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Abstract
In this work a two component epidemic reaction-diffusion system posed

on the whole space RN is considered. Uniform boundedness of the solu-
tions is proved using suitable local Lp−estimates. The spatial invasion
of a localized introduced amount of infective is studied yielding to the
derivation of the asymptotic speed of spread for the infection. This part
is achieved using uniform persistence ideas. The state of the population
after the epidemic is further investigated using different Lyapunov like ar-
guments. The solution is shown to converge the endemic equilibrium point
behind the front in the equi-diffusional case. For general diffusion coeffi-
cient unique ergodicity of the tail of invasion is obtained by constructing
a suitable sub-harmonic map.

1 Introduction

This work is concerned with the following spatially structured epidemic system
of equations {

(∂t − d∆)S(t, x) = Λ− γS(t, x)− βS(t, x)I(t, x),

(∂t −∆) I(t, x) = [βS(t, x)− (γ + µ)] I(t, x),
(1.1)

posed for t > 0 and x ∈ RN for some integer N ≥ 1 and supplemented together
with some initial data

S(0, x) = S0(x), I(0, x) = I0(x), x ∈ RN . (1.2)
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Here both functions S0 and I0 are assumed to be bounded, nonnegative and
uniformly continuous on RN .

The above system of equations describes the evolution of an infectious dis-
ease within a spatially distributed population of individuals. Here S(t, x) (re-
spectively I(t, x)) denotes the density of the susceptible (respectively infected)
individuals at time t ≥ 0 and located at the spatial position x ∈ RN . In the
absence of the disease, that is when I(t, x) ≡ 0, the spatio-temporal evolution
of the population satisfies a simple reaction-diffusion equation involving some
constant external supply Λ > 0 and a natural death rate γ > 0, that reads as

(∂t − d∆)P (t, x) = Λ− γP (t, x).

Here d > 0 describes the spatial mobility of individuals. Coming back to (1.1),
the contamination process is assumed to follow the usual mass-action incidence
with a contact rate β > 0. It is also assumed that the disease induces an
additional mortality with a given rate µ > 0. Using a rescaling argument we as-
sume, without loss of generality, that the diffusion coefficient for infected equals
one (possibly different from d if the disease affects the mobility of individuals).
Note that when Λ = γ = 0 the above system reduces to the well-known diffusive
Kermack and McKendrick model for which we refer the reader to the original
articles of Kermack and McKendrick in [18, 19, 20].

In this work, we shall study some dynamical properties of (1.1)-(1.2). We
first investigate the uniform boundedness of the solutions of (1.1)-(1.2). This
step is achieved by revisiting the duality arguments developed by Hollis, Martin
and Pierre in [15] and by Morgan in [23] to study the boundedness of the solu-
tions of reaction-diffusion systems posed on some bounded domains. Estimates
in uniform Lebesgue spaces are obtained to overcome the unboundedness of the
whole space RN .

Then we shall focus upon studying the spatial spread of the infection. Under
some survival assumptions, expressed using the so-called basic reproduction
number R0 (see definition (2.3) below) we shall show that the spreading speed
of the epidemics is linearly determined. In other word, the infection spreads at
the same speed as the one obtained from the linearized equation at the disease
free equilibrium.

Finally we shall give some information about the state of the population after
the epidemic. We shall more particularly prove that the tail of the propagating
solution after the epidemic has a spatial and a temporal averaging property
around the so-called endemic stationary state. More refined information is ob-
tained in the equi-diffusional case d = 1.

Let us mention that a major difficulty encountered when studying (1.1)-
(1.2) is the lack of comparison principle for the system under consideration.
Despite the notion of asymptotic speed of spread (spreading speed for short)
has been introduced by Aronson et al [1, 2] in the 70’s for scalar reaction-
diffusion equation, only few results about the asymptotic speed of spread for
non-monotone problems have been obtained in the literature. However let us
mention the works of Theime [27], Thieme and Zhao [29] and Fang and Zhao [13]

2



(see also the references cited therein) for the study of the asymptotic speed of
spread for integral equations, Fang et al [12] for delay lattice equations and Hsu
and Zhao [17], Wang and Castillo-Chavez [32] for integrodifference equations and
systems. One may also mention the recent work of Wang in [31] who studies a
class of non-cooperative reaction-diffusion systems and the work of Ducrot [7] for
a study of a specific class of predator-prey reaction-diffusion systems. We also
refer to Ducrot et al in [8] for a study of a more general class of predator-prey
systems.

This work is organized as follows: Section 2 is concerned with the statement
of the main results of this work. Section 3 deals with preliminary duality esti-
mates dedicated to the proof of Theorem 2.2 that is given in Section 4. Section
5 is concerned with the proof of Theorem 2.4 describing the spatial spread of
the disease. Finally Section 6 will focus on the proof of Theorem 2.7 and that
of ergodicity properties stated in Theorem 2.10.

2 Assumptions and main results

The aim of this section is to state the main results of this work. Coming back
to (1.1) we will assume the following set of hypothesis:

Assumption 2.1 We assume that Λ > 0, γ > 0, µ > 0 while β > 0 and d > 0.

Before stating our main results, let us introduce the Banach space

X = BUC
(
RN ,R2

)
,

that denotes the space of bounded and uniformly continuous functions from RN
into R2. This space is endowed with the usual supremum norm. We also intro-
duce its positive cone X+ composed of all functions in X with both nonnegative
components.

Our first main result deals with the boundedness of the solution of (1.1).

Theorem 2.2 (Uniform boundedness) Let Assumption 2.1 be satisfied. Sys-
tem (1.1)-(1.2) generates a strongly continuous semiflow {T (t)}t≥0 on X+.
Moreover, for each κ > 0, there exists κ̂ > 0 such that

‖T (t)U0‖X ≤ κ̂, ∀t ≥ 0, ∀U0 ∈ BX (0, κ) ∩X+.

Here BX(0, κ) denotes the ball in the Banach space X with center 0 and radius
κ.

Let us notice that the above result is weaker than the usual semiflow dissipativ-
ity. Throughout this work the above property will be referred either as uniform
boundedness or weak dissipativity. This simply means that the nonlinear semi-
flow T maps bounded sets of X+ into uniformly bounded - in time - sets of
X+.
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In order to go further into the description of the dynamical behaviour of
Problem (1.1)-(1.2), let us introduce the so-called basic reproduction number
R0 > 0 defined by

R0 =
βΛ

γ(γ + µ)
. (2.3)

This parameter acts as a threshold for the dynamics of the spatially homoge-
neous solutions of System (1.1)-(1.2), namely for the solutions of the under-
lying ordinary differential equations (see Magal et al [21] and the references
therein). Indeed when R0 ≤ 1, then the so-called disease free equilibrium(
SF = Λ

γ , IF = 0
)

is globally stable for the underlying ODE. When R0 > 1

then System (1.1)-(1.2) has a unique positive spatially homogeneous steady
state, the so-called endemic equilibrium point, defined by

SE =
SF
R0

, IE =
γ

β
(R0 − 1) . (2.4)

This equilibrium point describes the asymptotic behaviour of the underlying
ODE associated to System (1.1)-(1.2) in the case where R0 > 1.

Our next result considers the dynamics of (1.1)-(1.2) when R0 ≤ 1. In such
a situation, the epidemic uniformly dies out and our result reads as follows.

Theorem 2.3 (The case R0 ≤ 1) Let Assumption 2.1 be satisfied. If R0 ≤ 1
then for each initial data (S0, I0) ∈ X+, the corresponding solution satisfies:

lim
t→∞

(S, I) (t, x) =

(
Λ

γ
, 0

)
,

uniformly with respect to x ∈ RN .

The situation when R0 > 1 is much more delicate. As mentioned above, in
that case the epidemic is sustained and persistent under the semiflow associated
to the underlying system of ODE. In the spatially structured situation, we aim
at describing the spatial spread of the epidemic. To do so, let us mention
that Ducrot and Magal in [10] (see also the references cited therein, [9, 11]
for discussions on the case Λ = µ = 0 with age structure and [16] without
age structure) proved the existence of one-dimensional travelling wave solutions
for System (1.1) (including age since infection). These wave solutions connect
the disease free equilibrium and the endemic one. Furthermore these special
solutions do exist for any wave speed c > c∗ where the minimal wave speed
c∗ > 0 is defined by

c∗ = 2
√

(γ + µ) (R0 − 1). (2.5)

We shall now discuss the spatial spread of the epidemic described by System
(1.1)-(1.2) by developing a spreading speed approach for this reaction-diffusion
problem. Note that System (1.1) does not satisfy the parabolic comparison
principle, that turns out to be one of the major difficulty to overcome. The
result we shall obtain reads as follows.
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Theorem 2.4 (Spreading property) Let Assumption 2.1 be satisfied and as-
sume furthermore that R0 > 1. Then for each (S0, I0) ∈ X+ with I0 6≡ 0 the
following spreading properties hold true:

(i) there exists ε > 0 such that for each c ∈ (−c∗, c∗), each direction e ∈ SN−1

and any x ∈ RN , it holds that

lim sup
t→∞

S(t, x+ cte) ≤ Λ

γ
− ε, and lim inf

t→∞
I(t, x+ cte) ≥ ε;

(ii) if we furthermore assume that I0 is compactly supported then the following
outer spreading property holds true:

lim
t→∞

sup
|x|≥c∗t

[
I (t, x) +

∣∣∣∣S(t, x)− Λ

γ

∣∣∣∣] = 0.

The above result ensures the persistence of the disease behind the front, namely
on any expanding spheres ‖x‖ = ct with c ∈ [0, c∗). In the case where I0 is
compactly supported then the critical propagation speed c∗ becomes sharp in
the sense that ahead the front, namely for any expanding sphere ‖x‖ = ct for
c ≥ c∗, the infection dies out.

Remark 2.5 Here we would like to mention that the methodology we will de-
velop in this work for System (1.1)-(1.2) can be extended to the case of epidemic
system of the form (1.1) with standard (proportionate mixing) incidence. To be
more specific, Theorem 2.2, 2.3 and 2.4 also hold true for the following reaction-
diffusion system{

(∂t − d∆)S(t, x) = Λ− γS(t, x)− β S(t,x)I(t,x)
S(t,x)+I(t,x) ,

(∂t −∆) I(t, x) =
[
β S(t,x)
S(t,x)+I(t,x) − (γ + µ)

]
I(t, x),

(2.6)

by replacing R0 in (2.3) by R0 = β
γ+µ .

In order to obtain a rather complete picture of the solution, we shall now
discuss the behaviour of the solution behind the propagating front. To that
aim we fix an initial data (S0, I0) as in the previous theorem. Consider a time
sequence {tn}n≥0 tending to infinity, a given value c ∈ [0, c∗) and a direction
e ∈ SN−1. Due to parabolic estimates and the uniform boundedness stated in
Theorem 2.2, the sequence of maps (Sn, In) (t, x) defined by

(Sn, In) (t, x) = (S, I) (t+ tn, x+ c(t+ tn)e) ,

convergences (up to a subsequence) locally uniformly for (t, x) ∈ R×RN towards

some limit function
(
Ŝ, Î

)
(t, x). Then the map (S∞, I∞) (t, x) :=

(
Ŝ, Î

)
(t, x−

cte) becomes an entire solution of (1.1) while Theorem 2.4 (i) above ensures
that

inf
(t,x)∈R×RN

I∞(t, x) > 0.
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We refer to Lemma 5.5 for more details on the above construction. Such a
class of entire solution will be referred in the sequel as a uniformly persistent
entire solution (see Definition 2.6 below). The classification of such solutions
will provide information about the solution of the Cauchy problem (1.1)-(1.2)
behind the propagating front.

The precise definition of such solutions reads as follows.

Definition 2.6 A bounded entire solution (S∞, I∞) of System (1.1)-(1.2) is
said to be uniformly persistent if

inf
(t,x)∈R×RN

I∞(t, x) > 0.

As discussed above the properties of uniformly persistent entire solutions provide
information on the long term asymptotic of the solution (S, I) of the Cauchy
problem (1.1)-(1.2) and more precisely on the quantity (S, I)(t, cet) for |c| < c∗,
e ∈ SN−1 and large time.
We conjecture that when R0 > 1 then the set of uniformly persistent entire
solutions only consists in the unique endemic equilibrium point (SE , IE) (see
(2.4) above). However we are not able to prove such a result. We shall focus on
giving information about the relationship between uniformly persistent entire
solutions and the endemic equilibrium.

Our first result solves the above conjecture in the equi-diffusional case,
namely for d = 1.

Theorem 2.7 (Equi-diffusional case) Let Assumption 2.1 be satisfied. As-
sume furthermore that R0 > 1 and d = 1. Let (S∞, I∞) be a uniformly persistent
entire solution of System (1.1)-(1.2) according to Definition 2.6. Then one has

S∞(t, x) ≡ SE , I∞(t, x) ≡ IE .

As a corollary one obtains the following picture for the asymptotic dynam-
ics of (1.1)-(1.2) when the initial amount of infected individual is compactly
supported.

Corollary 2.8 (Spreading speed) Let Assumption 2.1 be satisfied. Assume
furthermore that R0 > 1 and d = 1. Let (S0, I0) ∈ X+ be given such that I0 6≡ 0
and I0 compactly supported. Denote by (S, I) ≡ (S, I)(t, x) the corresponding
solution. Then the following holds true:

lim
t→∞

(S, I) (t, cet) = (SE , IE) , ∀c ∈ [0, c∗) , ∀e ∈ SN−1,

and

lim
t→∞

(S, I) (t, cet) =

(
Λ

γ
, 0

)
, ∀c ≥ c∗.

Remark 2.9 The second statement directly follows from 2.4 (ii).
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In the non-equi-diffusional situation (namely d 6= 1) we are not able to obtain
such a precise dynamical behaviour behind the propagating front. Roughly
speaking, we shall show that any uniformly persistent entire solution has an
averaging property around the endemic equilibrium. In other words, each such
entire solution is uniquely ergodic with respect to time and also with respect to
space. Our result reads as follows.

Theorem 2.10 (Averaging property) Let Assumption 2.1 be satisfied. As-
sume furthermore that R0 > 1. Let (S∞, I∞) be a uniformly persistent entire
solution of System (1.1)-(1.2) according to Definition 2.6. Then (S∞, I∞) has
the following averaging properties:

(i) for each continuous function f : R2 → R2 and each t ∈ R, one has

lim
R→∞

(2R)
−N
∫

[−R,R]N
f
(
(S∞, I∞) (t, x)

)
dx = f (SE , IE) ,

uniformly with respect to t ∈ R.

(ii) For each continuous function f : R2 → R2 and each x ∈ RN , one has

lim
T→∞

(2T )
−1
∫ T

−T
f
(
(S∞I∞) (t, x)

)
dt = f (SE , IE) ,

uniformly with respect to x ∈ RN .

3 Preliminary

The aim of this preliminary section is to derive suitable local estimates that
will be used in the next section to prove Theorem 2.2. The arguments we shall
develop rely on similar duality ideas than the ones proposed by Hollis, Martin
and Pierre in [15], and by Morgan in [23]. However in order to deal with the
unboundedness of RN we shall work with the so-called uniform Lebesgue spaces.

3.1 Uniform Lebesgue spaces and preliminary estimates

Let p ∈ [1,∞] be given. The uniform p−Lebesgue space, denoted by Lpu
(
RN
)
,

is defined by

Lpu
(
RN
)

=

{
φ ∈ Lploc

(
RN
)

: sup
x∈RN

‖φ‖Lp(B(x,1)) <∞
}
,

wherein for each x ∈ RN and r > 0, B(x, r) ⊂ RN denotes the ball of center x
and radius r. This space becomes a Banach space when it is endowed with the
following norm

‖φ‖Lpu(RN ) = sup
x∈RN

‖φ‖Lp(B(x,1)), ∀φ ∈ Lpu
(
RN
)
.
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We refer to Arrieta et al [3] and Volpert and Volpert [30] for different equivalent
norm formulations for this space.

Consider now the heat semigroup operator {T∆(t)}t>0 defined by the con-
volution

T∆(t) = Kt ∗ · with Kt(x) = (4πt)−N/2 exp

(
−‖x‖

2

4t

)
.

Then the following properties hold true.

Lemma 3.1 The following holds true:

(i) There exists some constant M̂ > 0 (only depending on N ≥ 1) such that
for each 1 ≤ p ≤ q ≤ ∞, each ϕ ∈ Lpu

(
RN
)

and each t > 0, we have

‖T∆(t)ϕ‖Lqu(RN ) ≤ M̂
(

1 + t−
N
2 ( 1

p−
1
q )
)
‖ϕ‖Lpu(RN ).

(ii) For any bounded set A ⊂ RN and each p ∈ [1,∞], one has

lim
t→0+

‖T∆(t)ϕ− ϕ‖Lp(A) = 0, ∀ϕ ∈ Lpu
(
RN
)
.

(iii) For each p ∈ [1,∞) and each ϕ ∈ Lpu
(
RN
)
, the map t 7→ T∆(t)ϕ is

analytic from (0,∞) into BUC
(
RN
)
.

The proofs of these statements can be found in Proposition 2.1 in [3] and
Theorem 3.2 in [25].

In order to deal with Theorem 2.2, we aim to make use of duality like argu-
ments coupled together with local estimates in order to take into account of the
unboundedness of the domain. Before proceeding to the proof, we shall need to
recall and derive estimates for the heat semigroup.
The first recall the so-called maximal Lp parabolic regularity. We refer for in-
stance to Hieber and Prüss in [14] (see also the references cited therein) for a
proof of the following result.

Lemma 3.2 Let ν > 0 be given. Let p ∈ (1,∞) be given. Consider the linear
operator Φ acting on the Banach space Lp

(
(0,∞)× RN

)
and defined by the

resolution of the heat equation

Φ [θ] (t, x) = ψ(t, x) with

{
(∂t −∆ + ν)ψ(t, x) = θ(t, x), t > 0, x ∈ RN ,
ψ(0, x) = 0, x ∈ RN .

Then Φ is a linear bounded operator on Lp
(
(0,∞)× RN

)
. It is represented by

the constant variation formula, that reads, for any θ ∈ Lp
(
(0,∞)× RN

)
, for

any t ≥ 0 and x ∈ RN , as

ψ(t, x) = Φ [θ] (t, x) =

∫ t

0

∫
RN

e−νs−
‖y‖2

4s

(4πs)N/2
θ(t− s, x− y)dyds.
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Moreover there exists some constant K ≡ K(p, ν) > 0 such that for all θ ∈
Lp
(
(0,∞)× RN

)
, it holds that

‖ψ‖Lp((0,∞)×RN ) +‖∂tψ‖Lp((0,∞)×RN ) +‖∆ψ‖Lp((0,∞)×RN ) ≤ K‖θ‖Lp(0,∞)×RN ).

We will now derive local estimates that will be used in the sequel.
Let ν > 0 and p ∈ (1,∞) be given and fixed. We denote by B0 := B(0, 1) ⊂ RN
the unit ball of RN centred at the origin. For each function θ ∈ Lp ((0,∞)×B0),

consider the function θ̂ ∈ Lp
(
0,∞)× RN

)
defined by the extension of θ by zero.

Then our first estimate reads as follows.

Lemma 3.3 There exist M > 0 large enough and K > 0 such that for any
θ ∈ Lp ((0,∞)×B0), one has∑

i∈ZN ,‖i‖≥M

∥∥∥Φ
[
θ̂
]

(t, .)
∥∥∥
Lp(B(i,1))

≤ K‖θ‖Lp((0,∞)×B0), ∀t > 0. (3.7)

Proof. Let us first note that for all i ∈ ZN with ‖i‖ > 2 one has

x ∈ B(i, 1) and y ∈ B0 ⇒ ‖x− y‖ ≥ ‖i‖ − 2. (3.8)

Next choose M > 2 large enough such that for all i = (i1, .., iN ) ∈ ZN one has

‖i‖ ≥M ⇒ (‖i‖ − 2)
2 ≥ |i1|+ ..+ |iN |.

Next let us set ψ(t, x) ≡ Φ
[
θ̂
]

(t, x). Using the representation formula stated

in Lemma 3.2 and (3.8), one obtains that for each t > 0 and each i ∈ ZN with
‖i‖ ≥M > 2

‖ψ(t, .)‖pLp(B(i,1)) =

∫
B(i,1)

∣∣∣∣∫ t

0

e−νs(4πs)−N/2
∫
B0

e−
‖x−y‖2

4s θ(t− s, y)dyds

∣∣∣∣p dx
≤
∫
B(i,1)

[∫ t

0

e−νs(4πs)−N/2
∫
B0

e−
(‖i‖−2)2

4s |θ|(t− s, y)dyds

]p
dx

≤ |B0|
[∫ t

0

e−νs(4πs)−N/2e−
(‖i‖−2)2

4s ‖θ(t− s, .)‖L1(B0)ds

]p
.

This yield for all t > 0 and i = (i1, .., iN ) ∈ ZN with ‖i‖ ≥ M the following
estimate

‖ψ(t, .)‖Lp(B(i,1)) ≤ |B0|
1
p

∫ t

0

e−νs(4πs)−N/2e−
(|i1|+...+|iN |)

4s ‖θ(t− s, .)‖L1(B0)ds.

(3.9)
Now note, since M > 0 then for any z ∈ [0, 1) one has

∑
i∈ZN , |i‖≥M

z|i1|+..+|iN | ≤ 2Nz

(1− z)N
.
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Hence summing-up (3.9) over all index i = (i1, .., iN ) ∈ ZN with ‖i‖ ≥ M
provides for all t > 0∑
i∈ZN , |i‖≥M

‖ψ(t, .)‖Lp(B(i,1)) ≤ 2N |B0|
1
p

∫ t

0

e−νse−
1
4s

(4πs)
N
2

(
1− e− 1

4s

)N ‖θ(t−s, .)‖L1(B0)ds.

Note that the function h defined by h(t) = 2N e−νse−
1
4s

(4πs)
N
2

(
1−e−

1
4s

)N belongs to

Lq(0,∞) where q is the conjugate exponent of p. Now two successive applica-
tions of Hölder inequality yield for all t > 0∑

i∈ZN , |i‖≥M

‖ψ(t, .)‖Lp(B(i,1)) ≤ |B0|
1
p+ 1

q

∫ t

0

h(s)‖θ(t− s, .)‖Lp(B0)ds

≤ |B0|
(∫ t

0

h(s)qds

) 1
q

‖θ‖Lp((0,t)×B0),

and this completes the proof of Lemma 3.3.
Next using the above notation, the following lemma holds true.

Lemma 3.4 Let p ∈ (1,∞) and ν > 0 be given. Then for each T > 0 and

θ ∈ Lp ((0, T )×B0), one has, by setting ψ(t, x) = Φ
[
θ̂
]

(t, x),

sup
t∈[0,T ]

‖ψ(t, .)‖Lp(RN ) ≤ (qν)−
1
q ‖θ‖Lp(QT ), (3.10)

sup
t∈[0,T ]

‖ψ(t, .)‖L1(RN ) ≤ |B0|
1
q (qν)−

1
q ‖θ‖Lp(QT ), (3.11)

and

‖ψ‖L1((0,T )×RN ) ≤
T

1
q

ν
|B0|

1
q ‖θ‖Lp(QT ). (3.12)

Here we have set QT = (0, T )×B0, q denotes the conjugate exponent associated

to p and θ̂ is the extension of θ by zero on (0,∞)× RN .

Proof. The proof of the above lemma follows from Young convolution inequality.
First for each given t ∈ (0, T ) one has

‖ψ(t, .)‖Lp(RN ) ≤
∫ t

0

e−νs‖θ(t− s, .)‖Lpds ≤ ‖e−ν.‖Lq(0,∞)‖θ‖Lp(QT ).

This proves (3.10).
Now for each given t ∈ (0, T ), one has

‖ψ(t, .)‖L1(RN ) ≤
∫ t

0

e−νs‖θ(t− s, .)‖L1(B0)ds

≤ |B0|1/q
∫ t

0

e−νs‖θ(t− s, .)‖Lp(B0)ds

≤ |B0|1/q
(∫ t

0

e−qνsds

)1/q

‖θ‖Lp(QT ),
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and estimate (3.11) follows.
Next note that∫ T

0

‖ψ(t, .)‖L1(RN )dt ≤
∫ T

0

∫ t

0

e−νs‖θ(t− s, .)‖L1(B0)dsdt ≤
1

ν
‖θ‖L1(QT ),

so that (3.12) follows from Hölder inequality. This completes the proof of Lemma
3.4.

As a consequence, coupling the estimate derive in Lemma 3.3 with the esti-
mate (3.10) in Lemma 3.4, the following estimate holds true.

Lemma 3.5 Let p ∈ (1,∞) and ν > 0 be given. Then there exists some

constant K̂ = K̂(p, ν,N) > 0 such that for each T > 0 and each function
θ ∈ Lp ((0, T )×B0), it holds that∑

i∈ZN

∥∥∥Φ
[
θ̂
]

(t, .)
∥∥∥
Lp(B(i,1))

≤ K̂‖θ‖Lp(QT ), ∀t ∈ (0, T ).

Next the following estimate holds true.

Lemma 3.6 Let p ∈ (1,∞) and ν > 0 be given. Then there exists some con-
stant C = C(p, ν,N) > 0 such that for each T > 0 and each θ ∈ Lp ((0, T )×B0),
we have∫ t

0

∫
RN\B(0,2)

∣∣∣∆Φ
[
θ̂
]

(s, x)
∣∣∣ dxds ≤ Ct1− 1

p ‖θ‖Lp(QT ), ∀t ∈ (0, T ). (3.13)

Proof. Recalling the definition of the linear operator Φ in Lemma 3.2 and its

reformulation, then by setting ψ(t, x) = Φ
[
θ̂
]

(t, x), straightforward algebra

yields for each x ∈ RN and each t ∈ (0, T )

∆ψ(t, x) = −
∫ t

0

e−νs
∫
B0

(4πs)−
N
2

[
N

2s
− ‖x− y‖

2

4s2

]
e−
‖x−y‖2

4s θ(t− s, y)dyds.

Then one obtains for each t > 0 that∫
‖x‖≥2

|∆ψ(t, x)|dx

≤
∫ t

0

e−νs
∫
B0

(4π)−
N
2 s−1−N2

[∫
‖x‖≥2

[
N

2
+
‖x− y‖2

4s

]
e−
‖x−y‖2

4s dx

]
|θ|(t− s, y)dyds.

Now, since y ∈ B0, we obtain that∫
‖x‖≥2

[
N

2
+
‖x− y‖2

4s

]
e−
‖x−y‖2

4s dx ≤
∫
‖x‖≥1

[
N

2
+
‖x‖2

4s

]
e−
‖x‖2

4s dx := G(s).

Now, setting z = x√
s
, yields

G(s) = s
N
2

∫
‖z‖≥ 1√

s

[
N

2
+
‖z‖2

4

]
e−
‖z‖2

4 dz.
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And, the above estimate for ∆ψ re-writes as∫
‖x‖≥2

|∆ψ(t, x)|dx ≤
∫ t

0

H(s)‖θ(t− s, .)‖L1(B0),

wherein the function H is defined by

H(s) = (4π)−
N
2
e−νs

s

[∫
‖z‖≥ 1√

s

[
N

2
+
‖z‖2

4

]
e−
‖z‖2

4 dz

]
.

Finally observe that H ∈ Lr(0,∞) for each r ∈ [1,∞) so that (3.13) follows.
Indeed Young convolution inequality implies that∫ t

0

∫
‖x‖≥2

|∆ψ(s, x)|dxds ≤ ‖H‖L1(0,∞) ‖θ‖L1(Qt)
∀t ∈ (0, T ),

and the result follows using Hölder inequality.
Finally, as a consequence of the parabolic maximal regularity recalled in

Lemma 3.2 coupled with Lemma 3.6, the following estimate holds true.

Lemma 3.7 Let p ∈ (1,∞) and ν > 0 be given. There exists some constant
C = C(p, ν,N) > 0 such that for each T > 0 and each θ ∈ Lp ((0, T )×B0), one
has: ∥∥∥∆Φ

[
θ̂
]∥∥∥
L1(QT )

≤ CT 1− 1
p ‖θ‖Lp(QT ). (3.14)

3.2 Duality estimates for some parabolic inequality

The aim of this section is to prove the following result.

Theorem 3.8 Let T > 0 be given. Let h ∈ L∞
(
(0, T )× RN

)
, (θ1, θ2) ∈ R2

and ν > 0 be given. Let (u, v) ∈ W 1,2
∞
(
(0, T )× RN

)2
be given such that u ≥ 0

and satisfying for almost every (t, x) ∈ (0, T )× RN

(∂t −∆ + ν)u(t, x) ≤ h(t, x) + (θ1∂t + θ2∆) v(t, x). (3.15)

Then for each p ∈ (1,∞), there exists some constant C(p) > 0 depending only
upon p ∈ (1,∞), ν > 0 and N ≥ 1 such that[∫ T

0

‖u(t, .)‖p
Lpu(RN )

dt

] 1
p

≤ K(p, T )
[
1 + ‖u(0, .)‖Lpu(RN ) + T

1
p

]
,

wherein K(p, T ) > 0 is defined by

K(p, T ) = C(p)
[
1 + ‖h‖L∞((0,T )×RN ) + ‖v‖L∞((0,T )×RN ) (|θ1|+ |θ2|)

]
.
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This result is local version of the results of Hollis et al [15] for bounded domains.
Let p ∈ (1,∞) be given and denote by q ∈ (1,∞) the conjugate exponent of

p. Let T > 0 be given and let θ ∈ Lq+ ((0, T )×B(0, 1)) be given. Consider the
function φ ≥ 0 defined by the backward resolution of the equation:{

(∂t + ∆− ν)φ(t, x) = −θ̂(t, x), t ∈ (0, T ), x ∈ RN ,
φ(T, .) ≡ 0,

wherein θ̂ ∈ Lq
(
(0, T )× RN

)
denotes the extension of θ by zero outside (0, T )×

B(0, 1). Note that similar test functions have been successfully used in Hollis et
al [15] and Morgan [24] to deal with reaction-diffusion equations in a bounded
domain.

Let us first note that using Lemmas 3.4, 3.5 and 3.7, the following estimates
hold true.

Lemma 3.9 There exists some constant C = C(p, ν,N) such that

‖φ‖L1((0,T )×RN ) ≤ C(p)T 1/p‖θ‖Lq(QT ),

‖φ(0, .)‖L1(RN ) ≤ C(p)‖θ‖Lq((0,T )×B(0,1)),

sup
t∈(0,T )

∑
i∈ZN

‖u(t, .)‖Lq(B(i,1)) ≤ C(p)‖θ‖Lq((0,T )×B(0,1)),

‖∂tφ‖L1((0,T )×RN ) + ‖∆φ‖L1((0,T )×RN ) ≤ C(p)T
1
p ‖θ‖Lq((0,T )×B(0,1)).

Using these estimates, we shall complete the proof of Theorem 3.8.
To do so, let us multiply (3.15) by the positive function φ and integrate over
QT = (0, T )× RN . Then integration by parts yields

−
∫
RN

φ(0, x)u(0, x)dx+

∫∫
QT

u [−φt −∆φ+ νφ] dtdx ≤
∫∫

QT

φ(t, x)h(t, x)dtdx

− θ1

∫
RN

φ(0, x)v(0, x)dx+

∫∫
QT

[−θ1φt + θ2∆φ(t, x)] v(t, x)dtdx.

Due to the definition of φ, this leads us to∫∫
QT

u(t, x)θ(t, x)dtdx ≤
∫
RN

φ(0, x)u(0, x)dx+

∫∫
QT

φ(t, x)h(t, x)dtdx

− θ1

∫
RN

φ(0, x)v(0, x)dx+

∫∫
QT

[−θ1φt + θ2∆φ(t, x)] v(t, x)dtdx.

Hence we get∫∫
QT

u(t, x)θ(t, x)dtdx ≤
∫
RN

φ(0, x)u(0, x)dx+ ‖h‖L∞(QT )‖φ‖L1(QT )

+ ‖v‖L∞(QT )

[
|θ1|‖φ(0, .)‖L1(RN ) + |θ1|‖∂tφ‖L1(QT ) + |θ2|‖∆φ‖L1(QT )

]
.

(3.16)
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Now using Lemma 3.9, let us observe that∫
RN

φ(0, x)u(0, x)dx =
∑
i∈ZN

∫
B(i,1)

φ(0, x)u(0, x)dx

≤
∑
i∈ZN

‖φ(0, .)‖Lq(B(i,1)‖u(0, .)‖Lp(B(i,1)

≤

(∑
i∈ZN

‖φ(0, .)‖Lq(B(i,1)

)
‖u(0, .)‖Lpu(RN )

≤ C(p)‖θ‖Lq(QT )‖u(0, .)‖Lpu(RN ).

As a consequence of Lemma 3.9, if we set

K(p, T ) = C(p)
[
1 + ‖h‖L∞(QT ) + ‖v‖L∞(QT ) (|θ1|+ |θ2|)

]
,

we infer from (3.16) that for each θ ∈ Lq((0, T )×B(0, 1)), we have∫∫
QT

u(t, x)θ(t, x)dtdx ≤ K(p, T )‖θ‖Lq(QT )

[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.

(3.17)
Now for each x0 ∈ RN , the map σx0

u := u(., x0 + .) satisfies (3.15) with v
and h respectively replaced by σx0v := v(., x0 + .) and σx0h := h(., x0 + .). As
a consequence, (3.17) applies to σx0u and leads for each x0 ∈ RN :∫∫

QT

u(t, x+ x0)θ(t, x)dtdx ≤ K(p, T )‖θ‖Lq(QT )

[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.

(3.18)
Now for each k ≥ 1, let us set Ak = B(0, k) ⊂ RN . For each r′ ∈ (1,∞) and
each k ≥ 1, let us multiply (3.18) by ϕ ≡ ϕ(x0) ∈ Lr′+(Ak) and integrate over
Ak. This leads us to∫∫∫

QT×Ak
u(t, x+ x0)ϕ(x0)θ(t, x)dtdxdx0

≤ |Ak|1/rK(p, T )‖ϕ‖Lr′ (Ak)‖θ‖Lq(QT )

[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.

Hence usual duality argument leads us to[∫ T

0

[∫
Ak

‖u(t, .)‖rLp(B(x0,1))dx0

]p/r]1/p

≤ |Ak|1/rK(p, T )
[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.

Letting r →∞ and using Fatou’s Lemma, one obtains that[∫ T

0

[
sup
x0∈Ak

‖u(t, .)‖Lp(B(x0,1))

]p]1/p

≤ K(p, T )
[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.
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Since the left hand side of the above inequality is increasing with respect to k,
letting k →∞ and using Lebesgue monotone theorem, yield[∫ T

0

[
‖u(t, .)‖Lpu(RN )

]p]1/p

≤ K(p, T )
[
1 + ‖u(0, .)‖Lpu(RN ) + T 1/p

]
.

This last estimate completes the proof of Theorem 3.8.

4 Proof of Theorem 2.2 and Theorem 2.3

The aim of this section is to prove Theorem 2.2 and its first consequence stated
in Theorem 2.3.

Let us first state the following global existence result for the solution of the
Cauchy problem (1.1)-(1.2).

Lemma 4.1 Let Assumption 2.1 be satisfied. Then System (1.1) generates a
strongly continuous and globally defined semiflow on X+ denoted by {T (t)}t≥0

or for each U0 = (S0, I0) ∈ X+ as{
T (t)U0 =

(
S(t, .;U0)
I(t, .;U0)

)}
t≥0

.

For each initial data U0 = (S0, I0) ∈ X+ the solution (S, I)(t, x;U0) = (S, I)(t, x)
satisfies the following properties:

(i) (S, I) ∈ C ([0,∞) ;X+),

(ii) For each t ≥ 0 and x ∈ RN , it holds that

S(t, x) ≤ Λ

γ
+ e−γt

[
‖S0‖∞ −

Λ

γ

]
. (4.19)

and
I(t, x) ≤ ‖I0‖∞eβ( Λ

γ +‖S0‖∞)t. (4.20)

(iii) For each 0 < τ < T , the following regularity holds true:

(S, I) ∈ C∞
(
(τ, T )× RN

)
.

Note that the above lemma directly follows from standard results on reaction-
diffusion equations. Estimate (4.19) is a consequence of the parabolic compar-
ison principle for the S−equation while (4.20) is obtained by plugging (4.19)
into the I−equation and applying the parabolic comparison principle.

We are now able to complete the proof of Theorem 2.2.
Proof of Theorem 2.2. In order to prove Theorem 2.2, we shall apply Theorem
3.8. Indeed, let us first notice that (1.1) leads us to the following differential
inequality

∂tI −∆I + (γ + µ)I ≤ Λ− ∂tS + d∆S.
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As a consequence of Lemma 4.1, Theorem 3.8 applies and provides that for each
p ∈ (1,∞), there exists some constant C(p) > 0 such that for each 1 ≤ τ < T ,
we have[∫ T

τ

‖I(t, .)‖p
Lpu(RN )

dt

] 1
p

≤ K̂(p, T, τ)
[
1 + ‖I(τ, .)‖Lpu(RN ) + (T − τ)

1
p

]
,

wherein K̂(p, T, τ) > 0 is defined by

K̂(p, T, τ) = C(p)
[
1 + Λ + (1 + d)‖S‖L∞((τ,T )×RN )

]
.

Using Lemma 4.1 (ii), one obtains that for each p ∈ (1,∞) and each 1 ≤ τ < T[∫ T

τ

‖I(t, .)‖p
Lpu(RN )

dt

] 1
p

≤ K̃(p)
[
1 + ‖I(τ, .)‖Lpu(RN ) + (T − τ)

1
p

]
,

with K̃(p) > 0 defined by

K̃(p) = C(p)

[
1 + Λ + (1 + d)

(
Λ

γ
+ ‖S0‖∞

)]
.

As a consequence of the above inequality, one can use similar arguments as
the ones given by Hollis et al in Lemma 7 in [15] to derive the following lemma.

Lemma 4.2 Let κ > 0 be given such that ‖S0‖∞ ≤ κ and ‖I0‖∞ ≤ κ. For each
p ∈ (1,∞), there exist constants Λ0(p, κ) > 0, Θ0(p, κ) ≥ 1, Γ0(p, κ) > 0 and a
non-decreasing sequence {tk}k≥0 such that t0 = 1 and such that for each k ≥ 0,
we have

(i) 1 ≤ tk+1 − tk ≤ Λ0(p, κ),

(ii) ‖I(tk, .)‖Lpu(RN ) ≤ Θ0(p, κ),

(iii)
∫ tk+1

tk
‖I(s, .)‖p

Lpu(RN )
ds ≤ Γ0(p, κ).

To complete the proof of Theorem 2.2 we shall make use of the Lp − L∞
estimates for the heat semigroup recalled in Lemma 3.1 (i). Let p ∈ (1,∞) be
given such that

N

2(p− 1)
< 1.

Note that this estimate can be re-formulated as qN
2p < 1 if q denotes the con-

jugate exponent associated to p. Using the notations introduced in Lemma 4.2
together with such a choice of p, let k ≥ 1 be given. Then for each t ∈ [tk, tk+1],
one has

I(t) = e−(γ+µ)(t−tk−1)T∆ (t− tk−1) I (tk−1)+β

∫ t

tk−1

e−(γ+µ)(t−s)T∆(t−s)S(s)I(s)ds.
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Next using Lemma 3.1 (i), one obtains that for each t ∈ [tk, tk+1]

‖I(t)‖L∞u ≤ e
−(γ+µ)(t−tk−1)M̂

(
1 + (t− tk−1)

− N
2p

)
‖I (tk−1) ‖Lpu(RN )

+ M̂β

∫ t

tk−1

e−(γ+µ)(t−s)
(

1 + (t− s)−
N
2p

)
‖S(s)‖∞‖I(s)‖Lpuds.

Using (4.19) as well as estimates provided in Lemma 4.2 yields for each t ∈
[tk, tk+1]:

‖I(t)‖L∞u ≤ 2M̂Θ0(p, κ) + M̂β2κ

[∫ t

tk−1

(
1 + (t− s)−

N
2p

)q
ds

]1/q [∫ tk+1

tk−1

‖I(s)‖p
Lpu
ds

]1/p

≤ 2M̂Θ0(p, κ) + M̂β2 (2Γ0(p, κ))
1/p

κ

[∫ 2Λ0(p,κ)

0

(
1 + l−

N
2p

)q
dl

]1/q

.

This completes the proof of Theorem 2.2.
Using the uniform boundedness provided by Theorem 2.2, we are now able

to complete the proof of Theorem 2.3 that becomes - using usual limiting argu-
ments and parabolic estimates - a direct consequence of the following result.

Proposition 4.3 Let Assumption 2.1 be satisfied. Assume furthermore that
R0 ≤ 1. Let (S, I) be a bounded and positive entire solution of (1.1). Then one
gets

(S, I) (t, x) ≡
(

Λ

γ
, 0

)
.

Proof. Let us first notice that due to (4.19), the function S satisfies

S(t, x) ≤ Λ

γ
, ∀(t, x) ∈ R× RN . (4.21)

Hence recalling that R0 ≤ 1, due to the I−equation, one gets for all (t, x) ∈
R× RN , that

(∂t −∆) I(t, x) = [βS(t, x)− (γ + µ)] I(t, x) ≤ 0.

Let {(tn, xn)}n≥0 be a sequence such that

lim
n→∞

I(tn, xn) = sup
(t,x)∈R×RN

I(t, x),

and consider the sequence of functions

(Sn, In) (t, x) := (S, I) (t+ tn, x+ xn) .

Then due to parabolic estimates, possibly up to a subsequence, one may assume
that

(Sn, In) (t, x)→
(
Ŝ, Î

)
(t, x),
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locally uniformly for (t, x) ∈ R×RN and where
(
Ŝ, Î

)
satisfies for each (t, x) ∈

R× RN , the following system

(∂t − d∆) Ŝ(t, x) = Λ− γŜ(t, x)− βŜ(t, x)Î(t, x),

(∂t −∆) Î(t, x) =
[
βŜ(t, x)− (γ + µ)

]
Î(t, x).

Moreover due to the definition of (tn, xn) one has

Î(0, 0) = sup
(t,x)∈R×RN

Î(t, x) = sup
(t,x)∈R×RN

I(t, x).

Recalling (4.21) note that the condition R0 ≤ 1 ensures that βŜ(t, x)−(γ+µ) ≤
0 for all (t, x) ∈ R× RN . Hence the strong comparison principle applies to the

Î−equation and ensures that

Î(t, x) ≡ Î0 := sup
(t,x)∈R×RN

I(t, x).

¿From this we obtains that Ŝ(t, x) ≡ Ŝ0 ∈ [0,∞) where the pair
(
Ŝ0, Î0

)
satisfies

the system of stationary equations{
Λ− γŜ0 − βŜ0Î0 = 0,[
βŜ0 − (γ + µ)

]
Î0 = 0.

Now R0 ≤ 1 leads to
(
Ŝ0, Î0

)
=
(

Λ
γ , 0
)

. Hence Î0 = sup(t,x)∈R×RN I(t, x) = 0

and the result follows.

5 Proof of Theorem 2.4

The aim of this section is to prove Theorem 2.4. The proof of Theorem 2.4
(i) will rely on a dynamical system approach and more specifically on uniform
persistence like arguments. This section is split into three parts. The first
subsection is devoted to the proof a weak uniform persistence property, the
second part is concerned with the proof of Theorem 2.4 (i) while the third part
is devoted to the proof of the outer spreading property stated in Theorem 2.4
(ii).

5.1 Weak uniform persistence

This section is concerned with the proof of the following result.

Theorem 5.1 Recalling the definition of R0 in (2.3) and c∗ in (2.5), assume
that R0 > 1. Let κ > 0 be given. Let c0 ∈ [0, c∗) be given. Then there exists
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ε = ε (κ, c0) > 0 such that for each x ∈ RN , each e ∈ SN−1, each c ∈ [−c0, c0]
and any U0 ∈Mκ × (Mκ \ {0}), it holds that

lim sup
t→∞

I(t, x+ cte;U0) ≥ ε.

Here we have set

Mκ =
{
ϕ ∈ BUC

(
RN ,R

)
: 0 ≤ ϕ ≤ κ

}
.

Before proving this result let us first state the following lemma that will be
used in the proof of the above statement.

Lemma 5.2 Let a ∈ R be given. Let consider for each R > 0, each c ∈ R and
each e ∈ SN−1, the principle elliptic eigenvalue problem:

−∆u(x) + ce.∇u(x) + au(x) = λR [c, e]u for x ∈ B(0, R),

u(x) = 0, x ∈ ∂B(0, R)

u(x) > 0 ∀x ∈ B(0, R).

Then λR[c, e] does not depend upon e ∈ SN−1, it is denoted by λR[c] and one
has

lim
R→∞

λR [c] = a+
c2

4
,

locally uniformly for c ∈ R.

Let us mention that similar results have been obtained by Berestycki et al in
[5] for more general problems. Here, since we need to have information with
respect to c, we will provide a simple proof adapted to this situation.
Proof of Lemma 5.2. Let R > 0, c ∈ R and e ∈ SN−1 be given. Consider
u = uR an eigenvector associated to λR[c, e]. Consider now the function ϕ(x) =
uR(x)e−αe.x where α ∈ R is some constant that will be specified latter on. Then
one has

∇u = (∇ϕ+ αeϕ)eαe.x,

∆u =
(
∆ϕ+ 2αe.∇ϕ+ α2ϕ

)
eαe.x.

Thus ϕ satisfies

−∆ϕ− 2αe.∇ϕ− α2ϕ+ ce.∇ϕ+ αcϕ+ aϕ = λR[c, e]ϕ.

Choose now c = 2α so that function ϕ satisfies{
−∆ϕ(x) =

[
λR[c, e]− a− c2

4

]
ϕ

ϕ(x) = 0 for x ∈ ∂B(0, R) and ϕ(x) > 0 ∀x ∈ B(0, R).

This implies that

λR[c, e]− a− c2

4
= ΛR,
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where ΛR denotes the principle eigenvalue of −∆ together with Dirichlet bound-
ary condition on B(0, R). On the other hand, note that

ΛR = inf
ψ∈H1

0 (B(0,R))

‖∇ψ‖22
‖ψ‖22

=
1

R2
Λ1.

As a consequence one obtains that

λR[c, e] =
Λ1

R2
+ a+

c2

4
.

This completes the proof of Lemma 5.2.
We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. In order to prove this result, let us argue by contradiction
by assuming that for each n ≥ 0, there exist Un0 = (Sn0 , I

n
0 ) ∈ Mκ ×Mκ \ {0},

xn ∈ RN , cn ∈ [−c0, c0] and en ∈ SN−1 such that the corresponding solution,
denoted by (Sn, In), satisfies

lim sup
t→∞

In (t, xn + cnten) ≤ 1

n+ 1
.

As a consequence, for each n ≥ 0, there exists tn > 0 such that the sequence
tn →∞ as n→∞ and

In(t, xn + cnten) ≤ 2

n+ 1
, ∀t ≥ tn. (5.22)

Consider now the sequence of shifted functions un and vn defined by

un(t, x) = Sn (t+ tn, xn + x+ cn (tn + t) en) ,

vn(t, x) = In (t+ tn, xn + x+ cn (tn + t) en) .
(5.23)

Note that (5.22) re-writes as

vn(t, 0) ≤ 2

n+ 1
, ∀t ≥ 0, n ≥ 0. (5.24)

We now claim:

Claim 5.3 One has

lim
n→∞

(un, vn) (t, x) =

(
Λ

γ
, 0

)
,

uniformly with respect to time t ≥ 0 and x in bounded sets.

Before proving this claim, we complete the proof of Theorem 5.1. Recalling
that R0 > 1 and c0 < c∗, let η > 0 be given small enough such that

c20 + 4βη < (c∗)
2
.
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Next according to Lemma 5.2, there exists L = Lη > 0 such that the principal
eigenvalue of the problem

−∆u(x) + cnen.∇u(x) + aηu(x) = λL[c]u(x) in B(0, L),

u(x) = 0, ∀x ∈ ∂B(0, L)

u(x) > 0 ∀x ∈ B(0, L),

(5.25)

wherein we have set

aη = −
[
β

(
Λ

γ
− η
)
− (γ + µ)

]
, (5.26)

satisfies
λL [cn] < 0, ∀n ≥ 1.

According to Claim 5.3 we infer that

lim
n→∞

un(t, x) =
Λ

γ
, uniformly on t ≥ 0 and x ∈ [−L,L].

Therefore, there exists nη > 0 such that

Λ

γ
− η ≤ un(t, x) ≤ Λ

γ
+ η, ∀t ≥ 0, |x| ≤ L, n ≥ nη. (5.27)

Recalling (5.23), the function vn satisfies for each n,

(∂t − cnen.∇−∆) vn(t, x) = [βun(t, x)− (γ + µ)] vn(t, x).

As a consequence of (5.27), one obtains that for each n ≥ nη, t ≥ 0 and
x ∈ [−L,L]

(∂t − cnen.∇−∆) vn(t, x) + aηvn(t, x) ≥ 0. (5.28)

Let n ≥ nη be given and fixed. Consider the function Θ : B (0, L) → [0,∞)
defined as a principal eigenvector of (5.25) with R = L, e = en and c = cn.
Consider also δ > 0 small enough such that

vn (0, x) ≥ δΘ(x), ∀x ∈ B (0, L) .

Finally, if one introduces the differential operator

L := ∂t − cnen.∇−∆ + aη,

then we get
L[vn](t, x) ≥ 0, ∀(t, x) ∈ [0,∞)×B (0, L) ,

while
L[Θ](t, x) = λL[cn]Θ ≤ 0.

Consider the map v(t, x) = δe−λL[cn]tΘ(x) that satisfies

L[v](t, x) = δλL[cn]e−λL[cn]tΘ− λL[cn]e−λL[cn]tΘ = 0.
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Since one has

v(0, x) = δΘ(x) ≤ vn(0, x), x ∈ B(0, L)

v(t, x) = 0 ≤ vn(t, x), ∀t ≥ 0, x ∈ ∂B(0, L),

we infer from the parabolic comparison principle that

δe−λL[cn]tΘ(x) ≤ vn(t, x), ∀t ≥ 0, |x| ≤ L.

Recalling that λL[cn] < 0, the latter estimate contradicts (5.24). This completes
the proof of the result.

It remains to prove Claim 5.3.
Proof of Claim 5.3. Due to the uniform bound provided by Theorem 2.2
and parabolic estimates, possibly up to a subsequence, one may assume that
(un, vn) → (u∞, v∞) locally uniformly for (t, x) ∈ R2. Moreover (5.24) implies
that

v∞(t, 0) = 0, ∀t ≥ 0. (5.29)

Since SN−1 is compact, one may assume that en → e ∈ SN−1. Since {cn}n≥0 ⊂
[−c0, c0], one may also assume that cn → c ∈ [−c0, c0] as n→∞. Now recalling
(5.23), the function (u∞, v∞) satisfies

0 ≤ u∞(t, x) ≤ Λ
γ , v∞(t, x) ≥ 0,

(∂t − ce.∇− d∆)u∞(t, x) = Λ− γu∞(t, x)− βu∞(t, x)v∞(t, x),

(∂t − ce.∇−∆) v∞(t, x) = [βu∞(t, x)− (γ + µ)] v∞(t, x).

Furthermore the strong comparison principle together with (5.29) implies that

v∞(t, x) ≡ 0 and u∞(t, x) ≡ Λ

γ
.

Let L > 0 be given. Let us assume by contradiction that vn → 0 as n → ∞
but not uniformly on [0,∞)×B(0, L). This means that there exist a sequence
(tn, xn) ∈ [0,∞)×B(0, L) and ε > 0 such that

vn(tn, xn) ≥ ε, ∀n ≥ 0.

Without loss of generality, we assume that xn → x∞ ∈ B(0, L) as n→∞ while
tn →∞ as n→∞. Next consider the sequence of map wn(t, x) = vn(tn + t, x).
Then due to parabolic estimates, one may assume that it converges locally
uniformly to some function w∞ as n → ∞ where w∞ satisfies w∞(0, x∞) ≥ ε.
Moreover using (5.23) as well as (5.24), one obtains that w∞ satisfies:

w∞(0, 0) = 0,

(∂t −∆− ce.∇)w∞(t, x) = a(t, x)w∞(t, x),

wherein a ≡ a(t, x) is some given bounded function. Here again, the strong
maximum principle applies and provides that w∞(t, x) ≡ 0, a contradiction
together with w∞(0, x∞) ≥ ε. We deduce from the above argument that

lim
n→∞

sup
t≥0

x∈B(0,L)

vn(t, x) = 0, ∀L > 0.
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Using the above result, we will show that un → Λ
γ uniformly for t ≥ 0 and

locally in x ∈ R. Let L > 0 be given and assume that there exist ε > 0 and a
sequence (tn, xn) ∈ [0,∞)×B(0, L) such that∣∣∣∣Λγ − un(tn, xn)

∣∣∣∣ ≥ ε.
Next assume that xn → x∞ ∈ B(0, L) and assume, using parabolic estimates,
that un(tn + ., .)→ u∞ locally uniformly. Then one gets that∣∣∣∣Λγ − u∞(0, x∞)

∣∣∣∣ ≥ ε, (5.30)

while u∞ is a bounded entire solution of

(∂t − d∆− ce.∇)u∞(t, x) = Λ− γu∞(t, x).

Hence we obtain that u∞(t, x) ≡ Λ
γ , a contradiction with (5.30). This completes

the proof of Claim 5.3.

5.2 Proof of Theorem 2.4 (i)

We now turn to the proof of the inner spreading property stated in Theorem
2.4 (i). It is a direct consequence of the following proposition.

Proposition 5.4 Let κ > 0 be given. Let c ∈ [0, c∗) be given. Then there exists
ε̂ = ε̂(κ, c) > 0 such that for each U0 ∈ Mκ × (Mκ \ {0}), each x ∈ RN and
each e ∈ SN−1, we have

lim inf
t→∞

I(t, x+ cte;U0) ≥ ε̂.

The arguments used in the following proof are adapted from dynamical sys-
tem arguments. We refer for instance to Proposition 3.2 derived by Magal and
Zhao [22] (see also [28], the monograph [26] and the references cited therein).
Here we propose a proof based on parabolic regularity and weak disspativity as
stated in Theorem 2.2.
Proof. Consider κ̂ > 0 the constant defined in Theorem 2.2 associated to κ. Let
us argue by contradiction by assuming that there exists a sequence of initial data
{Um0 = (Sm0 , I

m
0 )}m≥0 ⊂Mκ×Mκ\{0}, {xm}m≥0 ⊂ RN and {em}m≥0 ⊂ SN−1

such that the sequence of corresponding solution denoted by (Sm, Im) satisfies

lim inf
t→∞

Im(t, xm + ctem) ≤ 1

m+ 1
, ∀m ≥ 0.

Let ε = min (ε(κ, c), ε(κ̂, c)) > 0 be the constant provided by Theorem 5.1 with
κ and κ̂. Recall that for each U0 ∈ Mκ × (Mκ \ {0}), each x ∈ RN and each
e ∈ SN−1, one has

lim sup
t→∞

I(t, x+ cte;U0) ≥ ε. (5.31)
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Next we set vm(t, x) = Im(t, xm+x+ ctem;Um0 ) and um(t, x) = Sm(t, xm+x+
ctem;Um0 ). Then there exists a sequence {tm}m≥0 tending to∞ and a sequence
{lm}m≥0 ⊂ (0,∞) such that for each m ≥ 0, it holds that

vm(tm, 0) =
ε

2
,

vm(t, 0) ≤ ε

2
∀t ∈ [tm, tm + lm],

vm(tm + lm, 0) ≤ 1

m+ 1
.

Up to a subsequence, one may assume that vm(t+tm, x)→ V∞(t, x) while um(t+
tm, x)→ U∞(t, x) locally uniformly. Furthermore the function V∞ satisfies

V∞(0, 0) =
ε

2
and V∞(t, 0) ≤ ε

2
∀t ∈ [0, l),

wherein we have set l = lim infm→∞ lm. On the other hand, one may assume
that em → e ∈ SN−1 as m → ∞ so that the functions U∞ and V∞ satisfy the
following system of equations

(∂t − ce.∇− d∆)U∞(t, x) = Λ− γU∞(t, x)− βU∞(t, x)V∞(t, x),

(∂t − ce.∇−∆)V∞(t, x) = [βU∞(t, x)− (γ + µ)]V∞(t, x).

If l <∞, one obtains that
V∞(l, 0) = 0,

so that V∞(t, x) ≡ 0, a contradiction together with the condition V∞(0, 0) = ε
2 .

Thus one obtains that l =∞. This means that lm →∞ as m→∞ and this
allows us to conclude that

V∞(t, 0) ≤ ε

2
∀t ∈ [0,∞). (5.32)

Now recall that functions (S∞, I∞) defined by

S∞(t, x) = U∞(t, x− cte) and I∞(t, x) = V∞(t, x− cte),

satisfies the system{
(∂t − d∆)S∞(t, x) = Λ− γS∞(t, x)− βS∞(t, x)I∞(t, x),

(∂t −∆) I∞(t, x) = [βS∞(t, x)− (γ + µ)] I∞(t, x).

Therefore, since I∞(0, x) 6≡ 0 and (S∞, I∞) ∈M κ̂×M κ̂, according to Theorem
2.2 we get

lim sup
t→∞

I∞(t, ct) ≥ ε.

Recalling that I∞(t, ct) ≡ V∞(t, 0), we have reached a contradiction together
with (5.32). This completes the proof of Proposition 5.4.

As a consequence of the above proposition, one obtains the following con-
vergence result.
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Lemma 5.5 Recalling (2.3) and (2.5), let us assume that R0 > 1. Let c ∈
(−c∗, c∗), e ∈ SN−1 and U0 = (S0, I0) ∈ X+ with I0 6≡ 0 be given. Let {tn}n≥0

be a given sequence tending to +∞ as n→∞. Then there exists a subsequence,
still denoted by {tn}n≥0, such that

lim
n→∞

(S, I) (t+ tn, x+ c (t+ tn) e;U0) = (S∞, I∞) (t, x− cet),

locally uniformly for (t, x) ∈ R × RN and where (S∞, I∞) is a bounded entire
solution of (1.1) such that

inf
(t,x)∈R×RN

I∞(t, x) > 0.

Proof. Let {tn}n≥0 be a given sequence tending to ∞. Consider the sequence
of map

Un(t, x) = S (t+ tn, x+ c(t+ tn)e) , Vn(t, x) = I (t+ tn, x+ c(t+ tn)e) .

Using parabolic estimates, one may assume that {(Un, Vn)} converges locally
uniformly for (t, x) ∈ R × RN towards some function pair {(U, V )}, an entire
solution of the system{

(∂t − ce.∇− d∆)U(t, x) = Λ− γU(t, x)− βU(t, x)V (t, x),

(∂t − ce.∇−∆)V (t, x) = [βU(t, x)− (γ + µ)]V (t, x).
(5.33)

Moreover, using Theorem 2.4 (i) (see also Proposition 5.4), one obtains that
there exists ε > 0 such that

inf
(t,x)∈R×RN

V (t, x) ≥ ε. (5.34)

The result follows by noticing that (S∞, I∞) (t, x) := (U, V ) (t, x + cet) is an
entire solution of (1.1).

The above lemma stresses the importance of bounded entire solutions of (1.1)
that are uniformly far from the disease free equilibrium. We refer to Definition
2.6 for the precise definition of uniformly persistent entire solutions. The study
of such solutions is the aim of Section 6 below.

5.3 Proof of Theorem 2.4 (ii)

In this section, we prove that the outer spreading property stated in Theorem 2.4
(ii) holds true. To that aim one can note that it becomes a direct consequence
of the following lemma.

Lemma 5.6 Let Assumption 6.1 be satisfied. Let U0 = (S0, I0) ∈ X+ be given
such that I0 6≡ 0 and I0 is compactly supported. Then for each α < N

2 the
following holds true:

lim
t→∞

sup
|x|≥c∗t−α ln t

[
I (t, x) +

∣∣∣∣S(t, x)− Λ

γ

∣∣∣∣] = 0,

wherein (S, I) denotes the solution of (1.1) with initial data U0.
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Proof. The proof of this result relies on estimate (4.19) provided in Lemma 4.1.
Indeed the function I satisfies the following differential inequality for all t ≥ 0
and x ∈ RN

∂tI −∆I ≤
[
(γ + µ)(R0 − 1) +Ke−γt

]
I,

wherein K > 0 is some constant depending upon ‖S0‖∞ (see (4.19)). Next it is
easy to check that the map

Î(t, x) := e(γ+µ)(R0−1)t exp

(
K

γ

(
1− e−γt

))
(T∆(t)I0) (x),

satisfies the equation{
[∂t −∆− ((γ + µ)(R0 − 1) +Ke−γt)] Î(t, x) = 0,

Î(0, x) = I0(x).

Hence the comparison principle applies and provides that I(t, x) ≤ Î(t, x) for
all t ≥ 0 and x ∈ RN .

On the other hand, if e ∈ SN−1 and c ∈ R are given, then for each t > 0 and
x ∈ RN we have∫

RN
e

(
− ‖x+ect−y‖2

4t

)
I0(y)dy ≤ e− c

2t
4 e−

c
2 (e,x)J(c),

wherein we have set

J(c) =

∫
RN

e
c
2 |y|I0(y)dy.

Recalling that I0 is compactly supported, this ensures that J(c) < ∞. As a
consequence of the above computations, one obtains that for each c ∈ R, each
e ∈ SN−1, each t > 0 and x ∈ RN :

I(t, x+ cet) ≤ e
(c∗)2−c2

4 t

(4πt)N/2
e
K
γ (1−e−γt)e−

c
2 (e,x)J(c).

Hence if α < N
2 then one obtains that for each x ∈ RN and each t > 0 such

that ‖x‖ ≥ c∗t− α ln t, one has

I(t, x) ≤ (4πt)
−N/2

e
K
γ (1−e−γt)t

αc∗
2 J(c∗),

and the result for the convergence of I follows.
The convergence for the S−component is a direct consequence from the one of
I. Indeed let α < N

2 be given and let us assume by contradiction that there exist
ε > 0, a sequence {tn}n≥0 ⊂ (0,∞) tending to∞ and a sequence {xn}n≥0 ⊂ RN
such that {

‖xn‖ ≥ c∗tn − α ln tn, ∀n ≥ 0,∣∣∣S(tn, xn)− Λ
γ

∣∣∣ ≥ ε, ∀n ≥ 0.

26



Let us now consider the sequence of maps Sn(t, x) = S(t + tn, x + xn) and
In(t, x) = I(t + tn, x + xn). Due to parabolic estimates, one may assume, up
to a subsequence, that they converge to some entire solution of (1.1) (S∞, I∞)
such that ∣∣∣∣S∞(0, 0)− Λ

γ

∣∣∣∣ ≥ ε. (5.35)

One the other hand, due to the above convergence for I one knows that I∞(0, 0) =
0 and the strong comparison principle ensures that I∞(t, x) ≡ 0. Finally the
function S∞ becomes an entire solution of equation

[∂t − d∆ + γ]S(t, x) = Λ,

a contradiction together with (5.35). This completes the proof of Lemma 5.6.

6 Uniformly persistent entire solutions

The aim of this section is to provide information about uniformly persistent
entire solutions of (1.1) (see Definition 2.6). Throughout this section we assume
that

Assumption 6.1 Recalling (2.3), we assume that R0 > 1.
This allows us to denote by (SE , IE), the unique strictly positive spatially ho-
mogeneous equilibrium point of (1.1), defined in (2.4).

Observe that under the above assumption, (SE , IE) is an example of uniformly
persistent entire solution of (1.1).

Before going to the study of such a class of entire solutions, let us first state
the following straightforward estimate.

Lemma 6.2 Let Assumption 6.1 be satisfied. Let (S, I) be a given uniformly
persistent entire solution of (1.1). Then it satisfies

Λ

γ + βi
≤ S(t, x) ≤ Λ

γ + βi
, ∀(t, x) ∈ R× RN ,

wherein we have set

i = inf
(t,x)∈R×RN

I(t, x), i = sup
(t,x)∈R×RN

I(t, x).

The proof of this estimate is straightforward.

6.1 The case d = 1

We now consider the spatio-temporal uniformly persistent entire solutions of
(1.1) in the case when d = 1. The following classification holds true.

Proposition 6.3 Let Assumption 6.1 be satisfied. Assume furthermore that
d = 1. Let (S, I) ≡ (S, I) (t, x) be a given uniformly persistent entire solution of
the system (1.1). Then we have (S, I)(t, x) ≡ (SE , IE).
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Proof. Let (S, I) ≡ (S, I) (t, x) be a given uniformly persistent entire solution
of the system (1.1). Due to Lemma 6.2 and Definition 2.6 there exists some
constant ε > 0 such that

ε ≤ S(t, x) ≤ ε−1, ε ≤ I(t, x) ≤ ε−1, ∀(t, x) ∈ R× RN . (6.36)

Consider the positive map g : (0,∞)→ R defined by g(x) = x− 1− lnx and let
us introduce the function W : R× RN → [0,∞) defined by

W (t, x) = g

(
S(t, x)

SE

)
+
IE
SE

g

(
I(t, x)

IE

)
.

Then one has

∂tW (t, x) =
1

SE

(
1− SE

S(t, x)

)
∂tS(t, x) +

1

SE

(
1− IE

I(t, x)

)
∂tI(t, x),

∇W (t, x) =
1

SE

(
1− SE

S(t, x)

)
∇S(t, x) +

1

SE

(
1− IE

I(t, x)

)
∇I(t, x),

∆W (t, x) =
1

SE

(
1− SE

S(t, x)

)
∆S(t, x) +

1

SE

(
1− IE

I(t, x)

)
∆I(t, x)

+
|∇S(t, x)|2

S(t, x)2
+
IE
SE

|∇I(t, x)|2

I(t, x)2
.

Hence straightforward algebraic manipulations yields for all (t, x) ∈ R× RN :

(∂t −∆)W (t, x) = − [γ + βIE ]
(S(t, x)− SE)

2

SES(t, x)
− |∇S(t, x)|2

S(t, x)2
− IE
SE

|∇I(t, x)|2

I(t, x)2
.

Recall now that due to (6.36), function W is uniformly bounded. One can now
apply a similar arguments as the ones developed in the proof of Proposition 4.3.
Let {(tn, xn)}n≥0 ⊂ R× RN be a given sequence such that

lim
n→∞

W (tn, xn) = sup
R×RN

W.

Consider the sequence of maps Un(t, x) = S(t + tn, xn + x), Vn(t, x) = I(t +
tn, xn + x) and Wn(t, x) = W (t + tn, xn + x). Up to a subsequence, one may
assume that Un → U and Vn → V locally uniformly for (t, x) ∈ R × RN .
Moreover one obtains that

Wn(t, x)→ Ŵ (t, x) ≡W [U, V ](t, x) locally uniformly,

while Ŵ (0, 0) = supR×RN W = supR×RN Ŵ .
As a consequence, we have

(∂t −∆) Ŵ (t, x) ≤ 0 and Ŵ (0, 0) = sup
R×RN

Ŵ .
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We therefore infer from the strong comparison principle that Ŵ (t, x) ≡ supR×RN Ŵ .
As a consequence of the above computations, we obtain that

∇U(t, x) ≡ ∇V (t, x) ≡ 0 and U(t, x) ≡ SE .

This implies that V (t, x) ≡ IE and therefore Ŵ (t, x) ≡ 0. This means that
supR×RN W = 0 and since W (t, x) ≥ 0 we conclude that W (t, x) ≡ 0. This
re-writes as S(t, x) ≡ SE while I(t, x) ≡ IE that completes the proof of the
result.

As a consequence of Lemma 5.5 and Proposition 6.3, one obtains the follow-
ing inner propagation result.

Corollary 6.4 Let Assumption 6.1 be satisfied. Assume that d = 1. Let c ∈
(−c∗, c∗), e ∈ SN−1 and U0 = (S0, I0) ∈ X+ with I0 6≡ 0 be given. Then the
following holds true:

lim
t→∞

(S, I) (t, x+ cte;U0) = (SE , IE) ,

locally uniformly for x ∈ RN .

Note that the proof of Corollary 2.8 follows from the above and Lemma 5.6.

6.2 Spatial ergodicity of uniformly persistent entire solu-
tions

We now come back to the general case d > 0. However we are not able to prove
a similar result than the one obtained in Proposition 6.3 for the particular case
d = 1.
This section is concerned with the proof of the following result.

Theorem 6.5 (Spatial ergodicity) Let Assumption 6.1 be satisfied. Let U =
(S, I) be a uniformly persistent entire solution of (1.1). Then for each contin-
uous function f ∈ C

(
R2,R

)
, one has

lim
R→∞

1

(2R)
N

∫
[−R,R]N

f (U(t, h)) dh = f (UE) ,

wherein we have set UE = (SE , IE) and where the above convergence holds
uniformly with respect to t ∈ R.

The proof of this result relies on the study of the action of the nonlinear
semiflow {T (t)}t≥0 - associated to System (1.1) - on an entire solution with
spatial shift. Since the semiflow {T (t)}t≥0 is not asymptotically compact when
dealing with the Banach space X, we will work with the compact-open topology.

Let U = (S, I) be a given uniformly persistent entire solution of System
(1.1). Consider the set

O =
⋃

t∈R, h∈RN
σh

(
S(t, .)
I(t, .)

)
⊂ X+.
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Here let us recall that σ denotes the spatial translation operator, namely σhϕ =
ϕ(.+ h) for each h ∈ RN and ϕ ∈ C

(
RN ,R2

)
. Let us now observe that due to

parabolic estimates, for each sequence {(tn, hn)}n≥0 ⊂ R × RN , the sequence

{Un(t, x) = U(t + tn, x + hn)}n≥0 is relatively compact into Ckloc
(
R× RN

)
for

each k ≥ 0. Thus, one can consider the k−independent set A ⊂ BUC∞
(
RN
)
;

the set of C∞−functions with all derivatives in X; defined by

A = OC
k
loc(R

N)
.

The above set is therefore a compact set for the topology of Cloc
(
RN ,R2

)
and uniformly bounded. As a consequence, endowed with the compact-open
topology, A is a metrizable compact set. To be more specific, we introduce the
distance dA on A defined by

dA (ϕ,ψ) = sup
x∈RN

e−‖x‖|ϕ(x)− ψ(x)|. (6.37)

We consider the metric space (A, dA) whose topology is equivalent to the compact-
open topology. Furthermore, the metric space (A, dA) is a compact and sepa-
rable metric space.

We now introduce the set M (A) of probability measures on A endowed
with the σ−algebra of Borel sets of (A, dA) denoted by B(A) in the sequel.
This space is endowed with the weak topology of the Banach space of the real
valued continuous functions on A denoted by C (A) endowed with the usual
supremum norm. Since A is a separable compact space, the topological space
M (A) becomes a compact Polish space. In addition, the so-called dual-bounded
Lipschitz metric on M(A) defined by

π (µ, ν) = sup
f∈C(A), ‖f‖Lip≤1

∣∣∣∣∫
A
fdµ−

∫
A
fdν

∣∣∣∣ , (6.38)

where ‖f‖Lip denotes the usual Lipschitz norm, allows to obtain an equivalent
topology (we refer for instance to [4]). Note that the compactness of the metric
space (M(A), π) is a consequence of the compactness of A and the Prokhorov
theorem (we also refer to [4]).

With this material and notation, we re-formulate Theorem 6.5 as follows.

Theorem 6.6 Let Assumption 6.1 be satisfied. Let U = (S, I) be a uniformly
persistent entire solution of (1.1). Then one has UE ∈ A and

lim
R→∞

π
(
µRt , δUE

)
= 0,

where the above convergence holds uniformly for t ∈ R and wherein µRt ∈M (A)
is defined by

µRt =
1

(2R)
N

∫
[−R,R]N

δσhU(t,.)dh.
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In order to prove this theorem we define the semiflow T ] : [0,∞) ×M(A) →
M(A) by

T ]t µ (B) = µ
(
T (t)−1B

)
, ∀t ≥ 0, µ ∈M(A), B ∈ B(A).

Here {T (t)}t≥0 denote the nonlinear semiflow associated to (1.1).
We also introduce the RN−translation group action on M(A), denoted by σ]

and defined by (
σ]h

)
µ := µ (σ−h.) , ∀h ∈ RN , µ ∈M(A).

Then the following result holds true.

Lemma 6.7 The following holds true:

(i) T ] satisfies:

T ]0 = IM(A),

T ]t+s = T ]t T
]
s , ∀t, s ≥ 0;

(ii) The RN−translation action commutes with T ], namely

σ]h ◦ T
]
t = T ]t ◦ σ

]
h, ∀t ≥ 0, h ∈ RN ;

(iii) The extended semiflow (t, h, µ) → σ]h ◦ T
]
t µ is continuous from [0,∞) ×

RN ×M(A) into M(A)

The proof of this lemma is straightforward.
Let us define the closed space P (A) ⊂M(A) as

P (A) =
{
µ ∈M(A) : σ]hµ = µ, ∀h ∈ RN

}
.

This corresponds to the set of translation invariant probability measures in
M (A).
In order to prove Theorem 6.6 we firstly derive the following lemma.

Lemma 6.8 Let t ∈ R be given. Let {Rn}n≥0 be a sequence tending to ∞
as n → ∞. Let {τn}n≥0 ⊂ R be a given sequence. Then, possibly up to a
subsequence, there exists µ∗ ∈ P(A) such that

lim
n→∞

π
(
µRnt+τn , µ

∗
)

= 0.

Proof. Let us first notice that due to Prokhorov theorem, one may assume, that
up to a subsequence, µRnt+τn → µ∗ ∈ M(A) in (M(A), π). To conclude the proof
of Lemma 6.8, it is sufficient to prove that µ∗ ∈ P(A).
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To that aim let f ∈ C (A) and x ∈ RN be given. On the one hand note that
one has∫

A
f(u)

(
σ]xµ

∗) (du) = lim
n→∞

1

(2Rn)
N

∫
[−Rn,Rn]N

f (σh+xU(t+ τn, .)) dh.

On the other hand one has for each R > 0 and each τ ∈ R:∣∣∣∣∫
A
f(u)

(
σ]xµ

R
τ

)
(du)−

∫
A
f(u)

(
µRτ
)

(du)

∣∣∣∣ ≤ ‖f‖∞
(
x+ [−R,R]N

)
∆̂[−R,R]N

(2R)N
.

Here ∆̂ denotes the usual symmetric difference of sets. Since the right-hand side
of the above expression converges to zero as R →∞ uniformly with respect to
τ ∈ R, the result follows.

In view of Lemma 6.8, the proof of Theorem 6.6 relies on the study of the
dynamical system, still denoted by T ], and defined as T ] : [0,∞)×P(A)→ P(A),
the restriction of T ] to P(A). Our next result provides a classification of the
entire solutions for the dynamical system T ] on P (A). It reads as follows.

Theorem 6.9 The following holds true:

(i) The equilibrium point UE =

(
SE
IE

)
satisfies UE ∈ A.

(ii) Let {µt}t∈R ⊂ P(A) be a given continuous entire solution of T ], that is

µt+s = T ]t µs, ∀s ∈ R, t ≥ 0.

Then µt ≡ δUE .

As a consequence of Theorem 6.9 we obtain the following global asymptotic
stability result.

Corollary 6.10 For each µ ∈ P (A), one has

lim
t→∞

π
(
T ]t µ, δUE

)
= 0.

The proof of Theorem 6.9 is based on the construction of a suitable Lyapunov
functional. Such an idea was used by Zelik in [33]for formally gradient systems.
Before proceeding to the proof of this result, let us first state the following.

Lemma 6.11 The map (t, U) → (T (t)U) =

(
S(t, .;U)
I(t, .;U)

)
from [0,∞) × A into

A is continuous. For each U ∈ A, the map (t, x) → T (t)U(x) belongs to
C1,2

(
[0,∞)× RN ,R2

)
and there exists some constant M > 0 such that for

each t ≥ 0, each x ∈ RN and each U ∈ A, we have∥∥∥∥∂t(S(t, x;U)
I(t, x;U)

)∥∥∥∥
∞

+
∑
|α|≤2

∥∥∥∥Dα

(
S(t, x;U)
I(t, x;U)

)∥∥∥∥
∞
≤M.
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The proof of this lemma is straightforward. It is a direct consequence of usual
parabolic estimates by recalling that A is a bounded subset of BUC3

(
RN ,R2

)
.

We are now able to deal with the proof of Theorem 6.9. To that aim let us
consider the map V : (0,∞)× (0,∞)→ [0,∞) defined by

V

(
x
y

)
= g

(
x

SE

)
+
IE
SE

g

(
y

IE

)
,

wherein function g : (0,∞) → [0,∞) is defined by g(x) = x − 1 − lnx. Let
x0 ∈ RN be given. Next, consider the map Lx0 : P(A)→ R defined by

Lx0
[µ] =

∫
A
V [δx0

◦ U ]µ(dU), ∀µ ∈ P(A).

Here δx0
denotes the Dirac delta function at x0.

Recalling that A is constructed using a uniformly persistent entire solution of
System (1.1), note that the map U 7→ V [δx0 ◦ U ] is continuous from A into R.
So that the map Lx0

is continuous on P(A). Then the following lemma holds
true.

Lemma 6.12 For each x0 ∈ RN and each µ ∈ P(A), the map t 7→ Lx0(t)
defined by

Lx0
(t) = Lx0

[
T ]t µ

]
, ∀t ≥ 0,

does not depend on x0 and it is decreasing with respect to time. Moreover one
has for each 0 ≤ t1 ≤ t2:

L
[
T ]t2µ

]
− L

[
T ]t1µ

]
=−

∫ t2

t1

dt

∫
A

[γ + βIE ]
(S(t, x0;U)− SE)

2

SES(t, x0;U)
µ(dU)

−
∫ t2

t1

dt

∫
A

{
d
|∇S(t, x0;U)|2

S(t, x0;U)2
+
|∇I(t, x0;U)|2

I(t, x0;U)2

}
µ (dU) .

(6.39)

Proof. To see this, let us first re-write Lx0

[
T ]t µ

]
as

Lx0

[
T ]t µ

]
=

∫
A
V [T (t)U(x0)]µ(dU).

Then since µ ∈ P(A), one gets for each h ∈ RN :

Lx0

[
T ]t µ

]
=

∫
A
V [σhT (t)U(x0)]µ(dU) = Lx0+h

[
T ]t µ

]
.

This implies that the map t 7→ Lx0

[
T ]t µ

]
does not depend on x0.

Next let us compute the time derivative of the above quantity. This yields

dL(t)

dt
=

∫
A

[
1

SE

(
1− SE

S(t, x0;U)

)
∂tS(t, x0;U) +

1

SE

(
1− IE

I(t, x0;U)

)
∂tI(t, x0;U)

]
µ (dU) .
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Using the definition of the semiflow T , simple computations lead us to

dL(t)

dt
=

d

SE

∫
A

(
1− SE

S(t, x0;U)

)
∆S(t, x0;U)µ(dU)

+
1

SE

∫
A

(
1− IE

I(t, x0;U)

)
∆I(t, x0;U)µ(dU)

− [γ + βIE ]

∫
A

(S(t, x0;U)− SE)
2

SES(t, x0;U)
µ(dU)

Let us now show that for each i = 1, .., N we have∫
A

1

SE

(
1− SE

S(t, x0;U)

)
∂2
xiS(t, x0;U)µ(dU) = −

∫
A

|∂xiS(t, x0;U)|2

S(t, x0;U)2
µ(dU).

To prove this result, let us recall that µ is invariant with respect to translation,
that is σ]hµ ≡ µ for all h ∈ RN . Therefore one obtains∫
A

1

SE

(
1− SE

S(t, x0;U)

)
∂2
xiS(t, x0;U)µ(dU)

= lim
h→0

∫
A

1

SE

(
1− SE

S(t, x0;U)

)
∂xiS(t, x0 + hei;U)− ∂xiS(t, x0;U)

h
µ (dU)

= lim
h→0

1

h

∫
A

1

SE

[(
1− SE

S(t, x0 − hei;U)

)
−
(

1− SE
S(t, x0)

)]
∂xiS(t, x0;U)µ (dU)

= lim
h→0

1

h

∫
A

[
1

S(t, x0;U)
− 1

S(t, x0 − hei;U)

]
∂xiS(t, x0;U)µ (dU) ,

and the result follows.
We are now able to complete the proof of Theorem 6.9.

Proof of Theorem 6.9. Using Lemma 6.12, one can first prove Theorem 6.9 (i).
To do so, let µ ∈ P(A) be given such that there exists 0 < t1 < t2 with

L
[
T ]t2µ

]
= L

[
T ]t1µ

]
.

Then we claim that we have supp µ ⊂ UE and µ = δUE that completes the
proof of Theorem 6.9 (i). To prove this claim, note that due to (6.39), for
(dt⊗ µ)−almost every (t, U) ∈ (t1, t2)×A we have

S(t, x;U) ≡ SE , ∇I(t, x;U) ≡ 0,

so that I(t, x;U) = IE (see [33] for detailed arguments). Hence UE ∈ A and
µ ({UE}) = 1. Since {UE} is a closed subset of A, using [6], one concludes that
µ = δUE and the result follows.

To complete the proof of (ii), let us consider a time continuous entire orbit
{µt}t∈R of T ] in P (A). Then due to the above computations, the map t→ L [µt]
is decreasing on R. Moreover if {sn}n≥0 ⊂ R is a given non-increasing sequence
tending to −∞. Up to a subsequence one may assume that µsn → µ∗ weakly
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and the above computations implies that supp µ∗ ⊂ {UE}. As a consequence
of the decreasing property of t→ L [µt] one obtains that

L [µt] ≤ L [µ∗] , ∀t ∈ R.

Since supp µ∗ ⊂ {UE} and recalling the definition of V , we obtains that L [µ∗] =
0 so that

L [µt] = 0, ∀t ∈ R.
This re-writes as ∫

A
V [δx ◦ U ]µt(dU) = 0, ∀t ∈ R, ∀x ∈ RN .

Similarly as the above argument, one obtains that µt = δUE is the Dirac delta
measure at UE for all t ∈ R. This completes the proof of Theorem 6.9.

We now come back to the proof of Theorem 6.6 and we consider for each
R > 0, the family {µRt }t∈R ⊂M(A) defined by

µRt =
1

(2R)N

∫
[−R,R]N

σ]hδU(t,.).

We will now study this trajectory and the following lemma holds true.

Lemma 6.13 The following holds true:

(i) For each R > 0 the map t 7→ µRt is an entire solution of T ] in M (A).

(ii) There exists some constant K > 0 such that for each R > 0 and (t, s) ∈ R2:

π
(
µRt , µ

R
s

)
≤ K|t− s|.

Proof. Let R > 0 be given. Let t ≥ 0 and s ∈ R be given. Let f ∈ C (A;R) be
given. Then one has∫

A
f(U)

(
T ]t µ

R
s

)
(dU) =

∫
A
f (T (t)U)µRs (dU)

=
1

(2R)N

∫
[−R,R]N

f (σhT (t)U(s, .)) dh

=
1

(2R)N

∫
[−R,R]N

f (σhU(t+ s, .)) dh

=

∫
A
f(U)µRt+s(dU).

Thus (i) follows.
Now in order to prove (ii), let (t, s) ∈ R be given and let f ∈ Lip (A;R) be
given. Then one has∣∣∣∣∫
A
f(U)µRt (dU)−

∫
A
f(U)µRs (dU)

∣∣∣∣ ≤ 1

(2R)N

∫
[−R,R]N

|f (U(t, h+ .))− f (U(s, h+ .))|

≤ Lip(f)
1

(2R)N

∫
[−R,R]N

dA (U(t, h+ .), U(s, h+ .)) dh.
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Recalling the definition of dA in (6.37), we obtains that

dA (U(t, h+ .), U(s, h+ .)) ≤ sup
x∈RN

|U(t, x)− U(s, x)| .

Finally note that Lemma 6.11 provides the existence of some constant M > 0
such that

‖∂tU(t, .)‖∞ ≤M, ∀t ∈ R.

Using this last estimates, one obtains∣∣∣∣∫
A
f(U)µRt (dU)−

∫
A
f(U)µRs (dU)

∣∣∣∣ ≤ Lip(f)M |t− s|.

Recalling the definition of π in (6.38), the results follows.
In order to complete the proof of Theorem 6.6, let {Rn}n≥0 be a sequence

tending to ∞ and let {τn}n≥0 ⊂ R be given. Consider the sequence of function
{µn : R→M(A)}n≥0 defined by

µn(t) = µRnt+τn .

Then due to Lemma 6.13 and Ascoli theorem, one may assume that, up to
a subsequence, µn(t) → µ(t) as n → ∞, for the topology of Cloc (R,M(A)).
Furthermore due to Lemma 6.8, t → µ(t) is an entire orbit of T ] in P(A).
Therefore Theorem 6.9 and provides that µ(t) ≡ δUE . This completes the proof
of Theorem 6.6.

6.3 Time-averaging property

The aim of this section is to prove the following result.

Theorem 6.14 (Time ergodicity) Let Assumption 6.1 be satisfied. Let U =
(S, I) be a uniformly persistent entire solution of (1.1). Then for each contin-
uous function f ∈ C

(
R2,R

)
, one has

lim
T→∞

1

2T

∫ T

−T
f (U(t, x)) dt = f (UE) ,

wherein we have set UE = (SE , IE) and where the above convergence holds
uniformly with respect to x ∈ RN .

To prove this result we shall use the same notation and materials as in the
previous section. Consider the set of time-invariant measures defined by

T(A) =
{
µ ∈M(A) : T ]t µ = µ, ∀t ≥ 0

}
.

Using similar arguments as the ones developed in Section 6.2, in order to prove
Theorem 6.14 it is sufficient to prove the following result.
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Proposition 6.15 The following equality holds true:

T(A) = {δUE} .

Before proving this result, let us first recall that due to Theorem 6.6, UE ∈ A
and {δUE} ⊂ T(A). In order to prove the converse inclusion, consider the
functional W : RN ×M(A)→ R defined by

K [x, µ] =

∫
A
W (δx ◦ U)µ(dU),

wherein the function W is defined by

W (x, y) = dg

(
x

SE

)
+
IE
SE

g

(
y

IE

)
,

while the function g : (0,∞)→ [0,∞) is given by g(x) = lnx− x+ 1.
Our first lemma deals with the sub-harmonicity of K as a function of x ∈ RN

when µ ∈ T(A).

Lemma 6.16 Let µ ∈ T(A) be given. Then one for each t ≥ 0:

K[x, T ]t µ] ≡ K[x, µ]. (6.40)

Moreover x 7→ K[x, µ] is a C2 and bounded function on RN that satisfies

∆K[x, µ] ≥ 0, ∀x ∈ RN . (6.41)

Proof. Let us first notice that (6.40) directly follows from the definition of T(A)
and of the map K. The regularity of K with respect to x follows from Lemma
6.11, while its boundedness is a consequence of the definition of uniformly per-
sistent entire solution. Thus it remains to prove (6.41). To do so, let t0 > 0 be
given. Then one has

∇K
[
x, T ]t0µ

]
=

∫
A

d

SE
g′
(
S(t0, x;U)

SE

)
∇S(t0, x;U)µ(dU)

+

∫
A

1

SE
g′
(
I(t0, x;U)

IE

)
∇I(t0, x;U)µ(dU).

Then one gets

∆K
[
x, T ]t µ

]
=

∫
A

d

S2
E

g′′
(
S(t0, x;U)

SE

)
|∇S(t0, x;U)|2 µ(dU)

+

∫
A

1

IISE
g′′
(
I(t0, x;U)

IE

)
|∇I(t0, x;U)|2 µ(dU)

+

∫
A

d

SE
g′
(
S(t0, x;U)

SE

)
∆S(t0, x;U)µ(dU)

+

∫
A

1

SE
g′
(
I(t0, x;U)

IE

)
∆I(t0, x;U)µ(dU).
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Hence this leads us to

∆K
[
x, T ]t µ

]
=

∫
A

[
d
|∇S|2

S2
+
IE
SE

|∇I|2

I2

]
µ(dU)

+
1

SE

∫
A

[γ + βIE ]
(S(t, x0;U)− SE)

2

SES(t, x0;U)
µ(dU)

+
1

SE

∫
A

[
g′
(
S

SE

)
∂tS + g′

(
I

IE

)
∂tI

]
µ(dU).

Note that the last two terms in the above expression vanish since µ ∈ T(A).
Indeed let us for instance notice that

1

SE

∫
A
g′
(
S

SE

)
∂tSµ(dU) =

∫
A
∂tg

(
S

SE

)
µ(dU)

= lim
h→0

1

h

[∫
A
g

(
S(t0 + h, x;U)

SE

)
− g

(
S(t0, x;U)

SE

)
µ(dU)

]
= 0.

The same argument applies to the other term.
Finally one obtains that

∆K
[
x, T ]t µ

]
=

∫
A

[
d
|∇S|2

S2
+
IE
SE

|∇I|2

I2

]
µ(dU)

+
1

SE

∫
A

[γ + βIE ]
(S(t, x0;U)− SE)

2

SES(t, x0;U)
µ(dU),

(6.42)

and the result follows.
It remains to prove Proposition 6.15.

Proof of Proposition 6.15. Let µ ∈ T(A) be given. Since the map x→ K[x, µ]
is uniformly bounded on RN , there exists a sequence {xn}n≥0 ⊂ RN such that

lim
n→∞

K [xn, µ] = sup
x∈RN

K[x, µ].

Consider now the sequence of map Kn[x, µ] = K [x+ xn, µ]. Then one has

Kn[x, µ] ≡ K
[
x, σ]xnµ

]
,

while
sup
RN

K[., µ] = lim
n→∞

Kn[0, µ].

On the other hand, up to a subsequence, one may assume σ]xnµ → µ̂ ∈ T(A)
when n→∞. This implies that

sup
RN

K[., µ] = K[0, µ̂] and K[x, µ̂] ≤ K[0, µ̂], ∀x ∈ RN .
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Now according to Lemma 6.16, the function x 7→ K[x, µ̂] is bounded and sub-
harmonic on RN and achieves its maximum value at x = 0. The strong el-
liptic maximum principle implies that K[x, µ̂] ≡ K[0, µ̂] and therefore that
∆K[x, µ̂] ≡ 0. Finally (6.42) completes the proof of Proposition 6.15.
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