, ·)|B(0,%) ⇀ u(t, ·)|B(0,%) weakly in L1(B(0, %)), ∀t ∈ R \D.

Now since ψ− ≤ uε ≤ ψ+ for all ε > 0, one gets

ψ− ≤ u(t, ·) ≤ ψ+, ∀t ∈ R \D,

and due to the right continuity, the above inequality holds for all t ∈ R. The
same argument applies to prove the equality (ii).

Next one can notice that due to Claim 3.2 and the usual Helly compactness
theorem, the sequence {unk

}k≥0 is relatively compact for the strong topology
of L1

loc(R× RN ). This complete the proof of (i)− (iii).
We now prove (iv). To that aim let ϕ = ϕ(t) ∈ D(R) and φ = φ(x) ∈ D(RN )

be given. Then multiplying (19) with ε = εnk
by ϕ(t)φ(x) and integrating over

R× RN yields for each k ≥ 0

εnk

∫
R×RN

ϕ′′(t)φ(x)uεnk (t, x)dtdx+ cεnk

∫
R×RN

ϕ′(t)φ(x)uεnk (t, x)dtdx =∫
R×RN

ϕ(t) [−div (A(x)∇φ)uεnk + φ(x)F (x, uεnk )] dtdx.

Passing to the limit k →∞ yields∫
R×RN

ϕ(t) [−div (A(x)∇φ)u+ φ(x)F (x, u)] dtdx = 0, ∀(ϕ, φ) ∈ D(R)×D(RN ).

Hence since t 7→ u(t, ·) is right continuous into L1
loc(RN ), we obtain that∫

RN

[−div (A(x)∇φ)u+ φ(x)F (x, u)] dx = 0, ∀φ ∈ D(RN ), ∀t ∈ R.

As a consequence of elliptic regularity (see for instance [18]) and since for each
t ∈ R, F (·, u(t, ·)) ∈ L∞(RN ), one obtains that for each t ∈ R, u(t, ·) ∈
W 2,p

loc (RN ) ∩ L∞(RN ) for all p > 1 and it satisfies for all t ∈ R:

div (A(x)∇u(t, x)) + F (x, u(t, x)) = 0 a.e. x ∈ RN .
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Let us finally prove the asymptotic behaviour of u as t → ±∞. Let us first
observe that since the map t 7→ u(t, ·) is increasing, there exists two functions(
ψ, ψ̃

)
∈ C2(RN )2 solution of (21) with ψ− ≤ ψ ≤ ψ̃ ≤ ψ+ such that

lim
t→−∞

u(t, ·) = ψ and lim
t→∞

u(t, ·) = ψ̃ locally uniformly.

To complete the proof of (iv), it remains to prove that these limit functions
are ZN−periodic. However this property directly follows from (20). Indeed for
instance for ψ, one has for each given k ∈ ZN and x ∈ RN :

lim
t→−∞

u(t, x+ k) = lim
t→−∞

u(t+ k · e, x) = ψ(x+ k) = ψ(x).

The same holds true for ψ̃ and this completes the proof of (iv).
It remains to prove (v). This is also a direct consequence of (20). To see this we
only consider the first case (namely r → −∞), the other case can be handled
similarly. Let us argue by contradiction by assuming that

lim sup
r→−∞

sup
y∈e⊥

|u(t, re+ y)− ψ(re+ y)| > 0.

Then there exists a sequence {rn}n≥0 ⊂ (−∞, 0) with rn → −∞ and a sequence
{yn}n≥0 ⊂ e⊥ such that

lim sup
n→∞

|u(t, rne+ yn)− ψ(rne+ yn)| > 0.

We now write rne = kn + xn and yn = k′n + x′n with kn, k
′
n ∈ ZN and xn, x

′
n ∈

[0, 1]N . Since rn → −∞ then kn · e→ −∞ while yn ∈ e⊥ implies that

|k′n · e| = |x′n · e| ≤ 1, ∀n ≥ 0.

Now due to (20) and since ψ is ZN−periodic one obtains that for each n ≥ 0:

|u(t, rne+ yn)− ψ(rne+ yn) = |u(t+ kn · e+ k′n · e, xn + xn′)− ψ(xn + x′n)|.

However since t+kn ·e+k′n ·e→∞ as n→∞ and the sequence {xn+x′n}n≥0 is
bounded, this contradicts the local uniform convergence as stated in (iv). This
completes the proof of (v).

We are now able to complete the proof of Proposition 2.6.
Proof of Proposition 2.6. Let us first notice that due to Assumption 1.1
and the strong maximum principle for elliptic equation, the stationary states
ψ− and ψ+ are isolated in E . This means that there exist two constants δ0 > 0
and δ1 > 0 such that

∀ψ ∈ E , (ψ− < ψ) ⇒ ψ > δ0 + ψ−,

∀ψ ∈ E , (ψ < ψ+) ⇒ ψ + δ1 < ψ+.
(22)

Next let us recall that for each ε > 0, the function uε defined in (18) satisfies

lim
s→±∞

∫
(0,1)×TN

uε(t+ s, x)dtdx =

∫
TN

ψ±(x)dx.
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Hence consider a family of normalisation time {tε}ε∈(0,1] ⊂ R such that∫
(0,1)×TN

uε(t+ tε, x)dtdx =

∫
TN

ψ+(x)dx− δ1, ∀ε ∈ (0, 1]. (23)

Consider now a sequence {εn}n≥0 ⊂ (0, 1] tending to 0 as n→∞ and let us set
un(t, x) := uεn(t+ tεn , x), so that (23) re-writes as∫

(0,1)×TN

un(t, x)dtdx =

∫
TN

ψ+(x)dx− δ1, ∀n ≥ 0.

Then because of Lemma 3.1, up to a subsequence one may assume that

un(t, x)→ u(t, x) in L1
loc(R× RN ),

where the limit function u ≡ u(t, x) satisfies all the properties described in
Lemma 3.1 as well as the normalisation condition∫

(0,1)×TN

u(t, x)dtdx =

∫
TN

ψ+(x)dx− δ1. (24)

In particular, let us observe that U(x) := u(0, x) 6≡ ψ+(x). Indeed if U(x) ≡
ψ+(x) then because the t−increasing property and u(t, ·) ≤ ψ+ , (24) would be
violated. Hence U(x) < ψ+(x). Furthermore because the t−increasing property
of function u and (24), the function ψ̃(x) := limt→∞ u(t, x) satisfies

ψ̃ ≤ ψ+ and

∫
TN

ψ̃(x)dx ≥
∫
TN

ψ(x)dx− δ1.

Hence due to (22) we deduce that ψ̃ ≡ ψ+. As a consequence of Lemma 3.1 we
obtain that the function U is a solution of (21) and satisfies

ψ−(x) ≤ U(x) ≤ ψ+(x), ∀x ∈ RN ,
U(x) 6≡ ψ+(x) and lim

r→∞
sup
y∈e⊥

|U(re+ y)− ψ+(re+ y)| = 0.

To complete the proof of the existence of standing transition, we shall investigate
the behaviour of function U at infinity. To do so let us consider the function
ψ(x) := limt→−∞ u(t, x) ≤ U(x) and it is sufficient prove that ψ ≡ ψ−. In
order to prove such a property, let us argue by contradiction by assuming that
ψ−(x) < ψ(x). Hence the function V := U − ψ > 0 becomes a stationary
solution of the following problem

∂tV − div (A(x)∇V ) = G(x, V ) with G(x, V ) = F (x, V + ψ)− F (x, ψ), (25)

and satisfying
lim

r→−∞
V (re) = 0. (26)

To reach a contradiction, we will show, using the asymptotic speed of spread
property coupled together with the instability of ψ, that such a solution cannot
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exist.
Let us consider a non-zero compactly supported initial data V0 ≥ 0 such that
V0(x) ≤ V (x). Consider V ≡ V (t, x) the corresponding solution of (25) equipped
together with the initial data V (0, ·) = V0 . Then the comparison principle im-
plies that

0 ≤ V (t, x) ≤ V (x), ∀t ≥ 0, x ∈ RN . (27)

Let us first observe that due to Assumption 1.1 (iii), the stationary solution
ψ is unstable with respect to (2). Following Theorem 1.13 in [6] (see also the
references therein), let us consider for each λ ∈ RN , the real number kλ ∈ R
defined as the principle periodic eigenvalue of the following elliptic problem

(Lλ + q)φ = −kλφ with φ ∈ C2(TN ) and φ > 0,

wherein the operator Lλ is defined in (14) while q ≡ q(x) is given by q(x) =
Fu (x, ψ(x)). Now note that due to the representation formula derived in [23]
one obtains that

kλ ≤ Λ(q) < 0, ∀λ ∈ RN .

As a consequence of Theorem 1.13 in [6], there exists ω∗(e) > 0 such that for
all ω ∈ [0, ω∗(e))

lim inf
t→∞

V (t,−ωte) > 0.

However (27) implies that for each 0 ≤ ω < ω∗(e)

lim inf
t→∞

V (−ωte) > 0,

that contradicts (26). As a consequence one obtains that ψ ≡ ψ+ and this
completes the proof of Proposition 2.6.

4 Proof of Proposition 2.7

The aim of this section is to prove Proposition 2.7. Recall that e ∈ SN−1 is a
given and fixed direction while the family of travelling wave solutions (Uε, cε)
satisfies (17).

Consider for each ε ∈ (0, 1] the function uε : R× RN → R defined by

uε(t, x) = Uε (x · e+ cεt, x) , (28)

wherein (Uε, cε) is the travalling profile provided by Proposition 2.1. Next note
that due to Remark 2.2, since I 6= 0, then cε 6= 0 so that function uε satisfies
the equation on R× RN

ε

(cε)
2 ∂ttu

ε − ∂tuε + div (A∇uε) + F (x, uε) = 0, (29)

as well as the relation

uε
(
t+

k · e
cε

, x

)
= uε(t, x+ k), ∀(t, x) ∈ R× RN , ∀k ∈ ZN . (30)
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In order to prove Proposition 2.7 consider a sequence {εn}n≥0 tending to 0
and c 6= 0 with sign (c) = −sign (I) such that

lim
n→∞

cεn = c. (31)

Before going to the proof of Proposition 2.7 and similarly to the above section,
we first derive a compactness lemma. It reads as:

Lemma 4.1 Let {tn}n≥0 ⊂ R be a given time sequence. Consider the sequence
of function un ≡ un(t, x) defined by un(t, x) = uεn(t+ tn, x). Then there exists
a subsequence {nk}k≥0 and a function u ≡ u(t, x) ∈ C1,2(R × RN ), increasing
(resp. decreasing) with respect to t when c > 0 (resp. c < 0), such that

(i) ψ−(x) ≤ u(t, x) ≤ ψ+(x) for all (t, x) ∈ R× RN and for all k ∈ ZN :

u

(
t+

k · e
c
, x

)
= u(t, x+ k), ∀(t, x) ∈ R× RN . (32)

(ii) The following converge holds true as k →∞:

unk
(t, x)→ u(t, x) strongly in L2

loc(R× RN ).

(iii) The function u satisfies for all (t, x) ∈ R× RN

∂tu = div (A(x)∇u) + F (x, u). (33)

There exists
(
ψ, ψ̃

)
∈ E2 with ψ ≤ ψ̃ if c > 0 (and the reverse inequality

if c < 0) such that

lim
t→−∞

u(t, x) = ψ(x) and lim
t→∞

u(t, x) = ψ̃(x) locally uniformly in RN .

(iv) The following convergence properties hold true locally uniformly with re-
spect to t ∈ R

lim
r→−∞

sup
y∈e⊥

|u(t, re+y)−ψ(re+y)| = lim
r→∞

sup
y∈e⊥

|u(t, re+y)−ψ̃(re+y)| = 0.

Proof. Let us first remark that (11) re-writes as for each n ≥ 0:∫
R×TN

|∂tun|2dtdx ≤ −cεnI ≤ K|I|, (34)

wherein K > 0 denotes the uniform estimate of the wave speed provided by
Lemma 2.4. On the other hand, note that since c 6= 0 then εn

(cεn)2
→ 0. Hence

applying the Bernstein type estimates derived by Berestycki and Hamel in [5]
to (29) one obtains that there exists some large enough constant M > 0 such
that:

‖∇xun‖L∞(R×RN ) ≤M, ∀n ≥ 0. (35)
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Coupling these two bounds, namely (34) and (35), together with the uniform
estimate ψ− ≤ un ≤ ψ+ ensure that the sequence {un}n≥0 is bounded in
H1

loc

(
R× RN

)
.

Thus there exists a subsequence {nk}k≥0 such that

un(t, x)→ u(t, x),

for the strong topology of L2
loc

(
R× RN

)
and weakly in H1

loc(R×RN ). Moreover
due to parabolic regularity, the limit function u ≡ u(t, x) becomes a classical
solution of the parabolic problem (we refer to the proof of Proposition 5.10 in
[4])

∂tu = div (A(x)∇u) + F (x, u), t ∈ R, x ∈ RN . (36)

Since uεn is non-decreasing with respect to t when cε > 0 (and non-increasing
when cε < 0), the function u becomes increasing with respect to t when c > 0
(and decreasing when c < 0) and bounded between ψ− and ψ+.
Finally note that (32) directly follows from (30) using the above convergence.
It remains to investigate the asymptotic behaviour of the limit function u. To
investigate such properties we assume without loss of generality that c > 0 so
that u is time increasing. Hence there exist two stationary solutions u± of (33)
such that

ψ− ≤ u− ≤ u+ ≤ ψ+ and lim
t→±∞

u(t, x) = u±(x) locally uniformly.

Because of (32) one obtains that u± ∈ E so that (iii) follows. Finally the proof
of (iv) also follows from (32) using similar arguments as in the proof of Lemma
3.1 (v). This completes the proof of Lemma 4.1.

Equipped with this lemma, we are now able to complete the proof of Propo-
sition 2.7.
Proof of Proposition 2.7. Here recall that the sequence {εn}n≥0 is given
while c 6= 0 is defined in (31). Without loss of generality we assume during this
proof that c > 0. The case c < 0 is similar.

In that case, namely c > 0, the map uε is non-decreasing in time. Let us
consider a normalisation time sequence {tn}n≥0 such that∫

(0,1)×TN

uεn(t+ tn, x)dtdx =

∫
TN

ψ−(x)dx+ δ0, ∀n ≥ 0. (37)

Here δ0 > 0 is defined in (22). We set un(t, x) = uεn(t + tn, x) and due to
Lemma 4.1, possibly along a subsequence, one may assume that

un(t, x)→ u(t, x) strongly in L2
loc(R× RN ),

and where the limit function u is time increasing and satisfies all the properties
described in Lemma 4.1. Moreover passing to the limit n→∞ into (37) yields∫

(0,1)×TN

u(t, x)dtdx =

∫
TN

ψ−(x)dx+ δ0. (38)
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Next we consider u± ∈ E with u− ≤ u+ defined in Lemma 4.1 as

lim
t→±∞

u(t, x) = u±(x) locally uniformly.

Since u is time increasing (38) yields

u− ∈ E and

∫
TN

u−(x)dtdx ≤
∫
TN

ψ−(x)dx+ δ0.

Hence the definition of δ0 in (22) ensures that u−(x) ≡ ψ−(x). In addition
note that (38) ensures that u(t, x) 6≡ ψ−(x) and ψ−(x) < u+(x). Therefore
in order to complete the proof of Proposition 2.7 it is sufficient to prove that
u+(x) ≡ ψ+(x).

To perform such an analysis we argue by contradiction by assuming that
u+(x) 6≡ ψ+(x). Note that this means that u+ ∈ E satisfies u+ < ψ+. Next
recalling the definition of δ0 and δ1 in (22), we obtain that u+ + δ1 ≤ ψ+. Then
we fix η1 > 0 small enough such that

δ0 + η1 <

∫
TN

(
ψ+ − ψ−

)
dx and η1 < δ1,

and we consider an other time sequence normalisation {t̃n}n≥0 such that for
each n ≥ 0, t̃n ≥ tn and∫

(0,1)×TN

uεn
(
t+ t̃n, x

)
dtdx =

∫
TN

ψ+(x)dx− η1. (39)

Now we set vn(t, x) := uεn(t + t̃n, x) and Lemma 4.1 applies and ensures that,
possibly along a subsequence, one may assume that it converges in strongly
L2

loc(R × RN ) to a time increasing function v ≡ v(t, x), satisfying all the prop-
erties stated in Lemma 4.1 as well as∫

(0,1)×TN

v (t, x) dtdx =

∫
TN

ψ+(x)dx− η1. (40)

Similarly as above we consider v± ∈ E defined as

v±(x) := lim
t→±∞

v(t, x),

and (40) together with (22) ensures that v+(x) ≡ ψ+(x). Note that (40) also
implies that v(t, x) 6≡ ψ+(x) so that v−(x) < ψ+(x).

In order to reach a contradiction, we first claim that the following ordering
property holds true:

Claim 4.2 One has

ψ−(x) < u+(x) ≤ v−(x) < ψ+(x). (41)
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The proof of this claim is postponed and we first reach a contradiction to com-
plete the proof of Proposition 2.7.

Since the set E \ {ψ±} is totally unordered, one obtains that u+ = v−. This
point is denoted by ψ ∈ E \ {ψ±}. Hence the pair (v, c) is a time increasing
pulsating wave (in the sense of [4, 26]) of (1) connecting ψ and ψ+ and such
that

ψ(x) < v(t, x) < ψ+(x), ∀(t, x) ∈ R× RN .
Therefore according to Lemma 6.5 in [4], there exists ν > 0 such that

Φ
(ν
c

)
= ν > 0,

wherein we have set for each µ ∈ R, Φ(µ) ∈ R the principle periodic eigenvalue
of the problem

(Lµe + qψ)φ = Φ(µ)φ, φ ∈ C2(TN ) and φ > 0,

where operator Lλ is defined in (14) and qψ(x) = Fu(x, ψ(x)). However this
inequality is impossible because for all µ ∈ R, one has

Φ(µ) ≤ Φ(0) = −Λ(qψ) < 0.

As a consequence we have reached a contradiction and u+ = ψ+. This completes
the proof of Proposition 2.7 up to the proof of Claim 4.2 that is detailed below.

Proof of Claim 4.2. In order to prove Claim 4.2 we will first notice that the
sequence {t̃n − tn}n≥0 ⊂ [0,∞) is unbounded. Indeed if such a sequence would
be bounded, then one may assume that t̃n− tn → τ∞ ∈ [0,∞). Then from (39)
we get∫

(0,1)×TN

vn(t, x)dtdx =

∫
(t̃n−tn,t̃n−tn+1)×TN

un(t, x)dtdx =

∫
TN

ψ+(x)dx− η1.

Thus since u is time increasing this yields∫
TN

ψ+(x)dx− η1 ≤
∫
TN

u+(x)dx,

and (22) ensures that u+(x) ≡ ψ+(x), a contradiction. As a first conclusion the
sequence {t̃n − tn}n≥0 is unbounded and, up to a subsequence one may assume
that t̃n − tn →∞ as n→∞. Now since uε is time increasing one obtains that
for each s ≥ 0 there exists ns ≥ 0 large enough such that 2s ≤ t̃n − tn for all
n ≥ ns and this yields for all n ≥ ns and all (t, x) ∈ R× RN :

un(t+ s, x) = uεn(t+ s+ tn, x) ≤ uεn(t+ s+ t̃n, x) = vn(t− s, x).

Therefore for each continuous test function ϕ ≥ 0 with compact support, one
gets for all s ≥ 0 and n ≥ ns:∫

R×TN

ϕ(t− s, x)un(t, x)dtdx ≤
∫
R×TN

ϕ(t+ s, x)vn(t, x)dtdx,
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so that for each test function ϕ ≥ 0 with compact support∫
R×TN

ϕ(t, x)u(t+ s, x)dtdx ≤
∫
R×TN

ϕ(t, x)v(t− s, x)dtdx, ∀s ≥ 0.

Passing to the limit s→∞ implies that u+ ≤ v− and this completes the proof
of (41).

5 Proof of Theorems 1.9 and 1.10

In this section we shall prove Theorem 1.9 and Theorem 1.10. To do so we shall
apply Theorem 1.6 and Theorem 1.5 to Problem (9) by showing that under the
hypothesis stated in Theorem 1.9 and Theorem 1.10, Assumption 1.1 is satisfied
between the two stable stationary points ψ−(x) ≡ 0 and ψ+(x) ≡ 1.

To do so, let us consider the two-dimensional parabolic problem with periodic
boundary conditions:

∂tu = d2∆u+ f(x, u), t > 0, x ∈ T2. (42)

Then our first result read as

Lemma 5.1 Under the assumptions of Theorem 1.9, there exists d0 > 0 such
that each d ∈ (0, d0), if ud ∈ C2(T2) is a stationary solution of (42) then one
has

0 < ud < 1 ⇒ Λ (d; qud
) > 0.

Here we have set qu(x) = fu (x, u(x)) and for each function q ∈ L∞(T2) and
each d > 0, Λ(d; q) denotes the principle eigenvalue of the elliptic operator
d2∆ + q(x) on T2.

And, using the same notations as described above, our second result reads as

Lemma 5.2 Under the assumptions of Theorem 1.10, there exists d∗ > 0 such
that each d > d∗, if ud ∈ C2(T2) is a stationary solution of (42) then one has

0 < ud < 1 ⇒ Λ (d; qud
) > 0.

Note that these two lemmas imply that Assumption 1.1 holds true between
the two stable stationary states ψ− = 0 and ψ+ = 1 when d > 0 is small
enough and the threshold a = a(x) is uniformly far from 1

2 or when d > 0
is large enough. Then Theorems 1.5 and 1.6 apply depending on the value

I =
∫
T2

∫ 1

0
f(x, u)dudx, and this completes the proof of both Theorems 1.9

and 1.10. (Note that I > 0 under the assumptions of Theorem 1.9 while no
assumption on the sign of I is assumed in Theorem 1.10). Therefore it is
sufficient to prove the two lemmas 5.1 and 5.2.

To that aim let us first recall, as in the introduction, the formulation for
Λ(d; q) in term of Rayleigh quotient: For each d > 0 and q ∈ L∞(T2) one has

Λ(d; q) = − inf
φ∈C1

c (R2)\{0}
R(d, φ),
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wherein C1
c (R2) denotes the set of C1 and compactly supported functions while

R(d, φ) is defined by

R(d, φ) =

∫
R2

[
d2∇φ2 − q(x)φ2

]
dx∫

R2 φ2dx
, ∀φ ∈ C1

c (R2) \ {0}.

We can now proceed to the proof of Lemma 5.1.
Proof of Lemma 5.1. In order to prove our lemma, we argue by contradiction
by assuming that there exists a sequence {dn}n≥0 ⊂ (0,∞) tending to 0 as
n → ∞ and a sequence 0 < un < 1 of stationary solution of (42) with d = dn
such that Λ (dn; qun

) ≤ 0. Next we claim that:

Claim 5.3 For all 0 < δ < 1
2 there exists N ≥ 1 large enough such that for all

n ≥ N :
un(x) ∈ (0, δ) ∪ (1− δ, 1), ∀x ∈ T2.

We postpone the proof of this claim and we first complete the proof of Lemma
5.1. To do so, note that from the stationary relation, that reads as

d2
n∆un + f (x, un) = 0,

one obtains that ∫
T2

f (x, un(x)) dx = 0, ∀n ≥ 0.

Then recalling the form of the specific function f ≡ f(x, u) in (9) and since 0 <
un < 1, the above equality implies that for each n ≥ 0 there exists

(
x1
n, x

2
n

)
∈

T2 × T2 such that for all n ≥ 0:

un
(
x1
n

)
≥ a

(
x1
n

)
and un

(
x2
n

)
≤ a

(
x2
n

)
.

Note that since 0 < a < 1 the above inequality contradicts Claim 5.3 since the
former ensures that there exists a subsequence {nk}k≥0 such that unk

uniformly
converges to 0 or 1. As a consequence, to complete the proof of Lemma 5.1 it
is sufficient to complete the proof of Claim 5.3.
Proof of Claim 5.3. To prove this claim we shall argue by contradiction by
assuming that there exist δ0 > 0 small enough and a sequence {xn}n≥0 ⊂ T2

such that
δ0 ≤ un (xn) ≤ 1− δ0, ∀n ≥ 0.

Consider now the sequence of function vn(y) := un (xn + ydn) so that vn satisfies{
vn(0) ∈ [δ0, 1− δ0] ,

0 = ∆vn(y) + f (xn + ydn, vn(y)) , n ≥ 0.

Because of elliptic regularity and the compactness of T2, one may assume, pos-
sibly along a subsequence, that

vn(y)→ v(y) locally uniformly y ∈ R2 and xn → x∞ in T2.
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Hence function 0 < v < 1 satisfies

0 = ∆v(y) + f(x∞, v(y)), y ∈ R2 and v(0) ∈ [δ0, 1− δ0].

To complete the proof of this claim, let us show that v is weakly stable, in the
sense that ∫

R2

[
|∇φ(y)|2 − fu (x∞, v(y))φ2(y)

]
dy ≥ 0, ∀φ ∈ C1

c (R2). (43)

Indeed one has for each ψ ∈ D(R2) and each n ≥ 0:∫
R2

[
|∇ψ(y)|2 − fu (xn + dny, vn(y))ψ2(y)

]
dy

=d2
n

∫
R2

[
d2
n|∇φ|2(x)− fu (x, un(x))φ2(x)

]
dx,

with φ(x) = ψ
(
x−xn

dn

)
∈ D(R2). Hence for each ψ ∈ D(R2) and each n ≥ 0 one

has ∫
R2

[
|∇ψ(y)|2 − fu (xn + dny, vn(y))ψ2(y)

]
dy ≥ −Λ (dn; qun

) ≥ 0.

Thus passing to the limit n→∞ ensures that function v is weakly stable. Note
that the above weak stability property allows us to make use of Theorem 1 in
[9] to conclude that v is a constant function such that

f (x∞, v) = 0 and fu (x∞, v) ≤ 0.

Indeed since
∫ 1

0
f (x∞, s) ds 6= 0, no spatially homogeneous heteroclinic connec-

tion do exist between 0 and 1. This means that v = 0 or v = 1 but these two
cases contradict the normalisation condition v(0) ∈ [δ0, 1− δ0]. This completes
the proof of Claim 5.3.

Let us now prove Lemma 5.2.
Proof of Lemma 5.2. Similarly as in the proof of the above lemma, we shall
argue by contradiction by assuming that there exists a sequence {dn}n≥0 ⊂
(0,∞) tending to ∞ as n → ∞ and a sequence 0 < un < 1 of stationary
solution of (42) with d = dn such that Λ (dn; qun

) ≤ 0. Next similarly as above,
in order to complete the proof of this lemma we claim that:

Claim 5.4 For all 0 < δ < 1
2 there exists N ≥ 1 large enough such that for all

n ≥ N :
un(x) ∈ (0, δ) ∪ (1− δ, 1), ∀x ∈ T2.

Equipped with this claim, the proof of Lemma 5.2 is similar to the one above.
It is therefore sufficient to prove Claim 5.4.

Proof of Claim 5.4. Let us argue by contradiction by assuming that there
exist δ0 > 0 small enough and a sequence {xn}n≥0 ⊂ T2 such that

δ0 ≤ un(xn) ≤ 1− δ0, ∀n ≥ 0.
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Consider the sequence vn(x) := un (xn + dnx) that satisfies the equation{
vn(0) ∈ [δ0, 1− δ0] ,

∆vn + f (xn + dnx, vn) = 0, x ∈ R2.

Next because elliptic regularity, one may assume up to a subsequence that vn →
v locally uniformly for x ∈ R2. Moreover by setting M(g) for each function
g ∈ L∞(T2), the average of g defined by

M(g) =

∫
T2

g(x)dx,

then due to the result in Appendix A one gets

r (xn + dnx)→M(r) weakly−∗ in L∞(R2),

while
r (xn + dnx) a (xn + dnx)→M(ra) weakly−∗ in L∞(R2).

Hence the function v satisfies:{
v(0) ∈ [δ0, 1− δ0] ,

∆v + f (v) = 0, x ∈ R2,
(44)

wherein we have set

f (v) =M(r)v(1− v)
(
v − θ

)
and θ =

M(ra)

M(r)
.

Before going further let us in addition show that the function v is Z2−periodic,
that is

v(x+ k) = v(x), ∀x ∈ R2, k ∈ Z2. (45)

To see this note that since un is Z2−periodic one has for each n ≥ 0 and k ∈ Z2:

vn (x+ k) = un (xn + dnx+ dnk) = un

(
xn + dn

(
x+

yn
dn

))
= vn

(
x+

yn
dn

)
,

wherein yn ∈ [0, 1]2 satisfies yn = dnk mod
(
Z2
)
. Hence since vn → v locally

uniformly and yn/dn → 0 as n→∞, (45) follows.
To complete the proof of this claim, note that since Λ (dn; qun) ≥ 0 for all

n ≥ 0, then the function v is weakly stable as in the proof of Claim 5.3 above.
Therefore due to Theorem 1 proved by Dancer in [9] one concludes that either

v(x) ≡ 0 or 1 and when θ = 1
2 (so that

∫ 1

0
f(s)ds = 0) then either v(x) ≡ 0

or 1 or v(x) = U(ν · x) where ν ∈ S2 is a unit vector while U is a monotone
one-dimensional solution of the stationary Allen–Cahn equation:

U ′′ + f(U) = 0.
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As a conclusion all these possible cases contradict either the normalisation con-
dition in (44) or the Z2−periodicity in (45). This completes the proof of Claim
5.4.

To complete this section its remains to prove Corollary 1.12.
Proof of Corollary 1.12. As explained in Remark 1.13, in view of Theorem
1.10 it is sufficient to show that under these conditions, Problem (9) does not
admit any almost monotonic stationary transition between u = 0 and u = 1 in
each given direction.

To that aim we shall argue by contradiction by assuming that there exists a
sequence {dl}l≥0 going to infinity and a sequence of direction {el = (cosωl, sinωl)}l≥0 ⊂
S1 for some sequence {ωl}l≥0 ⊂ R/2πZ such that for each l ≥ 0 there exists a
function ul ≡ ul(x, y) satisfying the following set of properties:

d2
l∆ul(x, y) + f (Rωl

(x, y), ul(x, y)) = 0, (x, y) ∈ R2, (46)

for all (k, k′) ∈ Z× Z:

k < k′ ⇒ ul (x+ k, y) < ul (x+ k′, y) , ∀(x, y) ∈ R2, (47)

and the limit behaviour

lim
x→−∞

sup
y∈R

ul(x, y) = 0, lim
x→∞

sup
y∈R
|1− ul(x, y)| = 0. (48)

In (46) the operator Rωl
corresponds to the rotation of axis with angle ωl, that

is
Rωl

(x, y) = (cosωlx− sinωly, sinωlx+ cosωly) .

Now we consider the function f(u) := M(r)u
(
u− θ

)
(1 − u) and let us recall

that since θ 6= 1
2 all the solution w ≡ w(y) of the problem

0 < w < 1 and w′′(y) + f(w(y)) = 0, ∀y ∈ R, (49)

are well known based on phase plane analysis (see for instance [1, 13]). They
only consist in homoclinic orbit to 0, periodic solution or the constant function
w ≡ θ. We now fix a value δ ∈ (0, 1) sufficiently close to zero such that for each
solution w of (49) one has

w(y) ≤ 1− 2δ, ∀y ∈ R.

Next for each l ≥ 0 we fix a point xl ∈ R such that

ul(xl, 0) = 1− δ, ∀l ≥ 0.

Together with this normalisation point, we consider the sequence of function
vl ≡ vl(x, y) defined by

vl(x, y) = ul (xl + dlx, dly) , l ≥ 0, (x, y) ∈ R2.
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Note that it satisfies the equation

∆vl(x, y) + f (Xl + dlRωl
(x, y), vl(x, y)) = 0, (x, y) ∈ R2,

vl(0, 0) = 1− δ,

and wherein we have set Xl = Rωl
(xl, 0) ∈ R2.

Now because of elliptic estimates, one assume possibly along a subsequence
that vl → v locally uniformly where the function v becomes a solution of the
homogeneized problem

∆v + f (v) = 0, (x, y) ∈ R2,

v(0, 0) = 1− δ, 0 < v < 1,

We claim that

Claim 5.5 The function v ≡ v(x, y) described above satisfies

∂xv(x, y) ≥ 0, ∀(x, y) ∈ R2.

Proof of Claim 5.5. The proof of this claim follows from the almost mono-
tonicity property (47). Let h > 0 be given. Then for each l ≥ 0 let us re-write

dlh = pl + rl with pl ∈ N and rl ∈ [0, 1).

Then for each l ≥ 0 one has for all (x, y) ∈ R2:

vl (x+ h, y) = ul

(
xl + pl + dl

(
x+

rl
dl

)
, y

)
≥ ul

(
xl + dl

(
x+

rl
dl
, y

))
= vl

(
x+

rl
dl
, y

)
.

Hence passing to the limit l→∞ yields

v(x+ h, y) ≥ v(x, y),

and Claim 5.5 follows.
We now complete the proof of the corollary. For that purpose note that

because of the normalisation condition v(0, 0) = 1 − δ, the monotonicity with
respect to x stated in Claim 5.5 and the definition of δ one obtains that the
function v satisfies

lim
x→∞

v(x, y) = 1 locally uniformly for y ∈ R. (50)

We finally reach a contradiction by considering a suitable compactly supported
function v0 as defined in Aronson and Weinberger in [3] such that

v0(x, y) ≤ v(x, y), ∀(x, y) ∈ R2.
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Note that the existence of such a function is ensured by (50). Hence the
parabolic comparison principle applies and yields

ṽ(t, x, y) ≤ v(x, y), ∀t ≥ 0, (x, y) ∈ R2, (51)

where ṽ is the solution of the equation{
∂ṽ
∂t = ∆ṽ + f (ṽ) , t > 0, (x, y) ∈ R2,

ṽ(0, ., .) = v0(., .).

However, recalling that θ < 1
2 so that

∫ 1

0
f(s)ds > 0, Theorem 6.2 in [3] ensures

that ṽ(t, x, y)→ 1 as t→∞ (locally uniformly on R2) so that (51) leads us to
v(x, y) ≡ 1. This contradicts the normalisation v(0, 0) < 1 and completes the
proof of Corollary 1.12.

Appendix A: Weak limit of rapidly oscillating
functions

When g ∈ L∞(TN ) then setting M(g) =
∫
TN g(x)dx, it is well known that

lim
ε→0+

∫
RN

g
(x
ε

)
φ(x)dx =M(g)

∫
RN

φ(x)dx, ∀φ ∈ L1(RN ). (52)

In this appendix we aim to show that under some regularity conditions, the
above convergence is in some sense uniform with respect to TN−translation.
Our result reads as:

Lemma 5.6 Let g ∈ C(TN ) be a given function. Then the following conver-
gence holds true: For all φ ∈ L1(RN ), for all η > 0 there exists δ > 0 such
that

∀ε ∈ (0, 1), ∀h ∈ TN
∣∣∣∣∫

RN

g
(
h+

x

ε

)
φ(x)dx−M(g)

∫
RN

φ(x)dx

∣∣∣∣ ≤ η.
Proof. Let g ∈ C

(
TN
)

be given. We denote for each h ≥ 0 the quantity

ω(h; g) = sup
(x,y)∈RN ,‖x−y‖≤h

|g(x)− g(y)| .

Since g is continuous and ZN−periodic, it is uniformly continuous so that

lim
h→0+

ω(g;h) = 0. (53)

To proceed to the proof of the lemma, let us argue by contradiction by assuming
that there exists φ0 ∈ L1(RN ), η0 > 0 and a sequence {hn}n≥0 ⊂ [0, 1]N and
{εn}n≥0 ⊂ (0,∞) tending to 0 as n→∞ such that∣∣∣∣∫

RN

g

(
hn +

x

εn

)
φ0(x)dx−M(g)

∫
RN

φ0(x)dx

∣∣∣∣ > η0, ∀n ≥ 0.
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Since [0, 1]N is compact one may assume that hn → h∞ ∈ [0, 1]N . Now note
that one has for each n ≥ 0:

η0 <

∣∣∣∣∫
RN

g

(
hn +

x

εn

)
φ0(x)dx−M(g)

∫
RN

φ0(x)dx

∣∣∣∣
≤
∣∣∣∣∫

RN

[
g

(
hn +

x

εn

)
− g

(
h∞ +

x

εn

)]
φ0(x)dx

∣∣∣∣
+

∣∣∣∣∫
RN

g

(
h∞ +

x

εn

)
φ0(x)dx−M(g)

∫
RN

φ0(x)dx

∣∣∣∣ .
(54)

However on the one hand one has∣∣∣∣∫
RN

[
g

(
hn +

x

εn

)
− g

(
h∞ +

x

εn

)]
φ0(x)dx

∣∣∣∣ ≤ ω (‖hn − h∞‖; g) ‖φ0‖L1 .

Since ‖hn − h∞‖ → 0 as n→∞ and recalling (53), one obtains that

lim
n→∞

∣∣∣∣∫
RN

[
g

(
hn +

x

εn

)
− g

(
h∞ +

x

εn

)]
φ0(x)dx

∣∣∣∣ = 0.

On the other hand, recalling that εn → 0 as n→∞, one gets from (52) that

lim
n→∞

∫
RN

g

(
h∞ +

x

εn

)
φ0(x)dx =M (g (h∞ + ·))

∫
RN

φ0(x)dx

=M (g)

∫
RN

φ0(x)dx.

These two limits contradict (54) and this completes the proof of the lemma.
As a direct corollary one obtains the following result:

Corollary 5.7 Let g ∈ C
(
TN
)

be a given function. Let {hn}n≥0 ⊂ TN be a
given sequence and {εn}n≥0 ⊂ (0,∞) be a sequence tending to 0 as n → ∞
Then one has:

g

(
hn +

x

εn

)
⇀M(g) weakly−∗ in L∞(RN ).

Appendix B: A non-existence result of standing
transition waves

In this section we will discuss the statement of Remark 1.11. To that aim we
consider a rather specific nonlinear diffusion equation of the form

∂u

∂t
= ∆u+ F (x̃, u) , (55)

posed for x = (x1, x̃) ∈ R×RN−1 and for some integer N ≥ 2. In this appendix
we derive a sufficient condition ensuring that (55) does not admit any standing
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transition in the direction e0 = (1, 0RN−1) ∈ SN−1, the direction orthogonal to
the heterogeneity. Then this result will be applied to the case of Problem (9)
with a periodic row structure to obtain the results stated in Remark 1.11. For
that purpose we assume that:

Assumption 5.8 The function F ≡ F (x̃, u) : RN−1 × R → R is continuous,
Cγ (for some γ ∈ (0, 1)) in x uniformly with respect to u ∈ R, of the class C1

in u uniformly with respect to x ∈ TN and Fu is continuous on TN × R. It
furthermore satisfies:

(i) F (x̃, 0) ≡ F (x̃, 1) ≡ 0;

(ii) for any u ∈ {0, 1}, sup
x̃∈RN−1

Fu (x̃, u) < 0;

(iii) there exists a sequence Rn →∞ such that

lim
n→∞

1∣∣BN−1
Rn

∣∣
∫
BN−1

Rn

W (x̃, 1) dx̃ 6= 0,

wherein we have set W (x̃, u) =
∫ u

0
F (x̃, s) ds. Moreover for each R > 0,

BN−1
R ⊂ RN−1 denotes the ball in RN−1 with the radius R > 0 and centred

at the origin while
∣∣BN−1

R

∣∣ denotes its measure in RN−1.

Under the above set of assumptions we will prove that the following proposition
holds true.

Proposition 5.9 Let Assumption 5.8 be satisfied. Then Problem (55) does not
admit any standing transition between u = 0 and u = 1 in the direction e0.

Proof. In order to prove the above proposition, let us assume that there exists
a standing transition u : RN → R connecting u = 0 and u = 1 in the direction
e0, that is a function u ≡ u (x1, x̃) that satisfies the equation

∆u+ F (x̃, u) = 0, ∀x = (x1, x̃) ∈ RN , (56)

as well as the following behaviour when x1 → ±∞:

lim
x1→−∞

u (x1, x̃) = 0, lim
x1→∞

u (x1, x̃) = 1. (57)

Here the above limits are uniform with respect to x̃ ∈ RN−1.
Now because of Assumption 5.8 (ii) one obtains the following exponential

decay with respect to x1: there exist some constants C > 0 and η > 0 such that
for all x = (x1, x̃) ∈ RN one has

|u(x)| ≤ Ceηx1 , |1− u(x)| ≤ Ce−ηx1 ,

|∂x1
u(x)| ≤ Ce−η|x1|, |∇x̃u(x)| ≤ C.

(58)
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We refer for instance to [7, 16] for the derivation of such an exponential decay.
Let us also observe that due to elliptic estimates and the uniform limits in (57)
one has:

lim
x1→±∞

∇x̃u(x) = 0 uniformly with respect to x̃ ∈ RN−1. (59)

Let M > 0 and R > 0 be given and fixed. Multiplying (56) by ∂x1
u and

integrating over the cylinder (−M,M)×BN−1
R yields

1

2

∫
BN−1

R

(∂x1
u(M, x̃))

2
dx̃− 1

2

∫
BN−1

R

(∂x1
u(−M, x̃))

2
dx̃

+

∫ M

−M

∫
∂BN−1

R

∇x̃u(x1, x̃) · ν̃(x̃)∂x1u(x1, x̃)dσ (x̃) dx1

− 1

2

∫
BN−1

R

[
|∇x̃u(M, x̃)|2 − |∇x̃u(−M, x̃)|2

]
dx̃

+

∫
BN−1

R

W (x̃, u(M, x̃)) dx̃−
∫
BN−1

R

W (x̃, u(−M, x̃)) dx̃

= 0

In the second line of the above computation, ν̃(x̃) ∈ RN−1 denotes the outward
unit vector to ∂BN−1

R ⊂ RN−1 at x̃.
Now using the properties stated in (58) and (59) one can let M →∞ in the

above formula to obtain that for each R > 0:∫ ∞
−∞

∫
∂BN−1

R

∇x̃u(x1, x̃) · ν̃(x̃)∂x1u(x1, x̃)dσ (x̃) dx1 +

∫
BN−1

R

W (x̃, 1) dx̃ = 0.

Therefore there exists some constant K > 0 such that for all R > 0 one has∣∣∣∣∣ 1∣∣BN−1
R

∣∣
∫
BN−1

R

W (x̃, 1) dx̃

∣∣∣∣∣ ≤ KR−1.

This former property contradicts Assumption 5.8 (iii) and this completes the
proof of Proposition 5.9.

We now come back to Problem (9) with r(x) = r(x2) and a(x) = a(x2) for all
x = (x1, x2) ∈ T1 × T1. Then the function f(x, u) = r(x2)u (u− a(x2)) (1− u)
satisfies the conditions of Assumption 5.8 (i) and (ii) and one has

lim
R→∞

1

2R

∫ R

−R

∫ 1

0

f(x, u)du =M(r)

∫ 1

0

u
(
u− θ

)
(1− u)du,

with M(r) =
∫
T1 r(x2)dx2 and θ =

∫
T1 r(x2)a(x2)dx2

M(r) . Hence in that context

Assumption 5.8 (iii) is equivalent to θ 6= 1
2 . This condition is satisfied under

the assumptions of Theorem 1.9 while under the assumptions of Theorem 1.10
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this condition has to be furthermore assumed. This completes the proof of the
statements in Remark 1.11.
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