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1. Introduction

This work deals with the following elliptic system of equations:
ε∆r(x) + I(x)−

N∑
i=1

fi(r(x), x)ui(x)−m0r(x) = 0, x ∈ Ω

εdi∆ui(x) + fi(r(x), x)ui(x)−miui(x) = 0, i = 1, · · · , N, x ∈ Ω

∂νu1(x) = ... = ∂νuN (x) = ∂νr(x) = 0 for x ∈ ∂Ω,

(1.1)

where ε > 0 is a small parameter. Here Ω is a sufficiently smooth bounded domain

in Rn, while ∂ν denotes the usual derivative along the outward normal vector to ∂Ω.

The above system of equations arises when looking at steady state solutions of the

following reaction-diffusion system with spatially varying environment modelling
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the competition of N species for a single resource posed for time t > 0 and x ∈ Ω(∂t − ε∆) r(t, x) = I(x)−
N∑
i=1

fi (r(t, x), x)ui(t, x)−m0r(t, x),

(∂t − εdi∆)ui(t, x) = ui(t, x) [fi(r(t, x), x)−mi] , i = 1, · · · , N,
(1.2)

supplemented together with the no flux boundary conditions:

∂νu1(t, x) = ... = ∂νuN (t, x) = ∂νr(t, x) = 0 for t > 0, x ∈ ∂Ω. (1.3)

Coming back to (1.1) or to (1.2)-(1.3), r represents the density of the single resource,

while u1, .., uN denote the density of the different competing species. In the above

system, I(x) ≥ 0 corresponds to the supply of resource while m0 > 0 denotes its

natural decay. Parameter mi > 0 denotes the natural death rate of the ith−species,

while function fi(r, x) ≥ 0 corresponds to the consumption rate of the resource at

each point x ∈ Ω of the ith−species. Note that the interactions between species are of

competition type through the consumption of the resource, so that System (1.1) (or

(1.2)-(1.3)) exhibits a prey-predator like structure in some spatially heterogeneous

environment.

In an homogeneous environment, namely I(x) ≡ I > 0 and fi(r, x) ≡ fi(r),

the above system reduces to the well known homogeneous chemostat system. The

homogeneous chemostat system is widely used in theoretical biology to study pop-

ulation of micro-organisms such as plankton or bacteria as well as in bioscience to

model industrial cultures of micro-organisms. Such a system is known to exhibit the

so-called exclusion principle. Such a property holds true for a large class of growth

(or consumption) functions fi. Roughly speaking, this exclusion principle means

that only one species (the strongest) will survive and coexistence cannot occur.

There is a wide literature on this topic and we refer for instance to Hsu et al 31,

Hsu 29, Sari and Mazenc 40 or to the monograph of Smith and Waltman 41(see also

the references cited therein).

However, in various contexts, theoretical studies have highlighted the importance

of spatial heterogeneities 9,10,36 and of the diffusion rates 6,2,22 on the coexistence

of species (see also Ref. 1 and the references therein). In chemostat like models,

both empirical 11,19,26 and numerical 24,37 results indicate that an intermediate

diffusion rate maximize the number of species which can coexist. However, from a

mathematical point of view, these questions are not yet fully elucidated.

The coexistence problem for a system similar to (1.1) with two species (N = 2)

and for any value of ε has been investigated for the so-called unstirred chemostat

model. We refer for instance to Hsu and Waltman in Ref. 32, Wu 44 and Nie and

Wu 39. In these works, the authors assume equi-diffusivity as well as equi-mortality

rates to reduce the problem to a scalar elliptic equation. Bifurcation techniques are

then used to construct coexistence branches of solutions. These results have been

extended by Dung, Smith and Waltman in Ref. 21 where the authors used per-

turbation methods to obtain results close to the equi-mortality and equi-diffusivity

case. Note that all the aforementioned works are devoted to the case of two species
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(N = 2). This has been extended to very general systems with an arbitrary num-

ber of competing species by Baxley and Robinson in Ref. 3 who focused on some

properties of the solutions close to the bifurcation points.

In the case of fast diffusion (ε → +∞), more results can be obtained. Indeed,

using aggregation methods, Castella and Madec have shown in Ref. 8 that system

(1.1) behaves similarly to a suitable associated spatially averaged chemostat system.

It turns out that, for large diffusion rates, there is generically no coexistence solution

for (1.1), and such a result holds true for an arbitrary number of competing species.

In this work, we shall focus on System (1.1) for an arbitrary number of competing

species in the framework of the small diffusion approximation, namely ε→ 0. Note

that such a limiting case is well adapted in the modelling of the interactions of micro-

organisms in large environment such as lake or large plug-flow. Let us emphasize

that the existence of positive solutions is related to the instability of the semi-

trivial solutions (i.e. with at least one zero component). The asymptotic profile of

the solutions as ε → 0 will allow us to obtain such information and therefore to

compute a suitable topological degree ensuring the existence of at least one positive

solution. We would like to mention that the instability of semi-trivial equilibria can

also be used to study the permanence properties as well as global attractor for the

parabolic system (1.2)-(1.3). We refer to the monograph of Cantrell and Cosner 7.

Hence such tools coupled together with Hale-Lopes like fixed point argument (see

Ref. 25) can also be used instead of the topological degree arguments presented in

this work. This will be investigated in detail in a forthcoming work.

Note that the small diffusion asymptotic is widely used in the study of reaction-

diffusion system arising in population dynamics. Such studies are mainly focused

on cooperative and competitive interactions for which monotonicity arguments are

crucial to obtain convergence toward free boundary problems. We refer for instance

to Bothe and Hilhorst 5, Dancer et al 18, Hilhorst et al 27 (and the references cited

therein). We also refer to Hutson et al. in Ref. 34, 33 (see also the references cited

therein) who studied parabolic equation as well as elliptic system of competitive

type posed in heterogeneous environment with fast reaction and small diffusion.

Here again the approaches are based on monotonicity properties, that, as noticed

by the above mentioned authors, seem difficult to extend to prey-predator like

interactions and/or to more than two competing species. Let us finally mention the

work of Hilhorst et al in Ref. 28 dealing with the singular limit for a non-competitive

two components reaction-diffusion system arising in theoretical chemistry. In this

paper, the arguments are no longer based on monotonicity, which is not available

for such interactions, and the authors crucially use the specific form of the reaction

term.

As mentioned in a conjecture proposed by Huston et al. in Ref. 34, the asymp-

totic profile of the solutions of (1.1) as ε→ 0 seems to be related to the long time
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behaviour of the parametrised ODE system for x ∈ Ω,
dr(t,x)
dt = I(x)−

N∑
i=1

fi(r(t, x), x)ui(t, x)−m0r(t, x)

dui(t,x)
dt = [fi(r(t, x), x)−mi]ui(t, x), i = 1, · · · , N.

(1.4)

We provide a methodology to study the relationship between the asymptotic shape

of the solutions of (1.1) as ε→ 0 and the interior attractor of (1.4). Note that the

long time behaviour of (1.4) can be derived by using a suitable Lyapunov functional.

As formally explained below, the specific shape of this functional will allow us to

construct appropriated sub-harmonic maps that will be used in the study of (1.1).

Let us now sketch this idea by performing some formal computations that will

be rigorously justified throughout this work to study the singular limit profiles for

(1.1). Consider an elliptic system of the form{
εD∆Uε(x) + F (x, Uε(x)) = 0, x ∈ Ω,

∂νU
ε(x) = 0 ∀x ∈ ∂Ω.

Here Ω ⊂ Rn, F : Ω×Rp → Rp is a smooth map, D = diag (d1, .., dp) is a diagonal

matrix with positive coefficients while U = (u1, .., up) is a vector valued function.

In order to understand the behaviour of the solutions as ε → 0, we assume that

the solutions are uniformly bounded with respect to ε small enough. Let x0 ∈ Ω

be given and consider the rescaled vector valued function V ε(y) = Uε (x0 + y
√
ε).

The uniform bound on Uε together with elliptic regularity allows us to assume

that V ε(y) → V (y) locally uniformly with respect to y ∈ Rn as ε → 0 and where

V ≡ V (y) becomes a bounded solution of the following homogeneous elliptic system

of equation

D∆V (y) + F (x0, V (y)) = 0, y ∈ Rn. (1.5)

The asymptotic profile of Uε(x0) is therefore related to the solutions of the above

elliptic equation. The study of the later elliptic equation will be performed by

constructing suitable sub-harmonic maps. To explain this idea, we assume that

there exist p sufficiently smooth, non-negative and convex maps Vi : R → R such

that
p∑
i=1

V ′i(ui)Fi (x0, u1, .., up) ≤ 0, (1.6)

for each U = (u1, .., up) in some suitable domain of Rp. Note that this assumption

is related to the existence of a separable Lyapunov functional for the ODE system

of equations:

dU(t)

dt
= F (x0, U(t)) . (1.7)

Indeed, if t 7→ U(t) is a suitable trajectory, then the map t 7→
∑p
i=1 Vi (ui(t))

is decreasing in time. Note that such an assumption holds true for a large class of
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systems arising in population dynamics and more generally in mathematical biology.

We refer to the survey paper of Hsu 30 and the references cited therein.

Coming back to (1.5), let V ≡ (v1, .., vp) (y) be a given suitable solution of (1.5)

and consider the function W (y) :=
∑p
i=1 diVi (vi(y)). Then one obtains that

∆W (y) =

p∑
i=1

diV ′′i (vi(y)) |∇vi(y)|2 −
p∑
i=1

V ′i(vi(y))Fi (x0, V (y)) . (1.8)

Note that (1.6) together with the convexity of functions Vi imply that function W

is a sub-harmonic map on Rn. Sub-harmonicity as well as the shape of functions Vi
will impose strong constraints on the solutions of (1.5), that is on the asymptotic

behaviour of Uε(x0).

The goal of this manuscript is to develop this methodology in order to study

of (1.1). This work is organized as follows: Section 2 is devoted to listing our main

assumptions and to stating our main results. Section 3 deals with preliminary results

that will be extensively used in the sequel of this work. It is more precisely concerned

with elliptic eigenvalue estimates and a priori estimates of the solutions. Section 4 is

concerned with the study of System (1.1) with N = 1. The construction of a positive

solution is presented. Such a construction as well as the asymptotic analysis are then

generalized in Section 5 where induction arguments are used to derive sufficient

conditions ensuring the existence of coexistence solutions of (1.1). Finally this work

is ended by an Appendix presenting technical results used throughout this work,

topological degree on cones, some elliptic lemma, and rescaling techniques at a

boundary point.

2. Main results

In this section we will state our main results that will be discussed and proved in

this work.

We will assume that the following properties hold true:

Assumption 2.1. We assume that Ω ⊂ Rn is a regular and bounded domain.

We assume that the external supply function I ∈ C0,1
(
Ω
)

is Lipschitz continuous

on Ω, I ≥ 0 and I is not identically zeroa. Parameters d1 > 0,..., dN > 0 and

m0 > 0, m1 > 0,.., mN > 0 are fixed given constants.

We furthermore assume specific assumptions on the consumption functions fi.

Assumption 2.2. We assume that for each i = 1, · · · , N function fi satisfies:

(i) for all x ∈ Ω, the function r 7→ fi(r, x) is increasing from R+ into itself

and satisfies fi(0, x) = 0,

(ii) for all r ∈ R+, the function x 7→ fi(r, x) belongs to C1(Ω).

aIf I ≡ 0 then (0, · · · , 0) is the only non-negative solution of (1.1).
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Let us notice that such an assumption holds true for a large class of consumption

functions including linear consumption functions as well as Michaelis-Mentens type

functional response (see for instance Sari and Mazenc 40).

The aim of this work is to provide sufficient conditions ensuring the existence

of positive solutions of System (1.1). The construction procedure will follow an

induction process and will make use of the important quantities ( well defined using

Assumption 2.2) Ri(x) defined, for each i = 1, .., N and x ∈ Ω, by

Ri(x) =

ri(x) if lim
r→∞

fi(r, x) > mi

+∞ else,
(2.1)

where ri is uniquely defined (if lim
r→∞

fi(r, x) > mi) by the resolution of the equation

fi (ri(x), x) = mi.

These spatially dependent quantities will allow us to define a spatial ordering of the

components of System (1.1) in the small diffusion asymptotic ε → 0. Similarly to

the ODE case, these quantities describe the strength of each competing species at a

given spatial location. To be more precise, at each point x ∈ Ω, the smaller Ri(x),

the stronger competitor is the ith species at x. In what follows they will be used to

provide a spatial comparison between the different species.

We first investigate System (1.1) without any species and we will prove the

following asymptotic result:

Proposition 2.1 (trivial solution). Let Assumption 2.1 be satisfied. Let ε > 0

be given. Then the elliptic equation{
ε∆r(x) + I(x)−m0r(x) = 0 on Ω,

∂νr = 0 on ∂Ω,

has a unique solution denoted by sε > 0 ∈ C2(Ω). It furthermore satisfies the

following asymptotic

lim
ε→0

sε(x) = S(x) :=
I(x)

m0
, uniformly for x ∈ Ω. (2.2)

We now consider System (1.1) with N = 1. Recalling (2.1), define

Θ0 =
{
x ∈ Ω, S(x) ≤ R1(x)

}
, Θ1 =

{
x ∈ Ω, R1(x) < S(x)

}
. (2.3)

Then the following result holds true:

Theorem 2.3 (Single species survival). Let Assumption 2.1 and 2.2 be satisfied.

Assume that Θ1 6= ∅. Then there exists ε0 > 0 such that for each ε ∈ (0, ε0), System

(1.1) with N = 1 admits at least one positive solution (rε, uε1) ∈
(
C2(Ω)

)2
.

We will then derive the asymptotic behaviour ε→ 0 of such a survival solution.
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Theorem 2.4. Let ε0 > 0 and let {(rε, uε1)}ε∈(0,ε0) be a family of positive solutions

of (1.1) with N = 1. Then one has

lim
ε→0
‖rε −R∗‖∞ = 0 and lim

ε→0
‖uε1 − U∗1 ‖∞ = 0,

wherein we have set

R∗(x) = min (S(x), R1(x)) , U∗1 (x) =
m0

m1
(S(x)−R1(x))

+
.

This result allows us to derive a criteria for non-existence of coexistence solution.

Our result reads as follows:

Corollary 2.1. Let N = 1 and assume that S(x) < R1(x) for all x ∈ Ω. Then

for each ε > 0 small enough, function (sε, 0) (see Proposition 2.1) is the only non-

negative solution of (1.1).

At this step, it is natural to investigate the stability of the solutions provided by

Theorem 2.3. One can expect that this coexistence solution is stable when it exists.

We are only able to prove this result as well as the uniqueness when Θ1 = Ω ( see

Proposition 4.1).

We will generalize the above results and prove the existence of a positive solution

for (1.1) if each species is the best competitors (expressed in term of Ri(x)) at least

at some point x ∈ Ω. To be more precise, let us introduce the following partition of

Ω:

Θ0 = {x ∈ Ω, S(x) ≤ Ri(x), i = 1, · · · , N},
Θj = {x ∈ Ω, Rj(x) < S(x), Rj(x) < Ri(x), ∀i 6= j}, j = 1, · · · , N,

as well as the interface set defined by

Γ = {x ∈ Ω, Ri(x) = Rj(x) < S(x), for some i 6= j}.

Our analysis provides information on the asymptotic profile of the solutions, as

ε→ 0, outside the interface Γ. We will assume the following geometrical assumption

to ensure that each species is the strongest competitor at, at least, one location

outside the interface:

Assumption 2.5. For all k ∈ {1, · · · , N}, Θk 6= ∅ and Θk 6⊂ Γ.

As formally described in the introduction, our asymptotic analysis relies on the

existence of a separable Lyapunov function for the corresponding parametrized ODE

system (see (1.4)). Such a property is ensured by assuming the following:

Assumption 2.6. Let j = 1, · · · , N and x ∈ Θj be given. For r 6= Ri(x), define

Gi(r, x) =
fi(r, x) [fj(r, x)−mj ]

fj(r, x) [fi(r, x)−mi]
.

We assume that for each i 6= j, then there exists a number αi(x) > 0 such that

max
0≤r≤Rj(x)

Gi(r, x) ≤ αi(x),
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and if Ri(x) < S(x), then

αi(x) ≤ min
Ri(x)<r≤S(x)

Gi(r, x).

Similarly to Assumption 2.2, the above structural assumption also holds true for

a large class of functions fi including linear function or Michaelis-Mentens function

(also referred to as Holling I and Holling II functional responses). We refer to Ref. 40

for such a study (see also the references cited therein). We can now state our first

result.

Theorem 2.7 (Asymptotic exclusion principle outside of the interface).

Let Assumption 2.1, 2.2, 2.5 and 2.6 be satisfied. Consider a family (rε, uε1, · · · , uεN )

with ε ∈ (0, ε0) of positive solutions of (1.1). Then the following convergence holds

true:

lim
ε→0

(rε, uε1, · · · , uεN ) = (R∗, U∗1 , · · · , U∗N ) ,

uniformly on each compact subset of Ω \ Γ and wherein we have set R∗(x) =

min(S(x), R1(x), · · · , RN (x)) and for i = 1, · · · , N ,

U∗i (x) =

{
m0

mi
(S(x)−R∗(x)) if x ∈ Θi,

0 if x /∈ Θi.
(2.4)

The above result shows that in the small diffusion asymptotic, outside the inter-

face, the coexistence solutions converge to a segregative solution. This means that

at a given spatial location, only the strongest species can survive. As a consequence,

exclusion principle holds at any given spatial location far from the interface. Let us

also mention that the asymptotic profile of the solutions at the interface remains

an open problem. Moreover coming back to the parametrized ODE (1.4) let us re-

call that it corresponds for each given x ∈ Ω to the usual chemostat system and

that it is formally obtained from (1.2)-(1.3) by setting ε = 0. One can notice that

the asymptotic profile R∗ described in Theorem 2.7 corresponds, for each value of

x ∈ Ω, to the so-called break-even concentration of nutriment associated to (1.4),

that is well known in the homogeneous chemostat problem (we refer to the mono-

graph of Smith and Waltman 41 and the recent paper of Sari and Mazenc 40 for a

survey on this topic).

The above result furthermore provides a necessary condition for coexistence in

the case Γ = ∅.

Corollary 2.2. Let Assumption 2.1, 2.2, 2.5 and 2.6 be satisfied. Assume further-

more that Γ = ∅. If there exists i = 1, · · · , N such that Ri(x) > R∗(x) for all x ∈ Ω,

then there exists ε0 > 0 such that for each ε ∈ (0, ε0), System (1.1) does not have

any coexistence solution.
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Remark 2.1. Note that in the case N = 2, if R2(x) > min(R1(x), S(x)) for each

x ∈ Ω then Γ = ∅ and Corollary 2.2 applies. For N ≥ 3 species, we expect that

the assumption Γ = ∅ can be weakened. However such a result would make use of

a precise profile of the solutions on the interface, that remains an open question for

the moment.

We end this section by stating the following theorem that ensures that coexis-

tence holds for small diffusion rates when each species is the strongest competitor

at, at least, one location x ∈ Ω outside the interface.

Theorem 2.8 (Coexistence state). Let Assumption 2.1, 2.2, 2.5 and 2.6 be

satisfied. Then there exists ε0 > 0 such that for each ε ∈ (0, ε0), System (1.1) has

a positive solution (rε, uε1, · · · , uεN ) ∈
(
C2(Ω)

)N+1
.

Remark 2.2. The proof of Theorem 2.8 for N = 2 is based on the asymptotic

profile as ε→ 0 of the solutions of the 1-species problems. Such profile is provided

by Theorem 2.4 and it does not depend on Assumption 2.5. As consequence for

N = 2, the above result does not require Assumption 2.5.

Remark 2.3. We finally would like to mention that all the results presented in

this section also hold true when the decay rates arising in System (1.1) are spatially

varying functions, namely mj ≡ mj(x) for j = 0, .., N . The proofs associated to this

situation are similar as soon as functions mj are sufficiently smooth and mj(x) > 0

for any x ∈ Ω.

3. Preliminary

3.1. Uniform bound

This aim of this section is to prove first a priori estimates (independent of ε) of the

solutions of (1.1) and to complete the proof of Proposition 2.1. We start this section

by proving Proposition 2.1.

Proof of Proposition 2.1. Let us first notice that the existence and positivity of sε is

classical. Since I ∈ C0,1
(
Ω
)
, due to elliptic regularity, one obtains that sε ∈ C2(Ω).

Introducing the linear operator A : D(A) ⊂ C
(
Ω
)
→ C

(
Ω
)

defined by

A = ∆, D(A) =
{
ϕ ∈ C

(
Ω
)
∩H2(Ω) : ∂νϕ = 0 on ∂Ω, ∆ϕ ∈ C

(
Ω
)}
,

one know that

sε =
m0

ε

(m0

ε
−A

)−1 I

m0
.

Recalling that Ω has a sufficiently smooth boundary, so that A is a densely de-

fined operator satisfying the Hile-Yosida property (see for instance Ref. 4 and the

references cited therein), the result follows.

We now derive a uniform bound independent of ε > 0 of the solutions of (1.1).
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Lemma 3.1. Let Assumption 2.1 be satisfied. There exists a constant M > 0

(independent of ε > 0 and of function fi) such that any non-negative solution

(rε, uε1, .; , u
ε
N ) of (1.1) satisfies

‖rε‖∞ +

N∑
i=1

‖uεi‖∞ ≤M.

Furthermore recalling the definition of sε in Proposition 2.1, function rε satisfies

rε(x) ≤ sε(x), ∀x ∈ Ω.

Proof. Adding up the N + 1 equations of (1.1), yields

ε∆

(
r +

N∑
i=1

(diui)

)
−

(
m0r +

N∑
i=1

miui

)
+ I(x) = 0.

Setting P = rε +
∑N
i=1 diu

ε
i and α = min

{
m0,

m1

d1
, · · · , mNdN

}
, then one gets

(α− ε∆)P (x) = (α−m0)r +

N∑
i=1

(
α− mi

di

)
diui(x) + I(x) ≤ I(x), ∀x ∈ Ω.

The elliptic comparison principle therefore yields

‖P‖∞ ≤
1

α
‖I‖∞.

This completes the proof of the uniform bound. The proof of the upper estimates

of rε directly follows from the elliptic maximum principle.

3.2. Eigenvalue lemma

The aim of this section is to provide qualitative information on the principal eigen-

value of an elliptic operator as the diffusion rate tends to 0.

In order to state our results, for each d > 0 and each function q ∈ L∞(Ω)

let us introduce the quantity Λ(d, q) ∈ R defined as the principal eigenvalue of the

elliptic operator d∆+q(x) on Ω supplemented together with homogeneous Neumann

boundary condition on ∂Ω, that is
(d∆ + q(x))φ(x) = Λ(d, q)φ(x) in Ω,

∂νφ = 0 on ∂Ω,

φ(x) > 0 ∀x ∈ Ω.

Recall that such a principle eigenvalue can also be characterized by the so-called

Rayleigh quotient (see for instance Ref. 42)

Λ(d, q) = max
φ∈H1(Ω)\{0}

−d
∫

Ω
∇φ2dx+

∫
Ω
q(x)φ2dx

‖φ‖22
, (3.1)



November 15, 2012 11:19 WSPC/INSTRUCTION FILE ducrot-madec

Singularly perturbed elliptic system 11

and it is continuous with respect to q.

The first lemma is well known (we refer for instance to Ref. 33, 34, 35 see also

Ref. 16 for general cooperative systems).

Lemma 3.2. Consider a family {qε}ε>0 ⊂ C
(
Ω
)

and assume furthermore that

qε → q as ε→ 0 for the topology of C(Ω). Then one has:

lim
ε→0

Λ(ε, qε) = max
Ω

(q).

In our applications, the strong convergence qε → q in C(Ω) will not be satisfied

and we will need a weaker version of such a result to ensure Λ(ε, qε) > 0 for all

sufficiently small ε. This previous result is adapted into the following lemma that

will be used in Section 5.

Lemma 3.3. Let x ∈ Ω and η > 0 be given such that K := B(x, η) ⊂ Ω. Assume

that qε → q in C(K) with function q such that q(x) > 0. Then there exists ε0 > 0

such that

Λ(ε, qε) > 0, ∀ε ∈ (0, ε0).

Proof. On the one hand, using the Rayleigh quotient representation of Λ(ε, qε) (see

(3.1)), one has

Λ(ε, qε) = max
φ∈H1(Ω)\{0}

−ε
∫

Ω
∇φ2 +

∫
Ω
qεφ

2

‖φ‖22
. (3.2)

Let x ∈ Ω be given and let us consider ε small enough such that B
(
x, ε1/4

)
⊂ Ω.

Next fix a positive test function ϕ supported in B(0, 1), such that
∫
Rn ϕ

2 = 1, and

set

φxε (y) = ε−n/8ϕ

(
x− y
ε1/4

)
.

Then φxε satisfies for each ε small enough:

(a) ‖φxε‖2 = 1,

(b) ε
∫

Ω
|∇φxε |2 → 0 as ε→ 0,

(c) supp (φxε ) = B
(
x, ε1/4

)
.

Using (3.2) and φxε as test function, one obtains:

Λ(ε, qε) ≥ −ε
∫

Ω

|∇φxε (y)|2dy +

∫
Ω

qε(y)(φxε (y))2dy.

It thus follows that

lim inf
ε→0

Λ(ε, qε) ≥ lim
ε→0

∫
Ω

qε(y)(φxε (y))2dy.

On the other hand, one has∫
Ω

qε(y)(φxε (y))2dy−q(x) =

∫
Ω

(qε(y)−q(y))(φxε (y))2dy+

∫
Ω

(q(y)−q(x))(φxε (y))2dy.
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The choice of the test function, namely φxε , yields to∫
Ω

(q(y)− q(x))|φxε (y)|2dy → 0

while the first term can be estimated as follows for each ε small enough:∣∣∣∣∫
Ω

(qε(y)− q(y))(φxε (y))2dy

∣∣∣∣ ≤ max
y∈supp (φε)

(|qε(y)− q(y)|)

≤ max
y∈B(x,η)

(|qε(y)− q(y)|),

as soon as supp (φε) ⊂ B(x, η). Then maxy∈supp (φε)(|qε(y) − q(y)|) → 0 which

implies that

lim inf
ε→0

Λ(ε, qε) ≥ q(x),

and the result follows.

4. Single species problem

The aim of this section is to deal with System (1.1) with N = 1. The system under

consideration thus reads as
ε∆r(x) + I(x)− f1(r(x), x)u(x)−m0r(x) = 0, x ∈ Ω,

εd1∆u(x) + f1(r(x), x)u(x)−m1u(x) = 0,

∂νu = ∂νr = 0 on ∂Ω.

(4.1)

In this section we will focus on the proofs of Theorem 2.3, Theorem 2.4 as well as

Corollary 2.1.

4.1. Existence, proof of Theorem 2.3

To prove the existence of solution, we will use the degree theory in a positive cone

(we refer for instance to Ref. 20, 13, 14, see also Appendix A). Let us consider the

Banach space E defined by

E = C0(Ω)× C0(Ω),

endowed with the usual product norm, as well as its positive cone C = P × P

wherein P is defined by

P =
{
v ∈ C0(Ω) : v(x) ≥ 0 ∀x ∈ Ω

}
. (4.2)

Now recall that Lemma 3.1 provides the existence of some constant M > 0 inde-

pendent on ε such that each non-negative solution of (4.1) satisfies 0 ≤ u ≤M and

0 ≤ r ≤M .

Define

K = {(r, u) ∈ C, r < 2M,u < 2M},



November 15, 2012 11:19 WSPC/INSTRUCTION FILE ducrot-madec

Singularly perturbed elliptic system 13

and let β > 0 be a positive constant such that

β > 2M sup
r∈(0,2M]

x∈Ω

f1(r, x)

r
.

Let B : C → C be the compact operator defined by

B =

(
(m0 + β − ε∆)−1 0

0 (m1 − εd1∆)−1

)
,

and let us set, for each t ∈ [0, 1], the operator At defined by

At(r, u) = B

(
I + βr − tf1(r, .)u

tf1(r, .)u

)
.

Lemma 3.1 as well as the above choice of β show that operator At is well defined

and acts from K → C. Moreover, standard elliptic regularity ensures that At is a

completely continuous operator and one can notice that (r, u) is a non-negative

solution of (4.1) with f1 replaced by tf1 if and only if (r, u) is a fixed point of At
in K.

Note that the (unique) trivial solution (sε, 0) is a non-negative fixed point of At for

each t ∈ [0, 1] and, we furthermore have for each t ∈ [0, 1]:

(r, 0) ∈ C and At(r, 0) = (r, 0) ⇔ r = sε.

We now aim to apply Proposition Appendix A.1 (see Appendix A) . To do so, let

us set

U = {r ∈ P, r < 2M},

and for each δ > 0:

Pδ = {u ∈ P, ‖u‖ ≤ δ}.

Then the following lemma holds true:

Lemma 4.1. The following assertions hold true:

(i) ∀t ∈ [0, 1], degC(I −At,K) = 1,

(ii) Assume that Λ (εd1, f1(sε(.), .)−m1) > 0. Then, for all small enough δ >

0, one has

degC(I −A1,U × Pδ) = 0.

Proof. In order to prove this lemma, let us introduce the following operators

At = (A1
t , A

2
t ), L

1
t = DrA

1
t (s

ε, 0) and L2
t = DuA

2
t (s

ε, 0).

Then one has A0(r, u) = (A1
0(r, u), 0) with A1

0(r, u) = (m0 + β − ε∆)−1(I + βr).

Since (sε, 0) is the only fixed point of A0 in K, one obtains for each δ > 0,

degC(I −A0,K) = degC(I −A0,U × Pδ). (4.3)
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Simple computations show that L1
0 = β(m0 + β − ε∆)−1 while DuA

2
0(sε, 0) =

L2
0 = 0, so that rspec(L

2
0) < 1 (where rspec denotes the spectral radius). Let us

denote by σ, the number of eigenvalues of L1
0 greater than 1 counted with their

algebraic multiplicities. Then Proposition Appendix A.1-(ii) applies and provides

that

degC(I −A0,U × Pδ) = degP (I −A1
0,U) = (−1)σ. (4.4)

Note that the last equality arises since sε belongs to the interior of U .

Now note that if µ is an eigenvalue of L1
0 then there exists some function ρ 6= 0

such that

(m0 − ε∆)ρ =
β

µ
(1− µ)ρ.

It follows that β
µ (1−µ) is an eigenvalue of operator (m0− ε∆) and therefore µ < 1.

As a consequence, σ = 0 and (4.3)-(4.4) yield to

degC(I −A0,K) = 1.

Due to Lemma 3.1, for each t ∈ [0, 1], operator At has no fixed point on ∂K
(the boundary being relative to C). It follows from homotopy invariance of the fixed

point degree that degC(I −At,K) = 1 for all t ∈ [0, 1]. This completes the proof of

(i).

In order to prove (ii), let us notice that for all ε sufficiently small,

lim
σ→∞

Λ

(
εd1,

1

σ
f1(sε, .)−m1

)
= Λ (εd1,−m1) ≤ −m1 < 0.

Since Λ (εd1, f1(sε, .)−m1) > 0, there exists σ0 > 1 such that

Λ

(
εd1,

1

σ0
f1(sε, .)−m1

)
= 0.

Then this leads us to rspec(L
2
1) > σ0 > 1 and for all φ ∈ P \ {0}, L2

1φ > 0. Thus

Proposition Appendix A.1- (i) applies and it follows that degC(I−A1,U×Pδ) is well

defined for all small enough δ and that this last quantity equals 0. This completes

the proof of (ii).

Next, the following lemma holds true:

Lemma 4.2. Let ε > 0 be given. Assume that Λ(εd1, f1(sε(.), .) −m1) > 0. Then

there exists α1 > 0 such that for each solution (rε, uε) of (4.1):

uε > 0 ⇒ uε(x) > α1 for all x ∈ Ω.

Proof. To prove this lemma, let us argue by contradiction by assuming that

there exist a sequence of positive solutions {(rk, uk)}k≥0 of (4.1) and a sequence

{xk}k≥0 ⊂ Ω, such that uk(xk) → 0 as k → +∞. Then one may assume, possibly

up to a subsequence, that xk → x∗ ∈ Ω. By Lemma 3.1, standard elliptic regular-

ity and Sobolev embedding theorem, one may assume that (rk, uk) → (r∞, u∞) in
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C1(Ω) where (r∞, u∞) is a non-negative solution of (4.1) such that u∞(x∗) = 0.

Then the maximum principle and Hopf lemma yields to (r∞, u∞) ≡ (sε, 0). Now,

let us define for each k ≥ 0, the function Uk = uk
‖uk‖∞ . Then it satisfies for each

k ≥ 0: {
εd1∆Uk + f1(rk(x), x)Uk −m1Uk = 0 in Ω,

∂νUk = 0 on ∂Ω.

Since ‖Uk‖∞ = 1 for each k ≥ 0, due to elliptic estimates, one may assume that,

possibly along a subsequence, Uk → U∞ for the topology of C1
(
Ω
)

and where U∞
satisfies 

εd1∆U∞ + f1(sε(x), x)U∞ −m1U∞ = 0, in Ω,

∂νU∞ = 0 on ∂Ω,

U∞ ≥ 0 and ‖U∞‖∞ = 1.

Elliptic maximum principle and Hopf lemma implies that U∞ > 0 and therefore

Λ(εd1, f1(sε(.), .)−m1) = 0,

a contradiction together with the assumption in Lemma 4.2. This completes the

proof of the result.

Let α1 > 0 be given by Lemma 4.2. Define the subset O ⊂ K by

O = {(r, u) ∈ K, u(x) > α1, ∀x ∈ Ω}.

Then the following lemma holds true:

Lemma 4.3. Assume that Λ(εd1, f1(sε(.), .) − m1) > 0 for some ε > 0. Then

System (4.1) has at least one positive solution.

Proof. Let us first notice that since Λ(εd1, f1(sε(.), .)−m1) > 0, Lemma 4.2 implies

that a positive function pair (r, u) is a solution of (4.1) if and only if (r, u) ∈ O and

(r, u) is a fixed point of operator A1. Then Lemma 4.1 yields

1 = deg(I −A1,K) = degC(I −A1,K \ O) + degC(I −A1,O).

Next we infer from Lemma 4.2 and the definition of O that for any small enough

δ > 0

degC(I −A1,K \ O) = degC(I −A1,U × Pδ) = 0

where the last equality follows from Lemma 4.1. Thus, one gets degC(I −A1,O) =

1 6= 0 that completes the proof of the lemma.

We are now able to complete the proof of Theorem 2.3.

Proof of Theorem 2.3. Let us first notice that we infer from Proposition 2.1 and

Lemma 3.2 that

lim
ε→0

Λ(ε, f1(sε(.), .)−m1) = max
x∈Ω

(f1(S(x), x)−m1),
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wherein we have set S(x) ≡ I(x)
m0

. Recalling (2.3) and (2.1), Assumption Θ1 6= ∅
re-writes as

max
x∈Ω

(f1(S(x), x)−m1) > 0,

and therefore there exists ε0 > 0 such that

Λ (ε, f1 (sε(.), .)−m1) > 0, ∀ε ∈ (0, ε0).

Hence Lemma 4.3 applies and provides the existence of a positive solution (r, u) of

(4.1) for each ε ∈ (0, ε0). Finally due to elliptic regularity, such a solution belongs

to C2(Ω)× C2(Ω) and this completes the proof of Theorem 2.3.

4.2. Asymptotic behaviour, proof of Theorem 2.4

In this section we investigate the behaviour of the above constructed coexistence

solution when ε→ 0. Throughout this section, we assume that for any small enough

ε > 0 there exists a positive solution denoted by (rε, uε) of System (4.1). Before

proving Theorem 2.4 we need to derive some preliminary lemmas.

Our first result reads as follows:

Lemma 4.4. Let x ∈ Ω be given. Assume that there exists a sequence {εk}k≥0

tending to zero ( as k →∞) such that

lim
k→∞

uεk(x) = 0, (4.5)

then, up to subsequence, one has

lim
k→∞

rεk(x+ y
√
εk) = S(x) =

I(x)

m0
,

locally uniformly with respect to y ∈ Rn.

Proof. We assume that x ∈ Ω. The case x ∈ ∂Ω is more delicate and we refer to

Appendix C to consider such a case. Consider the sequence of rescaled functions

Rk(y) = rεk(x+ y
√
εk), Uk(y) = uεk(x+ y

√
εk), k ≥ 0,

defined when x+ y
√
εk ∈ Ω. Note that (4.5) re-writes as

lim
k→∞

Uk(0) = 0. (4.6)

These functions satisfy on the above set:{
∆yRk(y) + I

(
x+ y

√
εk
)
− f1

(
Rk(y), x+ y

√
εk
)
Uk(y)−m0Rk(y) = 0,

d1∆yUk(y) + f1

(
Rk(y), x+ y

√
εk
)
Uk(y)−m1Uk(y) = 0.

Let {Mk}k≥0 be an increasing sequence tending to +∞ as k → ∞ and such that

{x + y
√
εk, |y| < Mk} ⊂ Ω. Denote by B (M) = {y ∈ Rn, ‖y‖ < M}. Since Rk

and Uk are uniformly bounded, Lp−elliptic estimates apply and provide that the

sequences {Rk} and {Uk} are uniformly bounded in W 2,p
(
B
(
Mk√
εk

))
for each p > 1.
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Due to Sobolev embeddings, the sequences {Rk} and {Uk} are uniformly bounded

in C1,γ

(
B
(
Mk√
εk

))
for any γ ∈ (0, 1). Using a standard diagonal process and a

compactness argument, possibly along a subsequence, one may assume that Uk →
U∗ and Rk → R∗ as k → ∞ where the convergence is uniform on each compact

subset of Rn. We furthermore obtain that functions R∗ and U∗ are bounded, both

belong to W 2,p
loc (Rn)∩C1(Rn) and they satisfy the following system of equations for

each y ∈ Rn: {
∆R∗(y) + I(x)− f1(R∗(y), x)U∗ −m0R

∗(y) = 0,

d1∆U∗(y) + f1(R∗(y), x)U∗(y)−m1U
∗(y) = 0.

Let us furthermore notice that (4.6) implies that U∗(0) = 0 so that U∗(y) ≡ 0. Then

function R∗ ≡ R∗(y) becomes a bounded solution of the scalar elliptic equation

∆R∗(y) + I(x)−m0R
∗(y) = 0, ∀y ∈ Rn.

The classification derived by Caffarelli and Littman in Ref. 12 ensures that R∗(y) ≡
S(x) and the result follows.

Lemma 4.5. Recalling (2.3), let x ∈ Θ1 be given. Then one has

lim inf
ε→0

uε(x) > 0.

Proof. Let us assume that x ∈ Ω (see Appendix C for the case x ∈ ∂Ω). In order to

prove the above result let us argue by contradiction by assuming that there exists

a sequence {εk}k≥0 tending to zero such that

lim
k→∞

uεk(x) = 0.

According to Lemma 4.4 one has

lim
k→∞

rεk(x+ y
√
εk) = S(x),

locally uniformly for y ∈ Rn. Next consider the sequence of maps {wk}k≥0 with wk

defined by wk(y) =
uεk (x+y

√
εk)

uεk (x) and that satisfies the equation

d1∆wk(y) + f1 (rεk(x+ y
√
εk), x+ y

√
εk)wk(y)−m1wk(y) = 0,

wk(0) = 1 and wk > 0.

Due to Harnack inequality, the sequence {wk}k≥0 is locally bounded and, up to a

subsequence, one may assume that

wk → w∗ locally uniformly for y ∈ RN .

Furthermore w∗ satisfies

d1∆w∗(y) + [f1(S(x), x)−m1]w∗(y) = 0, y ∈ Rn

w(0) = 1 and w ≥ 0.
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Hence w > 0 and Lemma Appendix B.1 provides that

f1(S(x), x)−m1 ≤ 0,

a contradiction together with x ∈ Θ1.

Lemma 4.6. Let x ∈ Θ1 be given. Consider the following system posed for y ∈ Rn{
∆R(y)−m0R(y)− f1 (R(y), x)U(y) + I (x) = 0

d1∆U(y) + f1 (R(y), x)U(y)−m1U(y) = 0,
(4.7)

This system has a unique bounded positive solution (R,U)(y) ≡ (R1(x), U∗1 (x))

(Here recall that R1 and U∗1 are defined in (2.1) and Theorem 2.4).

Proof. Let (R,U) be a bounded positive solution of (4.7). Then we claim that

inf
y∈Rn

R(y) > 0 and inf
y∈Rn

U(y) > 0. (4.8)

Before proving this claim, let us complete the proof of the lemma. To do so, consider

the function W ≡W (y) defined by

W (y) =

∫ R(y)

R1(x)

(
1− m1

f1(σ, x)

)
dσ + d1

∫ U(y)

U∗1 (x)

(
1− U∗1 (x)

ξ

)
dξ. (4.9)

Since σ 7→ f1(σ, x) is increasing, W is non-negative. Besides, due to (4.8), W is

bounded on RN . Moreover it satisfies (for notational simplicity, we do not explicitly

write down the dependence with respect to the given point x ∈ Θ1 in the sequel of

the proof)

∆W (y) = ∆R(y)

(
1− m1

f1(R(y))

)
+ d1∆U(y)

(
1− U∗1

U(y)

)
+
m1f

′
1(R(y))

f1(R(y))2
|∇R(y)|2 +

d1

U(y)2
|∇U(y)|2

=
m1f

′
1(R(y))

f1(R(y))2
|∇R(y)|2 +

d1

U(y)2
|∇U(y)|2

+
m0

f1(R(y))m1
[S(f1(R(y))−m1) +m1R(y)− f1(R(y))R1] (f1(R(y))−m1).

(4.10)

On the other hand one has

[S(f1(R(y))−m1) +m1R(y)− f1(R(y))R1] (f1(R(y))−m1)

= (S −R1)(f1(R(y))−m1)2 +m1(R(y)−R1)(f1(R(y))−m1).
(4.11)

Note that the first term in (4.11) is non-negative since x ∈ Θ1, that is S > R1.

Since m1 = f1(R1) and f1 is increasing (see Assumption 2.2), one obtains

m1(R(y)−R1)(f1(R(y))−m1) = m1(R(y)−R1)(f1(R(y))− f1(R1)) ≥ 0.
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As a consequence of the above computations one obtains that function W satisfies{
∆W (y) ≥ 0 for each y ∈ Rn

and W is non-negative and bounded on Rn.

It follows that there exists a sequence {yk}k≥0 ∈ Rn such that W (yk) → sup(W ).

Up to a subsequence, one may assume that R(y + yk) and U(y + yk) converges

locally uniformly to R̂(y) and Û(y) satisfying (4.7). Then W (y + yk) converges

locally uniformly to Ŵ (y) defined by

Ŵ (y) =

∫ R̂(y)

R1(x)

(
1− m1

f1(σ, x)

)
dσ + d1

∫ Û(y)

U∗1 (x)

(
1− U∗1 (x)

ξ

)
dξ,

which satisfies Ŵ (0) = sup(W ) = sup
(
Ŵ
)

and ∆Ŵ (y) ≥ 0. It follows that Ŵ (y) ≡

sup(W ) so that ∆Ŵ (y) = 0. On the other hand, ∆Ŵ (y) is given by (4.10) where

R and U are replaced by R̂ and Û respectively. This yields to

∇R̂(y) = ∇Û(y) ≡ 0, R̂(y) ≡ R1(x).

Plugging this into (4.7) yields Û(y) ≡ U∗1 (x). Furthermore one obtains that Ŵ (y) ≡
0 so that sup(W ) = 0 and, since W is non-negative, W ≡ 0. Finally (4.10) implies

that

∇R(y) = ∇U(y) ≡ 0, R(y) ≡ R1(x).

Plugging this into (4.7) completes the proof of the result.

It remains to prove Claim (4.8). Let us focus on proving

inf
y∈Rn

U(y) > 0.

To do so, let us argue by contradiction by assuming that there exists a sequence

{yk}k≥0 ⊂ Rn such that

lim
k→∞

U(yk) = 0.

Next, consider the sequence of maps Uk(y) = U(yk + y) and Rk(y) = R(yk + y).

Due to elliptic estimates one may assume that (Uk, Rk) converges to (U∞, R∞)

locally uniformly with U∞(0) = 0. The strong comparison principle implies that

U∞ ≡ 0 and therefore R∞ ≡ S(x). Consider now the map wk(y) = Uk(y)
U(yk) . It

satisfies

d1∆wk(y) + f1(Rk(y), x)wk(y)−m1wk(y) = 0.

Due to Harnack inequality the sequence {wk}k≥0 is locally bounded and due to

elliptic estimates, one may assume that it converges to some function w∞ locally

uniformly while w∞ satisfies

d1∆w∞(y) + (f1(S(x), x)−m1)w∞(y) = 0, y ∈ Rn,
w∞(0) = 1, w∞(y) ≥ 0.
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This implies that w∞(y) > 0 and that f1(S(x), x) −m1 ≤ 0, a contradiction with

the choice of x ∈ Θ1. The proof of the property for the R−component, namely

inf
y∈Rn

R(y) > 0

can be proved similarly by using that I(x) > 0 since x ∈ Θ1. This completes the

proof of the lemma.

Our next result reads as:

Lemma 4.7. Let x ∈ Θ0 be given. Then the elliptic system (4.7) posed for y ∈ Rn
has a unique bounded non-negative solution (R,U) and one has

(R,U) (y) ≡ (S(x), 0) .

Proof. Let us first notice that due to the elliptic comparison principle one has

R(y) ≤ S(x), ∀y ∈ Rn. (4.12)

Consider the map W ≡W (y) defined by

W (y) = d1U(y).

Then W is bounded and satisfies

∆W (y) = U(y) [m1 − f1(R(y), x)] ≥ 0, ∀y ∈ Rn,

so that ∆W (y) ≥ 0 for all y ∈ Rn. It follows that W is a constant function so that

∇W (y) = d1∇U(y) ≡ 0. In order to conclude the proof of this result, let us show

that U(y) = U ≡ 0. Assume by contradiction that U > 0. Then plugging this into

the first equation of (4.7) yields R(y) < S(x), for each y ∈ Rn. This last inequality

together with the second equation in (4.7) yields U ≡ 0, a contradiction. Therefore

one has U ≡ 0 and R ≡ S(x), that completes the proof of the lemma.

We are now able to prove Theorem 2.4.

Proof of Theorem 2.4. Let us denote by R∗(x) = min(R1(x), S(x)) and U∗1 (x) =
m0

m1
(S(x)−R1(x))+. We aim to prove

lim
ε→0
‖rε −R∗‖∞ + ‖uε − U∗1 ‖∞ = 0.

To do so, we will argue by contradiction by assuming that there exist α > 0, a

sequence {xk}k≥0 ⊂ Ω (that we may assume to be convergent toward some x∗ ∈ Ω)

and a sequence {εk}k≥0 tending to zero as k →∞ such that

|rεk(xk)−R∗(xk)|+ |uεk(xk)− U∗1 (xk)| > α, ∀k ≥ 0. (4.13)

Here again we assume that x∗ ∈ Ω. (The case where x∗ ∈ ∂Ω can be handled

similarly using technical arguments inspired by Ref. 38 and outlined in Appendix

C). Since x∗ ∈ Ω, one may assume xk ∈ Ω for all k ≥ 0.

Let us first prove that

lim
k→∞

(rεk(xk), uεk(xk)) = (R∗(x∗), U∗1 (x∗)). (4.14)
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To prove this claim, define the sequence of rescaled maps

Rk(y) = rεk(xk + y
√
εk), Uk(y) = uεk(xk + y

√
εk).

As in the above proofs, one may assume that (Rk, Uk) → (R∞, U∞) locally uni-

formly in Rn where (R∞, U∞)(y) is a bounded solution of (4.7) with x replaced by

x∗. Then Lemmas 4.6 and 4.7 yield (R∞, U∞)(y) ≡ (R∗(x∗), U∗1 (x∗)) and (4.14)

follows. In addition one has for each k ≥ 0:

|rεk(xk)−R∗(xk)|+ |uεk(xk)− U∗1 (xk)| ≤ |rεk(xk)−R∗(x∗)|+ |uεk(xk)− U∗1 (x∗)|
+ |R∗(xk)−R∗(x∗)|+ |U∗1 (xk)− U∗1 (x∗)|.

Since R∗ and U∗1 are continuous on Ω, we infer from (4.14) that

lim
k→∞

(|rεk(xk)−R∗(xk)|+ |uεk(xk)− U∗1 (xk)|) = 0,

a contradiction together with (4.13). This ends the proof of Theorem 2.4.

We now complete the proof of Corollary 2.1.

Proof of Corollary 2.1. We argue by contradiction and we assume that there exists

a sequence {εk}k≥0 tending to zero as k → ∞ and such that System (4.1) has a

positive solution for each εk and k ≥ 0. Such a solution is denoted by (rεk , uεk).

Integrating the u−equation over Ω implies that for all ε,
∫

Ω
(f1(rε)−m1)uεk = 0.

Since S(x) < R1(x) for each x ∈ Ω, it follows from Theorem 2.4 that rεk converges

uniformly to S. Therefore rεk(x) < R1(x) for large enough k so that
∫

Ω
(f1(rεk) −

m1)uεk < 0 for large enough k, a contradiction.

We finally complete this section by proving the stability as well as the uniqueness

of positive solution when Θ0 = ∅ and for ε > 0 small enough. The precise statement

of our result reads as:

Proposition 4.1. Assume that Θ1 = Ω. Then there exists ε0 > 0 such that for

each ε ∈ (0, ε0), System (4.1) has a unique positive solution which is furthermore

asymptotically stable (with respect to the parabolic system (1.2)-(1.3) with N = 1).

Proof. The proof of this result is based on several steps. Let ε1 > 0 be given and let

(rε, uε) be a positive solution of (4.1) for ε ∈ (0, ε1). Next consider the eigenvalue

problem 
ε∆ψ −m0ψ − aε(x)φ− bε(x)ψ = λψ,

d1ε∆φ−m1φ+ aε(x)φ+ bε(x)ψ = λφ,

∂νψ = ∂νφ = 0 on ∂Ω,

(4.15)

wherein we have set

aε(x) = f1 (rε(x), x) , bε(x) = ∂rf1(rε(x), x)uε(x),

and together with the normalisation condition

‖ψ‖2L2(Ω) + ‖φ‖2L2(Ω) = 1.
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We claim that there exists some constant C > 0 such that for each ε ∈ (0, ε1), if

λ ∈ C is an eigenvalue of (4.15) then

|Im λ| ≤ C and Re λ ≤ C. (4.16)

To prove this result, recall that from Lemma 3.1 there exists some constant M > 0

such that

0 ≤ aε(x) ≤M, 0 ≤ bε(x) ≤M, ∀ε ∈ (0, ε1), ∀x ∈ Ω. (4.17)

As a consequence multiplying the first equation of (4.15) by ψ, the second equation

by φ, integrating each of these expressions over Ω and adding up the two resulting

equations leads us to

λ = −ε
∫

Ω

(
|∇ψ|2 + d1|∇φ|2

)
dx+

∫
Ω

[
(aε(x)−m1)|φ|2 − (m0 + bε(x))|ψ|2

]
dx

+

∫
Ω

[
bε(x)ψφ− aε(x)φψ

]
dx.

(4.18)

Therefore

|Im (λ)| ≤
∫

Ω

[bε(x) + aε(x)] |Im (ψφ)|dx.

Due to the normalization condition of the eigenvectors as well as (4.17), the first

part of (4.16) follows. To prove the second part, let us notice that

Re (λ) ≤
∫

Ω

aε(x)|φ|2 + [bε(x) + aε(x)] |Re
(
φψ
)
|dx.

The result follows using the similar arguments as above, namely normalization and

(4.17).

We are now able to prove the stability part of the result. To be more precise we

show that there exists ε0 ∈ (0, ε1) such that for each ε ∈ (0, ε0):

λ solution of (4.15) ⇒ Re (λ) < 0. (4.19)

To prove this claim, we will argue by contradiction by assuming that there exist a

sequence {εk}k≥0 tending to zero as k →∞ and {λk}k≥0 a sequence of eigenvalue

of (4.15) with ε = εk for each k ≥ 0 and such that

Re (λk) ≥ 0, ∀k ≥ 0. (4.20)

Let us denote by (ψk, φk) an eigenvector of (4.15) with ε = εk associated to λk.

Assume the following normalization

max
x∈Ω

(max(|φk(x)|, |ψk(x)|)) ≤ 1,

∃xk ∈ Ω, max(|φk(xk)|, |ψk(xk)|) = 1.

Next set for each k ≥ 0:

Rk(y) = rεk(xk + y
√
εk), Uk(y) = uεk(xk + y

√
εk)

Ψk(y) = ψk(xk + y
√
εk), Φk(y) = φk(xk + y

√
εk).
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Up to a subsequence, one may assume that xk → x0 ∈ Ω as k → ∞. We will only

deal with the case where x0 ∈ Ω, the case where x0 ∈ ∂Ω can be handled similarly

using Appendix C. Furthermore due to (4.16) one may assume that

λk → λ∞ with Re λ∞ ≥ 0.

Since Θ1 = Ω, the proof of Lemma 4.6 as well as Theorem 2.4 implies that

[Rk(y), Uk(y)]→ [R1(x0), U∗1 (x0)] locally uniformly for y ∈ Rn.

Next note that Ψk and Φk satisfies{
∆Ψk(y)− ak(y)Φk(y)− [bk(y) +m0] Ψk(y) = λkΨk(y),

d1∆Φk(y) + [ak(y)−m1] Φk(y) + bk(y)Ψk(y) = λkΦk(y).

with

ak(y) = f1(Rk(y), xk + y
√
εk), bk(y) = ∂rf1(Rk(y), xk + y

√
εk)Uk(y).

Due to elliptic estimates, one may assume, up to a subsequence, that (Ψk,Φk)

converges locally uniformly to some function pair (Ψ∞,Φ∞) that satisfies for all

y ∈ Rn:{
∆Ψ∞(y)− ∂rf1(R1(x0), x0)U∗1 (x0)Ψ∞(y)−m0Ψ∞(y)−m1Φ∞(y) = λ∞Ψ∞(y),

d1∆Φ∞(y) + ∂rf1(R1(x0), x0)U∗1 (x0)Ψ∞(y) = λ∞Φ∞(y).

together with max(|Ψ∞|, |Φ∞|) ≤ 1 and max(|Ψ∞(0)|, |Φ∞(0)|) = 1. Therefore, one

obtains that

λ∞ ∈ {σ (Aξ) , ξ ∈ Rn} (4.21)

wherein we have set

Aξ =

(
−|ξ|2 −m0 − ∂rf1(R1(x0), x0)U∗1 (x0) −m1

∂rf1(R1(x0), x0)U∗1 (x0) −d1|ξ|2
)
.

Indeed if one considers the elliptic operator L : C2+α
(
Rn,R2

)
→ Cα

(
Rn,R2

)
for

some α ∈ (0, 1) defined by

L =

(
1 0

0 d1

)
∆ +

(
−∂rf1(R1(x0), x0)U∗1 (x0)−m0 −m1

∂rf1(R1(x0), x0)U∗1 (x0) 0

)
,

then the equation (λ∞I − L)u∞ = 0 has a bounded non-trivial solution. Using

the results of Ref. 43 (λ∞I − L) is a non-Fredholm elliptic operator. Hence λ∞
belongs to the Fredholm spectrum of L and since L has constant coefficients, this

spectrum is computed using Fourier transform and (4.21) follows (we also refer to

the monograph of Volpert 43 for such computations).

Now a direct computation of the eigenvalues of Aξ shows that <(λ∞) < 0, a

contradiction together with the assumption. It follows that <(λε) < 0 for small

enough ε which ends the proof of (4.19).
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It remains to prove the uniqueness of the solution for each ε ∈ (0, ε0). This result

will follows from a topological degree argument. Recall that since each eigenvalue λ

satisfies λ 6= 0 then (rε, uε) is isolated in O, so that indC(A1, (r, u)) is well defined

and equals (−1)σ where σ denotes the number of (real) eigenvalue λ greater than

0. Moreover, a usual compactness argument shows that there exists a finite number

m ≥ 1 of solutions denoted by (ri, ui)1≤i≤m and one has

degC(I −A1,O) =

m∑
i=1

indC(A1, (ri, ui)).

Finally, since each positive solution is asymptotically stable (see (4.19)) then

indC(A1, (ri, ui)) = 1. Now from the proof of Lemma 4.3 one obtains that

degC(I −A1,O) = 1 = m.

This completes the proof of the result.

5. System (1.1) with N ≥ 2 species

The aim of this section is to investigate System (1.1) for an arbitrary number of

species N ≥ 2. Let us first give some definitions and notations that will be used in

the sequel.

In order to deal with System (1.1) for an arbitrary number of species, it is

convenient to introduce the following definition:

Definition 5.1. Let J ⊂ {1, .., N} be given. Let ε > 0 be given. A non-negative

solution (r, u1, .., uN ) is said to be a J−coexistence solution of (1.1) if

ui(x) = 0 ∀x ∈ Ω, i ∈ {1, .., N} \ J

Such a J−coexistence solution is said to be a strict J−coexistence solution if

we furthermore impose that

uj(x) > 0, ∀j ∈ J.

Now let J ⊂ {1, .., N} be given. Let us introduce the following sets:

ΘJ
0 = {x ∈ Ω, S(x) ≤ Rk(x), ∀k ∈ J}, (5.1)

for each k ∈ J ,

ΘJ
k = {x ∈ Ω, Rk(x) < S(x), Rk(x) < Ri(x), ∀i ∈ J \ {k}}, (5.2)

and for each i, j ∈ {1, .., N},

Γi,j = {x ∈ Ω, Ri(x) = Rj(x)} and ΓJ =
⋃

(i,j)∈J×J

Γi,j . (5.3)

We will now split this section into two parts, we first derive the asymptotic profile

(ε → 0) of strict J−coexistence solutions of (1.1) for any subset J ⊂ {1, .., N}.
We then prove using an induction argument that, under some suitable conditions,

System (1.1) has a positive solution as soon as ε is small enough.
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5.1. Asymptotic profile ε→ 0

In this section we study the asymptotic profile ε → 0 of non-negative solutions of

(1.1). This investigation will rely on several lemmas. Our first result reads as:

Lemma 5.1. Let J ⊂ {1, · · · , N} be given such that J 6= ∅. Let i ∈ J and x ∈ ΘJ
i

be given. Then the elliptic system posed for y ∈ Rn:∆R(y) + I(x)−m0R(y)−
∑
j∈J

fj(R(y), x)Uj(y) = 0,

dj∆Uj(y)−mjUj(y) + fj(R(y), x)Uj(y) = 0, j ∈ J,
(5.4)

has a unique non-negative bounded solution (R,Uj , j ∈ J)(y) such that Ui(y) > 0

and one has

R(y) ≡ Ri(x), Ui(y) ≡ U∗i (x), Uj(y) ≡ 0, ∀j ∈ J \ {i}.

where in we have set U∗i (x) = mi
m0

(S(x)−Ri(x)).

Proof. Since x ∈ ΘJ
i it follows as in the proof of Lemma 4.6 that

inf
y∈Rn

R(y) > 0 and inf
y∈Rn

Ui(y) > 0.

For each j ∈ J \ {i}, let αj := αj(x) be defined as in Assumption 2.6. Consider the

function W : Rn → R defined by

W (y) =

∫ R(y)

Ri(x)

(
1− mi

fi(σ, x)

)
dσ+di

∫ Ui(y)

U∗i (x)

(
1− U∗i (x)

ξ

)
dξ+

∑
j∈J\{i}

djαj(x)Uj(y).

Note that since σ 7→ fi(σ, x) is increasing, W is non-negative. In the sequel, for

notational simplicity, we do not explicitly write down the dependence with respect

to the given point x ∈ ΘJ
i . Now note that W is bounded on Rn and satisfies for

each y ∈ Rn:

∆W (y) =
mif

′
i(R(y))

fi(R(y))2
|∇R(y)|2 +

di
Ui(y)2

|∇Ui(y)|2 +
∑
j∈J

Jj(y),

wherein we have set

Ji(y) =
m0

mifi(R(y))
(fi(R(y))−mi) [S (fi(R(y))−mi) +miR(y)− fi(R(y))Ri] ,

and for j 6= i

Jj(y) =
Uj(y)

fj(R(y))
[fj(R(y)) (fi(R(y))−mi) + αjfi(R(y)) (mj − fj(R(y)))] .

As in Lemma 4.6, one has Ji(y) ≥ 0. Now, elliptic maximum principle implies

that R(y) < S(x) and it follows from Assumption 2.5 and from the choice of αj
that Jj(y) ≥ 0 for any j 6= i. Hence it follows that the bounded non-negative

function W satisfies ∆W ≥ 0 on Rn. Let {yk}k≥0 ∈ Rn be a sequence such that

W (yk) → sup(W ). Up to a subsequence, one may suppose that R(y + yk) and
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Uj(y+yk), j ∈ J converges locally uniformly to R̂(y), Ûj solution of (5.4). It follows

that W (y + yk) converges locally uniformly to Ŵ (y) satisfying Ŵ (0) = sup (W ) =

sup
(
Ŵ
)

and ∆Ŵ (y) ≥ 0. Arguing similarly as in the proof of Lemma 4.6 leads

us to ∇R̂(y) = ∇Ûi(y) ≡ 0, R̂ ≡ Ri(x) and Ûj ≡ 0 for j 6= i. Plugging this into

(5.7) yields to Ûi(y) ≡ U∗i (x) and then Ŵ (y) ≡ 0 so that W ≡ 0. As a consequence

of ∆W (y) ≡ 0, one obtains that ∇R(y) = ∇Ui(y) ≡ 0 while Jj(y) ≡ 0 for each

j ∈ J . This leads us to R ≡ Ri(x) and Uj ≡ 0 for j 6= i. Plugging this into (5.7),

we conclude that Ui(y) ≡ U∗i (x), that completes the proof of the result.

Our next result is the following lemma:

Lemma 5.2. Let J ⊂ {1, · · · , N} and x ∈ ΘJ
0 be given. Then the elliptic system

(5.4) posed for y ∈ Rn has a unique non-negative bounded solution (R,Uj , j ∈
J)(y) ≡ (S(x), 0, · · · , 0).

Proof. The proof of the above lemma follows the same lines as the arguments of

the proof of Lemma 5.1. Indeed, due to the elliptic comparison principle, one has

R(y) ≤ S(x). Then one can check that the map W : Rn → R defined by

W (y) =
∑
j∈J

djUj(y),

is bounded on Rn and is a sub-harmonic function. The result follows by using the

same computations as in Lemma 4.7.

Lemma 5.3. Let x ∈ Ω \ Γ be given and let {εk}k≥0 be a sequence of positive

numbers tending to zero. Then, up to a subsequence, one gets either

lim
k→+∞

rεk(x+ y
√
εk) = S(x),

lim
k→+∞

uεkj (x+ y
√
εk) = 0, ∀j ∈ {1, · · · , N} (5.5)

or there exists i ∈ {1, · · · , N} such that Ri(x) < S(x) and

lim
k→+∞

rεk(x+ y
√
εk) = Ri(x),

lim
k→+∞

uεki (x+ y
√
εk) = mi

m0
(S(x)−Ri(x)),

lim
k→+∞

uεkj (x+ y
√
εk) = 0, ∀j ∈ {1, · · · , N} \ {i},

(5.6)

where all the above convergences are locally uniform with respect to y ∈ Rn.

Proof. Define for each k ≥ 0, the functions Rk(y) = rεk(x + y
√
εk) and Uj,k(y) =

uεkj (x + y
√
εk). Then, due to elliptic estimates, possibly up to a subsequence, one

may assume that (Rk, U1,k, · · · , UN,k) converges locally uniformly to some bounded

non-negative functions (R,U1, · · · , UN )(y), solution of the elliptic system posed for

y ∈ Rn {
∆R(y) + I(x)−m0R(y)−

∑N
j=1 fj(R(y), x)Uj(y) = 0,

dj∆Uj(y)−mjUj(y) + fj(R(y), x)Uj(y) = 0, j = 1, · · · , N.
(5.7)
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Next, set J = {j ∈ {1, · · · , N}, Uj > 0}. Recalling Definition (5.1)-(5.3), one has

Ω \ Γ ⊂ Ω \ ΓJ =
⋃

j∈J∪{0}

ΘJ
j .

Firstly, when x ∈ ΘJ
0 , due to Lemma 5.2 one obtains that Uj ≡ 0 for any j ∈ J so

that J = ∅. Hence R(y) ≡ S(x) and Alternative (5.5) holds true.

Next assume that x ∈ ΘJ
i for some i ∈ J . Since Ui > 0, Lemma 5.1 applies and

provides that Uj(y) ≡ 0 for any j ∈ J \ {i} so that J = {i}. As a consequence of

Lemma 5.1, Alternative (5.6) holds true. This completes the proof of the lemma.

Lemma 5.4. Let i ∈ {1, · · · , N} and x ∈ Θi \ Γ be given. Assume that for any

small enough ε > 0, there exists a non-negative solution (rε, uε1, · · · , uεN ) such that

uεi > 0. Then one has

lim inf
ε→0

uεi (x) > 0.

Proof. To prove this lemma, let us argue by contradiction by assuming that there

exists a sequence {εk}k≥0 tending to zero such that uεki (x) = 0. According to

Lemma 5.3, up to a subsequence, one has rεk(x+ y
√
εk)→ R̂(x) locally uniformly

with either R̂(x) = S(x) or R̂(x) = Rj(x) for some j 6= i. Now since x ∈ Θi, in any

cases, one has

fi

(
R̂(x), x

)
−mi > 0. (5.8)

Now consider the sequence of maps Wk(y) =
u
εk
i (x+y

√
εk)

u
εk
i (x)

. Due to elliptic Harnack

inequality, the sequence {Wk}k≥0 is locally bounded and up to a subsequence one

may assume that Wk →W locally uniformly in Rn where W satisfiesdi∆W (y) + fi

(
R̂(x), x

)
W (y)−miW (y) = 0,

W ≥ 0 and W (0) = 1.

Then one obtains that W > 0 and Lemma Appendix B.1 yields

fi

(
R̂(x), x

)
−mi ≤ 0,

a contradiction together with (5.8). This completes the proof of the lemma.

We are now able to complete this section by proving the following theorem which

contains Theorem 2.7 by taking J = {1, .., N}.

Theorem 5.1 (Asymptotic profile ε → 0). Let Assumptions 2.1, 2.2, 2.5 and

2.6 be satisfied. Let J ⊂ {1, · · · , N} be given and consider a family (rε, uε1, · · · , uεN )

with ε ∈ (0, ε0) of strict J-coexistence solutions. Then the following convergence

holds true:

lim
ε→0

(rε, uε1, · · · , uεN ) =
(
R∗,J , U∗,J1 , · · · , U∗,JN

)
,
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where the convergence is uniform on each compact subset of Ω \ΓJ and wherein we

have set R∗,J(x) = min (S(x),minj∈J Rj(x)) and

U∗,Ji (x) =

{ mi
m0

(S(x)−Ri(x)) , if x ∈ ΘJ
i ,

0 if x /∈ ΘJ
i ,

if i ∈ J,

and U∗,Ji (x) = 0 if i ∈ {1, · · · , N} \ J.

Proof. The proof of this result is similar to the one of Theorem 2.4 using the Lemmas

5.4, 5.1 and 5.2. The details are left to the reader.

Let us also notice that the proof of Corollary 2.2 is similar to the one of Corollary

2.1 and thus omitted. Indeed since Γ = ∅, then the convergence rε → R∗ holds

uniformly on the whole domain Ω.

5.2. Proof of Theorem 2.8

In this section we investigate the existence of a positive solution of (1.1) in the

general case of N ≥ 2 species. The arguments will closely follow the ones developed

for the one species problem using an induction argument on the number of species.

Our precise result reads as:

Theorem 5.2. Let Assumptions 2.1, 2.2, 2.5 and 2.6 be satisfied. Then there exists

ε0 > 0 such that for any J ⊂ {1, · · · , N} and any ε ∈ (0, ε0), System (1.1) has a

strict J-coexistence solution belonging to
(
C2(Ω)

)N+1
.

The proof of this result will follow an induction argument on the cardinal of the

subset J . Let us first notice that Proposition 2.1 as well as Theorem 2.3 proves the

result in the case J = ∅ and J = {1} respectively. Up to reordering the species,

Theorem 5.2 holds true for each J ⊂ {1, · · · , N} with a cardinal in {0, 1}.
Let 2 ≤ N ′ ≤ N be given. Our induction assumption reads as for each J ⊂

{1, .., N} with card J ≤ N ′ − 1 there exists ε1 > 0 such that for any ε ∈ (0, ε1)

System (1.1) has a strict J-coexistence solution in
(
C2(Ω)

)N+1
.

Let J ′ ⊂ {1, .., N} with card J ′ = N ′ be given and we claim that

Claim 5.3. Up to reduce the value ε1 if necessary, for each ε ∈ (0, ε1), then System

(1.1) with ε has a strict J ′-coexistence solution.

To prove this claim, up to reordering the species, one may assume that

J ′ = {1, · · · , N ′} .

The proof of the above mentioned claim will follows several lemmas. Our first

lemma is the following:

Lemma 5.5. Let Assumptions 2.1, 2.2, 2.5 and 2.6 be satisfied. Up to reduce ε1 >

0, for each i ∈ J ′, for each J ⊂ {1, · · · , N} \ {i} and for each strict J-coexistence

solution (rε, uε1, .., u
ε
N ) of (1.1) with ε ∈ (0, ε1), one has for any ε > 0 small enough:

Λ(diε, fi(r
ε(.), .)−mi) > 0.
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Proof. Due to Assumption 2.5, one can choose a nonempty compact subset K ⊂
Θi \Γ. Due to the Definition of ΓJ (see (5.3)), one gets K ⊂ Θi \ΓJ . Then we infer

from Theorem 5.1 that

lim
ε→0

rε = min

(
S,min

j∈J
Rj

)
for the topology of C0(K). (5.9)

Hence rε(x) > Ri(x) for any x ∈ K and any small enough ε > 0, so that for each

ε > 0 small enough:

fi(r
ε(x), x)−mi > 0 for all x ∈ K.

Finally Lemma 3.3 applies and completes the proof of the lemma.

Due to the induction assumption, for each J ⊂ {1, .., N} with card J ≤ N ′ − 1

and each ε ∈ (0, ε1) let us denote by
(
rε,J , uε,J1 , · · · , uε,JN

)
a strict J−coexistence

solution of (1.1) with ε. Now Lemma 5.5 applies and provides that for each ε ∈
(0, ε1), for each i ∈ J ′ and each J ⊂ {1, .., N} \ {i} with card J ≤ N ′ − 1:

Λ(diε, fi(r
ε,J(.), .)−mi) > 0.

Coupling this result together with the same arguments as the ones of the proof of

4.2, one obtains the following a priori estimates for any J ′-coexistence solution of

(1.1) and ε small enough.

Lemma 5.6. Let ε ∈ (0, ε1) be given. Then for each j ∈ J ′ there exists αj > 0

such that for any J ′-coexistence solution (rε, uε1, · · · , uεN ) of (1.1) with ε satisfies

for each j ∈ J ′:

uεj > 0⇒ uεj > αj .

This lemma allows us to define the following subsets for any J ⊂ J ′

OJ = {(r, u1, · · · , uN ′), uj > αj ∀j ∈ J, uj < αj ∀j ∈ J ′ \ J}.

Let ε ∈ (0, ε1) be given. Using Lemma 5.6 note that any strict J-coexistence solution

of (1.1) belongs to OJ . In particular a strict J ′-coexistence solution belongs to

OJ′ . Hence, it is sufficient to show that System (1.1) has a solution in OJ′ . This

result will be obtained by using topological degree arguments. Let us first re-write

Problem (1.1) (recalling that ε ∈ (0, ε1) is fixed) as a fixed point problem. Define

E =
(
C0(Ω)

)N ′+1
, the positive cones P = {U ∈ C0(Ω), U ≥ 0} and C = PN

′+1.

Recall that, by Lemma 3.1, each non-negative solution (r, u1, · · · , uN ) of (1.1) is

uniformly bounded by some constant M > 0 independent of ε and fi. Set

K = {(r, u1, · · · , uN ′) ∈ C, r < 2M, ui < 2M ∀i ∈ J ′},

and consider β > 0 defined by

β = 2M sup
x∈Ω

(
sup

r∈(0,2M ]

N∑
i=1

fi(r)

r

)
.
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Let us finally define the compact operator B : C → C by

B =


(m0 + β − εd0∆)−1

(m1 − εd1∆)
−1

. . .

(mN ′ − εdN ′∆)
−1

 ,

as well as for each t ∈ [0, 1], the operator At by

At(r, u1, · · · , uN ′) = B


I + βr − t

∑
i∈J′ fi(r)ui

tf1(r)u1

...

tfN ′(r)uN ′

 .
Note that (r, u1, · · · , uN ) is a J ′-coexistence solution of (1.1) with fi replaced by tfi
if and only if it is a fixed point of At in K. Let us also recall that due to standard

elliptic estimates At is a completely continuous operator from K to C. Our first

lemma is the following:

Lemma 5.7. The following holds true.

(i) ∀t ∈ [0, 1], degC(I −At,K) = 1.

(ii) Let i ∈ J ′ and J ⊂ J ′ \ {i} be given. Then degC(I −A1,OJ) = 0.

Proof. Since (sε, 0, · · · , 0) is the only fixed point of A0 in K, one can easily derive

from Proposition Appendix A.1-(ii) that degC(I − A0,K) = 1. Since At does not

have any fixed point on ∂K, homotopy invariance of the topological degree completes

the proof of (i).

In order to prove (ii), we only consider the case where i = N ′ and J = {1, · · · , N ′−
1}. The other cases can be handled similarly. We aim to apply Proposition Appendix

A.1-(i). Let us define

E2 = C0(Ω), E1 = EN
′−1

2 , C2 = P,

C1 = PN
′−1 and for δ > 0, Pδ = {u ∈ P, ‖u‖∞ < δ}.

Let us denote by w = (r, u1, · · · , uN ′−1), and A = (A1, A2) with

A2(w, uN ′) = (mN ′ − εdN ′∆)−1(fN ′(r)uN ′).

Define the two following subsets of C1 by

U =
{

(r, u1, · · · , uN ′−1) ∈ C1, (r, u1, · · · , uN ′) ∈ OJ for some uN ′
}
,

T =
{
w ∈ U , A1(w, 0) = w

}
.

Using the definition of OJ , the subset U is relativelyb open and bounded in C1.

Then Lemma 5.6 implies that A1(w, 0) 6= w for any w ∈ ∂U . Indeed if there exists

bIn the case J = {1, · · · , N ′ − 1}, U is open in C1.
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w ∈ ∂U such that A1(w, 0) = w then (w, 0) is a J−coexistence solution of (1.1)

such that ui ≥ αi for all i = 1, .., N ′. Lemma 5.6 applies and provides that ui > αi
for all i = 1, .., N ′, that is w ∈ U . A contraction together with w ∈ ∂U .

Note that due to the induction hypothesis and Lemma 5.6 T 6= ∅. Using the

same notations as in Proposition Appendix A.1-(i), one has for any w ∈ T :

L2(w) = (mN ′ − εdN ′∆)−1(fN ′(r)·).

Since for any w ∈ T , (w, 0) is a strict J−coexistence solution, Lemma 5.5 ensures

that Λ(εdi, fi(r
ε(·), ·)−mi) > 0. Then one gets

For any w ∈ T , rspec(L
2(w)) > 1,

and, for any φ ∈ C2 \ {0}, L2(w)φ 6= φ and L2(w)φ > 0. Proposition Appendix

A.1-(i) applies and yields degC(I − A1,U × Pδ) = 0 for any small enough δ > 0.

Next from Lemma 5.6, one has degC(I−A1,OJ) = degC(I−A1,U ×Pδ) = 0 which

ends the proof of the lemma.

We are now able to complete the proof of Claim 5.3.

Proof of Claim 5.3. Let us first notice that Lemma 5.6 ensures that for any subset

J ⊂ J ′, operator A1 does not have any fixed point on ∂OJ . Using once again Lemma

5.6 one gets

degC(I −A1,K) =
∑
J(J′

degC(I −A1,OJ) + degC(I −A1,OJ
′
). (5.10)

We infer from Lemma 5.7 that deg(I − A1,K) = 1 and degC(I − A1,OJ) = 0 for

any J ( J ′. As a consequence we obtain that

degC(I −A1,OJ
′
) = 1.

Hence A1 has at least one fixed point in OJ′ that completes the proof of Claim 5.3.

Appendix A. Degree in a positive cone

We set up the fixed point index machinery used in this paper. In Ref. 13, the

author describes various results to compute the topological degree of a completely

continuous operator A : C → C defined in a cone C of a banach space E. This

degree is denoted by degC(I − A,U) where U is an open subset of C. Basically, if

U lies in the interior of C then one get

degC(I −A,U) = degE(I −A,U)

where degE(I − A,U) denotes the usual Leray-Schauder degree. In particular, if

w∗ ∈ int(C) is a solution of the equation A(w) = w such that I − DwA(w∗) is

invertible on E, then for any sufficiently small neighbourhood U of w∗ in E, one

gets

degC(I −A,U) = indexE(A,w∗) = (−1)σ
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where σ is the sum of the (real) eigenvalues of DwA(w∗) smaller than 1 (counted

with there algebraic multiplicities). If w∗ does not belong to the interior of C, then

degC(I − A,U) can be computed if I −DwA(w∗) is invertible on E (see Theorem

1 in Ref. 13). Unfortunately, in our application, such an invertibility condition may

fail and the aforementioned result cannot be used. However, in Ref. 14, the author

states a result allowing to relax this condition. This result is proved by Dancer and

Du (see Theorem 2.1 in Ref. 17).

Hence, following Ref. 14, for i = 1, 2, let Ei be a Banach spacec and let Ci be a

cone in Ei. Set E = E1 × E2 and C = C1 × C2.

Let Ai : C → Ci be two completely continuous operators and consider A = (A1, A2).

Denote Ii the identity map on Ei as well as I = (I1, I2) the identity operator on E.

For each (w, v) ∈ E1 × E2, set L1(w, v) = DwA
1(w, v) and L2(w, v) = DvA

2(w, v)

and for each ε > 0, consider C2,ε = {v ∈ C2, ‖v‖ ≤ ε}. Together with these

notations, the following proposition holds true (this is a stronger form of the result

stated in Proposition 2 in Ref. 14, see Ref. 17 for a proof).

Proposition Appendix A.1. Assume that U ⊆ C1 is a relatively open and

bounded set such that ∀w ∈ ∂U , w 6= A1(w, 0) (the boundary being relative to

C1). Assume that A1(U × {0}) ⊂ U and let T = {w ∈ U , w = A1(w, 0)}. Assume

furthermore that v 7→ A2(w, v) is linear and let us denote L2(w). = L2(w, .). Then

the following holds true:

(i) Assume that for all w ∈ T , rspec(L
2(w)) > 1 and L2(w)φ 6= φ for any φ ∈

C2 \ {0}. Assume in addition that for each w ∈ U , and φ ∈ C2, L2(w)φ ≥ 0.

Then degC(I − A,U × C2,ε) is well defined for all sufficiently small positive ε

and one has

degC(I −A,U × C2,ε) = 0.

(ii) Assume that for each w ∈ T , rspec(L
2(w)) < 1. Then degC(I −A,U × C2,ε) is

well defined for all small enough positive ε and

degC(I −A,U × C2,ε) = degC1(I1 −A1
|U×{0},U).

Appendix B. A Lemma for an elliptic system on Rn

This aim of this section is to prove the following lemma:

Lemma Appendix B.1. Let v ∈ C2 (Rn) and λ ∈ R be given such that v(x) > 0

for each x ∈ Rn and

∆v(x) + λv(x) = 0, x ∈ Rn.

cIn our applications, E2 = C0(Ω), C2 is the natural positive cone in E2, E1 = E2 × · · · , E2︸ ︷︷ ︸
N−1 copies

and

C1 = C2 × · · · × C2︸ ︷︷ ︸
N−1 copies

.
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Then λ ≤ 0.

Note that such a result should be well known but we were not able to find any

references for such a result. For the sake of completeness, we prefer to provide a

proof of this result.

Proof. Let us first notice that due to elliptic gradient estimates as well as elliptic

Harnack inequality, the function ∇v(x)
v(x) is uniformly bounded on Rn. Indeed let

R > 0 be given. Then there exists some constant M = M(R) such that for each

y ∈ Rn,

‖∇v(x)‖ ≤M sup
x∈B(y,2R)

v(x), ∀x ∈ B(y,R).

One the other hand, due to Harnack inequality, there exists some constant N =

N(R) such that

sup
x∈B(y,2R)

v(x) ≤ Nv(y),

and the result follows.

Consider the real number Λ ∈ R defined by

Λ := lim sup
‖y‖→∞, e∈Sn−1

e.∇v(y)

v(y)
.

Then there exist two sequences {yk}k≥0 ⊂ Rn and {ek}k≥0 ⊂ Sn−1 such that

‖yk‖ → ∞ and

lim
k→∞

ek.∇v(yk)

v(yk)
= Λ.

Up to a subsequence and without loss of generality (up to rotation), one may assume

that ek → e1 = (1, 0, .., 0)T . Next consider the sequence of map wk(y) =
∂x1v(y+yk)

v(y+yk)

that satisfies

∆wk(x) + 2
∇v(x+ yk)

v(x+ yk)
.∇wk(x) = 0, x ∈ Rn.

The sequence {wk}k≥0 is uniformly bounded on Rn and due to elliptic estimates,

one may assume that wk → w∞, locally uniformly. Moreover it satisfies

∆w∞(x) +−→a (x)∇w∞(x) = 0,

w∞(0) = Λ, w∞(x) ≤ Λ, ∀x ∈ Rn,

for some some globally bounded function −→a (x). Then the strong maximum principle

implies that w∞(y) ≡ Λ.

On the other hand, if one considers the sequence of maps Zk(x) = v(yk+x)
v(yk) , then

it satisfies

∆Zk(x) + λZk(x) = 0, Zk(0) = 1,
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so that it is locally bounded due to Harnack inequality and, up to a subsequence,

it converges locally uniformly to some positive function Z∞ such that

∆Z∞(x) + λZ∞(x) = 0, Z(0) = 1. (B.1)

Therefore Z∞(x) > 0. Furthermore one has w∞ =
∂x1Z∞
Z∞

≡ Λ. This implies that

Z∞(x) = eΛx1 ,

and plugging this last equality into (B.1), leads us to

Λ2 + λ = 0,

and the result follows.

Appendix C. Rescalling when x ∈ ∂Ω

The proof of many results in this text use a rescaling argument around a point

x ∈ Ω by considering sequence of rescaled functions of the form Uε = uε(x+ y
√
ε).

When x ∈ Ω, this rescaling argument holds for y ∈ B
(
x, d(x,∂Ω)√

ε

)
so that elliptic

regularity allows us to get that (up to extraction) Uε → V locally uniformly in

Rn. When x ∈ ∂Ω this methods cannot be directly applied. Here, we closely follow

Ref. 34 and we also refer to Ref. 38 for more details. If x ∈ ∂Ω, the idea is basically

to ”straighten the boundary at x” and to rescale it. Once the boundary is straighten,

Lp elliptic estimates up to the boundary are used to pass to the limit ε → 0 and

then to obtain an elliptic system posed on the half space {y ∈ Rn, yn ≥ 0}. Finally,

thanks to the Neumann boundary condition, a reflection argument with respect to

the hyperplane yn = 0 allow to extend such an elliptic system on the whole space

yielding to the same kind of system than the one obtained when x ∈ Ω. Here, we

describe this method only in the case of section 4. Hence, consider the system
ε∆rε −m0rε − f1(rε)uε + I = 0 on Ω,

d1ε∆uε −m1uε + f1(rε)uε = 0 on Ω,

∂νrε = ∂νuε = 0, on ∂Ω.

(C.1)

The above arguments can be slightly modified in each case appearing in this text.

Let x0 ∈ ∂Ω. Without lose of generality one may assume that x0 = 0 ∈ Rn.

Due to the regularity of the boundary, one may assume that there exists a C2

function h(x′) where x′ = (x1, · · · , xN−1) defined for |x′| � 1 such that h(0) = 0,

∂xih(0) = 0, 1 ≤ i ≤ N − 1 and for small neighbourhood V of the origin, Ω ∩ V =

{(x′, xN ) ∈ V, xn > h(x′)}, ∂Ω ∩ V = {(x′, xN ) ∈ V, xN = h(x′)}.
For z = (z′, zn) ∈ Rn let us define H(z) = (H1(z), · · · , Hn(z)) by

Hj(z) = zj − zn∂xjh(z′), j = 1, · · · , N − 1

Hn(z) = zn + h(z′).

Since the function H has an inverse function G defined nearby the origin, for |x| � 1

we introduce the new local coordinates z = G(x) := (Gi(x))1≤i≤n. The reason for
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this is that near x0 one has G(∂Ω) = {|z| � 1, zn = 0}, i.e. the boundary is flat in

the new local coordinates. Now, define

ãij(z) =
∑n
k=1

∂Gi
∂xk

(H(z))
∂Gj
∂xk

(H(z)) , 1 ≤ i, j ≤ n,
b̃j(z) = ∆Gj (H(z)) , 1 ≤ j ≤ n,

as well as the operator

Ξ̃f(z) =
∑

1≤i,j≤n

ãij(z)
∂2f

∂zi∂zj
(z) +

n∑
j=1

b̃j(z)
∂f

∂zj
(z).

Let (rε, uε) be a (sequence of ) non-negative solutions of (C.1) and define r̃ε(z) =

rε(H(z)), ũε(z) = uε(H(z)) that satisfy
εΞ̃r̃ε(z)−m0r̃ε(z)− f1(r̃ε(z), H(z))ũε(z) + I(H(z)) = 0,

εd1Ξ̃ũε(z)−m1ũε(z) + f1(r̃ε(z), H(z))ũε(z) = 0,

z ∈ B+
δ ,

(C.2)

together with

∂zn r̃ε = ∂zn ũε = 0, on {zn = 0} ∩Bδ, (C.3)

where δ > 0 is small enough while Bδ = {z ∈ Rn, |z| < δ} and B+
δ = Bδ ∩ Rn+.

Now we consider the rescaled sequence of maps

Rε(y) = r̃ε(y
√
ε), Uε(y) = ũε(y

√
ε),

and for y ∈ Rn, denote by

Ξεf(y) =
∑

1≤i,j≤n

aεij(y)
∂2f

∂yi∂yj
(y) +

√
ε

n∑
j=1

bεj(y)
∂f

∂yj
(y),

wherein we have set aεij(y) = ãij(y
√
ε) and bεj(y) = b̃j(y

√
ε). The rescaled functions

Rε and Uε satisfy
ΞεRε(y)−m0Rε(y)− f1(Rε(y), H(y

√
ε))Uε(y) + I(H(y

√
ε)) = 0, y ∈ B+

δ√
ε

d1ΞεUε(y)−m1Uε(y) + f1(Rε(y), H(y
√
ε))Uε(y) = 0, y ∈ B+

δ√
ε

∂ynRε = ∂ynUε = 0, on {yn = 0} ∩B δ√
ε
.

(C.4)

Choose a sequence Mε tending to +∞ as ε → 0 such that B+
4Mε
⊂ B+

δ√
ε

. Since aεij

and bεj are uniformly bounded with respect to ε in C2
(
B δ
ε

)
, one can apply elliptic

Lp estimates up to the boundary (see Ref. 23 p238) to (C.4) in B+
2Mε

as well as

Sobolev embedding theorem, to obtain that Rε and Uε are uniformly bounded in

C1,γ
(
B+
Mε

)
for every γ ∈ (0, 1). Moreover aεij → δij as ε → 0. Therefore, up to
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a subsequence, Rε and Uε can be assumed to converge uniformly on any compact

subset of Rn+ to some functions R, U ∈W 2,p
loc (Rn+) ∩ C1(Rn+) solution of

∆R(y)−m0R(y)− f1(R(y), 0)U(y) + I(0) = 0, y ∈ Rn+
d1∆U(y)−m1U(y) + f1(R(y), 0)U(y) = 0, y ∈ Rn+
∂ynR = ∂ynU = 0, on {yn = 0}.

(C.5)

Finally, using reflection with respect to the hyperplane yn = 0, one can extend R

and U to the whole space Rn so that (R,U) satisfies (4.7). Note that R and U are

non-negative and bounded in Rn.

The case involving more species follows exactly the same lines. In some case ap-

pearing in the text, as for instance in the proof of Proposition 4.1, one needs to

consider a sequence xε → x0 ∈ ∂Ω rather than a given and fixed x0 ∈ ∂Ω. A

slight modification of the above arguments provides the result (see Ref. 34 for more

details).
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