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Abstract

This work is devoted to the study of an integro-differential system
of equations modelling the genetic adaptation of a pathogen by taking
into account both mutation and selection processes. First we study the
asymptotic behaviour of the system and prove that it eventually converges
to a stationary state. Next we more closely investigate the behaviour of
the system in the presence of multiple evolutionary attractors. Under
suitable assumptions and based on a small mutation variance asymptotic,
we describe the existence of a long transient regime during which the
pathogen population remains far from its asymptotic behaviour and highly
concentrated around some phenotypic value that is different from the one
described by its asymptotic behaviour. In that setting, the time needed for
the system to reach its large time configuration is very long and multiple
evolutionary attractors may act as a barrier of evolution that can be very
long to bypass.
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1 Introduction

The model. In this note we investigate the behaviour of the following nonlocal
system of equations

dU(t)

dt
= Λ− µuU(t)− U(t)

∫
RN

β(y)L [v(t, .)] (y)dy, t > 0,

∂v(t, x)

∂t
= β(x)U(t)L [v(t, .)] (x)− µvv(t, x), t > 0, x ∈ RN ,

(1.1)

wherein L denotes the integral operator

L [v(t, .)] (x) =

∫
RN

J(x− y)r(y)v(t, y)dy. (1.2)

This model was proposed by Iacono et al. in [13] in a slightly more com-
plex setting with a focus on plant epidemiology and pathogen adaptation. The
authors studied in particular the impact of the introduction of resistant plants
on the plant-pathogen system using various indicators. Moreover this model
follows the population genetics approach (rather than the classical adaptive dy-
namics one) advocated in [7]. In this approach, epidemiological and evolution
processes may occur on the same time scale, a mutation kernel is introduced,
and multiple pathogen strains are considered simultaneously. However here, as
in e.g. [3], these multiple strains will be described with a continuous variable
rather than a discrete one.

More precisely in the system (1.1), t ≥ 0 denotes the time and x ∈ RN
denotes a phenotypic trait value and can be treated as a ”label” of the genotype
(or strain) of the pathogen. The phenotypic trait value x is assumed to be pos-
sibly multi-dimensional, namely N ≥ 1 is a fixed integer. The state variables
U = U(t) and v = v(t, x) denote the density of healthy and infected plants at
time t with a pathogen phenotype x respectively. Healthy plants renew with a
constant influx Λ > 0 and exit with the natural death rate µu > 0. Infected
plants exit at rate µv > 0. Here Model (1.1)-(1.2) takes into account a contin-
uum of different pathogen strains indexed by x ∈ RN . This modelling approach
allows to address the issue of pathogen adaptation to quantitative resistance for
example: all the pathogen strains cause infection but each with its own level of
quantitative pathogenicity [15]. In that context, each pathogen strain is char-
acterized by its phenotypic value x which affects the life-history traits of the
pathogens expressed during the host-pathogen interaction: infection efficiency
β(x) and production rate r(x). The evolution in the space of phenotypic values
is modelled by an integral operator with kernel J(x − y) describing mutations
from a pathogen strain with phenotypic value y ∈ RN to another one with
phenotypic value x ∈ RN .

Some properties of System (1.1)-(1.2) (written in a more general form) have
been investigated by Djidjou-Demasse et al. in [9]. The authors have studied
the existence and uniqueness of an endemic equilibrium. The profile of this
endemic equilibrium point in the space of phenotypic values has been described
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when the mutation kernel J depends on a small positive parameter ε << 1 and
is highly concentrated with scaling form

Jε(x) =
1

εN
J
(x
ε

)
. (1.3)

The analysis provided in the aforementioned work relies on the properties of the
so-called fitness function Ψ defined, in the setting of Problem (1.1)-(1.2), by

Ψ(x) = β(x)r(x),

that allows to take into account evolutionary interactions between efficiency and
production rate of the pathogens. Here when ε > 0 is very small then, under
reasonable and rather generic assumptions, the endemic equilibrium concen-
trates on the set S of phenotypic values where the fitness function reaches its
global maximum. Following the classical adaptive dynamics theory [8, 12, 17],
this set S is referred to as the set of Evolutionary Attractors (EAs for short).
Though several EAs may exist, in rather general situations the endemic equilib-
rium concentrates on a single ”strongest” phenotypic value x̂ ∈ S maximizing
the fitness function. Thus in [9] the authors defined a suitable order relation
on the EAs-set that allows to identify this ”strongest” phenotypic value (or
pathogen strain) when the fitness function Ψ has at least two global maximum
points. It roughly corresponds to the maximum with the flattest fitness shape.

Concentration properties of steady state solutions for nonlocal mutation se-
lection models of ecological problems with respect to a continuous phenotypic
trait have already been investigated, see for instance [2, 3, 4, 6] and references
cited therein. In these works, the existence of stationary solutions is obtained
using the spectral properties of some linear operators (infinite dimensional ver-
sion of Perron-Frobenius Theorem).

For our model, as in [6], only a single component of the population is likely
to mutate, and the existence of stationary solutions is directly related to the
spectral properties of some linear operator using again the Perron-Frobenius
like Theorem. In [4] such a spectral argument is coupled with a fixed point
argument to study the properties of steady states while [3] studies the large
time asymptotic of some nonlinear problem with concentration effect for small
mutation parameter. Moreover, for a nonlocal mutation selection model, a
time asymptotic convergence towards steady state solutions with concentration
properties has been studied in [2].

In this work we shall study some dynamical properties of Problem (1.1)-(1.2).
We shall first focus on the asymptotic behaviour t → ∞ of the model. Then
we shall describe some situations where this asymptotic behaviour is reached
after a long transition period. Unlike the classical adaptive dynamics theory that
focuses on the asymptotic behaviour of the evolutionary problem, the population
genetics modelling approach allows to take into account the transient dynamics
of the solutions. This analysis of the transient behaviour will be performed
using the scaling form (1.3) for the mutation kernel with small ε.
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Applications and numerical simulations. A practical application we have
in mind concerns disease control in agriculture. Indeed, it is now possible to
devise disease resistant varieties. The development of a resistant variety is
usually achieved within 5 to 10 years, while the resistance effectiveness turns
out to be generally bypassed within 5 years [23]. A natural and important
question is to understand how to extend and maximize the durability of the
resistant variety. The purpose of the analysis performed in this note is to shed
some light on how using multiple EAs as an evolution barrier can prevent the
pathogen from adaptation during a very long period of time.

To further motivate our analysis, we consider two host populations (1) and
(2) associated with pathogen fitness function Ψ1(x) and Ψ2(x) respectively.
When well mixed with proportion χ ∈ (0, 1) of the first population and (1− χ)
for the second host population, the global pathogen fitness of the environment
corresponds to

Ψ(x) = χΨ1(x) + (1− χ)Ψ2(x), ∀x ∈ RN . (1.4)

Typically the functions Ψ1 and Ψ2 exhibit a single peak, meaning that the
adaptation of the pathogen on the host populations (1) and (2) corresponds to
a single phenotype value which may differ for each host. Therefore the global
landscape fitness typically displays two peaks (adaptive fitness landscape) with
possibly different levels, depending on the proportion χ.

Let us display some numerical simulations of the one-dimensional model
(1.1)-(1.2). In order to illustrate different possible configurations for the fitness
function, Ψ, and their consequences on the dynamical behaviour for the solutions
of (1.1)-(1.2) we choose

Ψ1(x) =

{
− 1

2 sin (a(x− 2)) if x ∈
[
2− π

a , 2
]
,

0 else,

Ψ2(x) =

{
2(x− 2)(3− x) if x ∈ [2, 3],

0 else,

wherein a > 0 is a parameter.
When χ 6= 1

2 then the fitness function Ψ defined in (1.4) has a single global
maximum achieved on a unique EA, see Figure 1. In that case the solution
of (1.1)-(1.2) rapidly stabilizes on the unique endemic stationary state that is
highly concentrated, when ε << 1, on the unique EA.

When χ = 1
2 , function Ψ has two global maxima at x1 = 2− π

2a and x2 = 5
2 .

In that particular case, the dynamical behaviour of the solutions of (1.1)-(1.2)
is much more complicated involving a possibly long transient behaviour.

Figure 2 corresponds to the generic case when Ψ′′(x1) 6= Ψ′′(x2) with a = 2.
The initial pathogen population is supported around x2. Then the solution
exhibits first a transient concentration of the pathogen population around x2

during a long time interval. After this transient stage, the pathogen population
shifts and concentrates around the ’stronger’ phenotypic value x1, the flattest
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Figure 1: Fast convergence of the solutions of System (1.1)-(1.2) towards the
asymptotic configuration. Parameter values are: χ = 0.6 and a = 2 (fitness
function), Λ = 10, µ = 1, µv = 1.05, β ≡ 1, J is the standard normal distri-
bution. Initial populations are U0 = Λ/µ and v0 a Gaussian function. (Top)
The fitness function Ψ and the density of infected population at time t = 0.
(Left) Time evolution of the infected population with ε = 0.04. (Right) Time
evolution of the infected population with ε = 0.02.
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peak, for which Ψ′′(x1) < Ψ′′(x2). Dividing ε by two roughly multiply the
duration of the transient stage by two. From numerical simulations, the duration
of the transient stage is somehow proportional to 1

ε when ε << 1.

Figure 2: Slow dynamics behaviour of System (1.1)-(1.2) towards the asymptotic
configuration. Parameter values are as in Figure 1 except χ = 1/2. (Top)
The fitness function Ψ and the density of infected population at time t = 0.
(Left) Time evolution of the infected population with ε = 0.04. (Right) Time
evolution of the infected population with ε = 0.02.

Finally, Figure 3 corresponds to the case a = 2
√

2 when the derivatives
Ψ(n)(x1) and Ψ(n)(x2) do not differ for n = 0, 1, 2, 3 and Ψ(4)(x1) > Ψ(4)(x2) =
0. Again, after some long transient stage, the pathogen will shift from the
phenotypic value x1 to value x2, with an increased transient time as ε decreases.
Here dividing ε by 2 roughly multiplies the duration of the transient regime by
8. For this situation, x1 again corresponds to the ’stronger’ phenotypic value
according to the results in [9]. Note that x1 corresponds to the flatter peak since
Ψ(x1 + h) = Ψ(x2 + h) + 1

4!Ψ
(4)(x1)h4 + o(h4) when h→ 0 with Ψ(4)(x1) > 0.

From numerical simulations, in that particular situation and in contrast to the
situation presented in Figure 2, the duration of the transient regime seems to
depend nonlinearly upon ε as 1

ε3 when ε << 1.
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Figure 3: Slow dynamics behaviour of System (1.1)-(1.2) towards the asymptotic
configuration. Parameter values are as in Figure 1 except χ = 1/2. (Top)
The fitness function Ψ and the density of infected population at time t = 0.
(Left) Time evolution of the infected population with ε = 0.04. (Right) Time
evolution of the infected population with ε = 0.02.
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Aims. In this article we shall study the situation illustrated by Figure 3 in
which the transient regime is very long as ε becomes small and where the EA x2

acts as an evolution barrier during this long transient period. The precise math-
ematical justification of such a behaviour involving slow motion regime around
x2 when ε << 1 is our main objective. We shall also focus on estimating the
duration of this transient regime as a function of ε << 1. Such a phenomenon
is usually referred to as a metastable dynamics whose understanding has at-
tracted a lot of interest. Among others, let us mention the slow motion shock
layer for viscous conservation laws [14, 20, 21, 16] and phase transition problems
described by the Allen-Cahn equation for which we refer the readers to [5, 11])
and by the Cahn-Hilliard equation for which we refer to [1, 19].

The dynamical behaviour of System (1.1)-(1.2) is somehow reminiscent of the
so-called ’survival of the flattest’ phenomenon observed in quasi-species models
of evolution: genotypes corresponding to flatter regions of the fitness function
are more robust to high rates of mutations [22]. With an initial infected pop-
ulation concentrated around a narrower peak of the fitness function, x2, the
population will shift towards the flatter peak, x1. The time needed to shift de-
creases as ε increases. Indeed, larger values of ε correspond to mutants exploring
a larger portion of the phenotype space, which allows the population to cross
the fitness barrier. This mechanism may explain the metastability observed
in artificial and natural evolution [18]. Note however that, in contrast with
quasi-species models, for our system the infected population cannot eventually
concentrate around a strictly lower fitness peak even if this peak is broader (see
[9]).

This work is organized as follows. In Section 2 we state and discuss the main
results that will be obtained in this work: (i) the large time dynamics and (ii)
the transient behaviour around a quasi-equilibrium. Section 3 is devoted to the
proof of the first main result, the asymptotic behaviour of System (1.1)-(1.2).
Section 4 completes the proof of the main results that deal with the transient
behaviour of System (1.1)-(1.2).

2 Main results

In this section we shall state the main results that will be discussed in this
note. Before going further we first reformulate Problem (1.1)-(1.2) to introduce
a self-adjoint mutation operator. To that aim we consider the functions

ṽ(t, x) :=

√
r(x)

β(x)
v(t, x), Θ(x) =

√
r(x)β(x), and β̃(x) :=

√
β(x)

r(x)
.

Hence omitting the tilde for notational simplicity and setting µu = 1, µv = µ >
0, Problem (1.1)-(1.2) – with J = Jε – re-writes

dU(t)

dt
= Λ− U(t)− U(t)

∫
RN

β(x)Θ(x)Jε ∗ (Θv(t, ·))(x)dx,

∂v

∂t
(t, x) = U(t)Θ(x)Jε ∗ (Θv(t, ·))(x)− µv(t, x),

(2.5)
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wherein the symbol ∗ denotes the convolution product on RN . Throughout
this work, instead of Ψ, function Θ =

√
Ψ will be referred below as the fitness

function (i.e. Θ(x) is the fitness of the pathogen strain x).
We first describe the large time behaviour of the above system of equations

for suitable non-negative initial data (U0, v0). To state our first main result, we
shall make the following assumption.

Assumption 2.1 We assume that Λ and µ are positive parameters and µ ≥ 1.
The positive function β is assumed to be bounded and to belong to L2(RN ) ∩
C0
(
RN
)

while the function Θ is positive and continuous on RN with Θ(x)→ 0
as |x| → ∞.
The mutation kernel J ∈ L1(R) ∩ L∞(R) satisfies∫

R
J(x)dx = 1, J(x) > 0 and J(−x) = J(x) a.e. in RN .

Now fix ε > 0 and consider the bounded linear operator L = Lε on Lp(RN )
for any p ∈ [1,∞) defined by

Lε[ϕ](x) =

∫
RN

Θ(x)Jε(x− y)Θ(y)ϕ(y)dy. (2.6)

Here Jε is defined in (1.3). Under assumption 2.1, for each ε > 0 and p ∈ [1,∞),
this bounded linear operator is positive, compact and irreducible on Lp(RN ) and
it is a self-adjoint operator in L2(RN ). As a consequence it admits a spectral
decomposition with positive eigenvalues {λεn}n≥1 such that

λε1 > λε2 ≥ λε3 ≥ · · · ≥ λεn with λεn → 0 as n→ +∞.

The corresponding set of eigenvectors {ϕεn}n≥1 forms a Hilbert basis of L2(RN )

and the principal eigenvector ϕε1 is positive on RN . Here one may keep in mind
that throughout this note, one has assumed that ‖ϕεn‖L2(RN ) = 1, ∀n ≥ 1, ε >

0. Moreover one may also notice that, since J ∈ L1(RN ) ∩ L∞(RN ) and since
Θ is bounded, one also has ϕεn ∈ ∩p∈[1,∞)L

p(RN ), for any n ≥ 1 and ε > 0.
Using the above assumption and the subsequent notations we are now able

to discuss the large time behaviour of (2.5). This analysis is related to the
threshold numbers Rε0,j defined by

Rε0,j =
Λ

µ
λεj , j = 1, 2. (2.7)

In the sequel, we set Rε0 = Rε0,1 (the dominant threshold value). Let us also
introduce the following notations

Uεj =
µ

λεj
and V εj =

Rε0,j − 1

βεjλ
ε
j

, j = 1, 2, (2.8)

where we have set βεj =
∫
RN β(x)ϕεj(x)dx. Notice that βε1 > 0 (since ϕε1 > 0 and

β > 0).
Then the large time behaviour of (2.5) is described in the next result.
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Theorem 2.2 (asymptotic behaviour) Let Assumption 2.1 be satisfied. Let
ε > 0 be given and fixed. Assume that the initial data satisfy U0 ≥ 0 and
v0 ∈ L2(R) with v0 ≥ 0. Then the following holds true:

(i) If Rε0 ≤ 1 or if v0 ≡ 0, the solution (U, v) of (2.5) converges in R×L2
(
RN
)

toward the disease free equilibrium, which reads as (U(t), v(t, .)) → (Λ, 0)
as t→∞.

(ii) If Rε0 > 1 and v0 6≡ 0, the solution (U, v) of (2.5) converges in R ×
L2
(
RN
)

toward the endemic equilibrium, which reads as (U(t), v(t, .)) →
(Uε1 , V

ε
1 ϕ

ε
1(·)) as t→∞.

The above result describes the asymptotic behaviour of System (2.5) for any
given and fixed ε > 0. In order to go further in our analysis we shall make use
of the asymptotic ε << 1 in order to describe the transient behaviour of the
problem. To state our second main result we shall write our main assumptions
in a rather abstract way based on the spectral elements of operator Lε. These
assumptions will then be discussed below in Remark 2.5.

As explained in the introduction we consider the case where the fitness func-
tion has two global maxima and the initial data is somehow well prepared. This
precise assumption reads as follows.

Assumption 2.3 We assume that the fitness function satisfies

S =

{
x ∈ RN : Θ(x) = max

y∈RN
Θ(y)

}
= {x1, x2} with x1 6= x2.

The initial data (U0, v0) ∈ [0,∞)×
(
C0

b(RN ) ∩ L2
+(RN )

)
is such that there exists

ρ > 0 such that v0 ≡ 0 on B(x1, ρ), and v0(x2) > 0. Here B(x1, ρ) denotes the
open ball of radius ρ centred at x1 and C0

b(RN ) the set of the continuous and
bounded functions on RN .

Our next assumption is related to both the mutation kernel and the fitness
function. As previously mentioned it is written in a rather abstract way using
the three first eigen-elements associated to Lε. It reads as follows.

Assumption 2.4 We assume that the following properties hold true.

(i) Spectral gap: the spectral gaps G(ε) and H(ε) defined by

G(ε) := λε1 − λε2 and H(ε) := λε2 − λε3,

satisfy for ε << 1: H(ε) = h(ε)ε with h(ε)→ h > 0 and G(ε) |ln ε| << ε.

(ii) Concentration: For all ν > 0 one has for any i = 1, 2∫
RN\B(xi,ν)

|ϕεi |dx = C(ν, ε) with C(ν, ε) = o (ε∞) as ε→ 0,

and for each continuous and bounded function f ∈ C0
b(RN ) one has

lim
ε→0

∫
RN

f(x)
ϕε2(x)

‖ϕε2‖L1(RN )

dx = f(x2).
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Remark 2.5 In [9] the authors have proposed sufficient conditions, formulated
in terms of decay rate for J and local shape of Θ around x1 and x2, ensuring
that the above assumption is satisfied. In particular, the main difference between
the situations considered in Figures 1, 2 and 3 in the introduction, relies on the
behaviour as ε→ 0 of the first spectral gap G(ε) = λε1 − λε2. It follows from [9]
(see Theorems 2.2 and 7.1 in the aforementioned work) that the eigenvalues λεj ,
for j = 1, 2, have an asymptotic expansion of the form

λεj
‖Ψ‖∞

= 1 + λ1,jε+ λ2,jε
2 +O

(
ε3
)

with λ1,j = −
√
−Ψ′′(xj)√
2‖Ψ‖∞

,

while the coefficients λl,j depend the successive derivatives of the function Ψ,
namely Ψ(m)(xj) with m ≥ 2. So, the configuration in Figure 2, namely
Ψ′′(x1) 6= Ψ′′(x2), ensures that Assumption 2.4 is satisfied expect for the first
spectral gap G(ε) that is of order ε. On the other hand, the configuration of
Figure 3, namely Ψ′′(x1) = Ψ′′(x2), ensures that λ1,1 = λ1,2 and λ2,1 = λ2,2

(see [9] for the computation of this last coefficient), so that Assumption 2.4 is
satisfied with G(ε) = O

(
ε3
)

as ε << 1. This difference in the first spectral gaps
associated with the two configurations of Figures 2 and 3 roughly explain the
change of order of magnitude observed in the duration of the transient regimes
in these two numerical experiments.

In view of Theorem 2.2, the phenotype value x1 is the ’stronger’ EA since
the infected population concentrates around x1 as t→∞ and for ε << 1 small
enough. Assumption 2.3 above means that the initial infected population is
far from this ’stronger’ phenotype value, x1, while it displays a non negligible
contribution on x2. What we have in mind, as in the numerical experiments pre-
sented in the introduction, corresponds to an initial distribution of the infection
with phenotypes concentrated around x2, so that the initial infected popula-
tion is mostly well adapted to this peak of the fitness. In that case, our next
main result describes that the infected population exhibits a very long transient
regime during which it stays concentrated around the phenotype value x2 when
ε > 0 is small enough. This long duration turns out to be related to the first
spectral gap G(ε).

Now, before going to our second main result, note that it is easy to check,
using Rayleigh quotient formulation, that

λε1 → ‖Θ‖2∞ as ε→ 0.

Hence because of the spectral gap assumption (i) described above, one also has

λε2 → ‖Θ‖2∞ as ε→ 0.

In the sequel we set R0
0 the number defined (recalling (2.7)) by

R0
0 =

Λ

µ
‖Θ‖2∞ = lim

ε→0
Rε0,j , j = 1, 2.
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Let us also observe that the concentration assumptions (ii) imply that (see
Remark 4.2 below)

1

‖ϕε1‖L1

ϕε1 → δx1 and
1

‖ϕε2‖L1

ϕε2 → δx2 as ε→ 0,

where δxi denotes the Dirac delta function at xi. From the above concentration
property one may observe that

βε2 =

∫
RN

βϕε2dx ∼ ‖ϕε2‖L1β(x2) > 0 as ε→ 0.

We are now able to state our second main result.

Theorem 2.6 (transient regime) Let Assumptions 2.1, 2.3 and 2.4 be sat-
isfied. Assume that R0

0 > 1 and recall (2.8). Then, for any q > 0, there exist
some positive constants ` and c > 0 such that for each ε > 0 small enough one
has

|Uε(t)− Uε2 |+ ‖vε(t, .)− V ε2 ϕε2(.)‖L2(RN ) ≤ cε
q, ∀t ∈

[
`| ln ε|
ε

,
1

G(ε)
− | ln ε|

ε

]
.

Here one may notice that the point (Uε2 , V
ε
2 ϕ

ε
2) is an equilibrium point of

the system but it is not admissible. Indeed, although Uε2 > 0 and V ε2 > 0 for
ε << 1, since λε2 is the second eigenvalue, Perron-Frobenius theorem implies that
the eigenvector ϕε2 is not positive. In that sense it can be viewed as a quasi-
equilibrium point of System (2.5) when equipped with non-negative initial data.
The above result describes the transient behaviour of the system around this
quasi-equilibrium point. Moreover, because of Assumption 2.4 (i) the duration

of this transient regime is large in the sense that 1
G(ε)−

(`+1)| ln ε|
ε →∞ as ε→ 0.

The proof of the above two results is based on a splitting argument of Prob-
lem (2.5) using the spectral decomposition of the operator Lε. Indeed, for each
given and fixed ε > 0, we project the system on the Hilbert basis {ϕεi}i≥1. More
precisely we set

vn(t) = vεn(t) =

∫
RN

v(t, x)ϕεn(x)dx, βn = βεn =

∫
RN

β(x)ϕεn(x)dx.

Then System (2.5) re-writes as the following infinite system of ODEU
′(t) = Λ− U(t)− U(t)

∞∑
n=1

βnλ
ε
nvn(t),

v′n(t) = vn(t) (U(t)λεn − µ) , n ≥ 1,

(2.9)

with the following initial data

U(0) = U0, vn(0) = vε0,n =

∫
RN

v0(x)ϕεn(x)dx, n ≥ 1.
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The proofs of Theorems 2.2 and 2.6 are strongly based on this re-formulation.
Roughly speaking we will show that higher order modes (for n ≥ 3) become very
small for t ≥ 1

ε so that the behaviour of the system reduces to the two first modes
in (2.9).

Finally let us mention that the transition from the almost stationary tran-
sient regime, described in Theorem 2.6, and the large time behaviour, described
in Theorem 2.2, will not be studied in this paper and let for future work. Here
since vn with n ≥ 3 is very small for t >> 1/ε and ε << 1, we suspect that
this transition regime is related to heteroclinic orbits for the three dimensional
system (2.9) for (U, v1, v2) and vn = 0 for n ≥ 3.

3 Proof of Theorem 2.2

Since the results stated in Theorem 2.2 do not directly depend on ε, throughout
this section we fix ε > 0 and for the sake of simplicity we omit to explicitly
write down the superscripts ε.

3.1 Preliminary estimates

Here we derive preliminary estimates that will be needed for the proof of The-
orem 2.2.

The first lemma is an identity between the modes arising in the v−component
of the solution of (2.5). It will be used at various places in this article, along
the proof of Theorem 2.2 and also for the one of Theorem 2.6.

Lemma 3.1 For any m,n ∈ N the following identity holds true

∀t ≥ 0, vm(t) = v0,m

(
vn(t)

v0,n

)λm/λn
e−

λn−λm
λn

µt,

whenever v0,n 6= 0.

Proof of Lemma 3.1. Integrating the equation for vm yields

vm(t) = v0,me
∫ t
0
λmU(s)ds−µt = v0,m

{
exp

(∫ t

0

λnU(s)ds− µt
)}λm

λn

e
λm−λn
λn

µt,

and the result follows.
We now derive some upper bounds for the solutions of (2.9). These estimates

will be used to prove Theorem 2.2. Some other refined estimates will be needed
for the proof of Theorem 2.6 since the ones described below may depend on ε.

Proposition 3.2 Let (U(t), vn(t); n ≥ 1)t>0 be the solution of (2.9) with initial
data (U0, v0,n; n ≥ 1). Let us recall that β1 > 0. Then we have the following
estimates
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1. Let P (t) = U(t) +
∫
RN β(x)v(t, x)dx, then

∀t ≥ 0, U(t) ≤ max (Λ, U0) and P (t) ≤ Λ + (P (0)− Λ)e−t. (3.10)

2. There exists a positive constant C such that

U(t) +
β1v1(t)

2
≤ max

{
U0 +

β1v0,1

2
, C

}
, ∀t ≥ 0.

3. Assume that v1,0 > 0. Set

w2(t, x) =

+∞∑
n=2

vn(t)ϕn(x) and R2(t) =

+∞∑
n=2

λnβnvn(t).

Then the following estimate holds true

max
{
‖w2(t, .)‖L2(R), |R2(t)|

}
≤ c e−

λ1−λ2
λ1

µt, ∀t ≥ 0. (3.11)

Proof. First note that the solution (U, v) of (2.5) is non-negative, then Lε[v] is
non-negative and the first inequality follows. Next, combining both equations
of (2.5) and noticing that µ ≥ 1 readily implies that P ′(t) ≤ Λ− P (t), ∀t ≥ 0,
which proves 1.

Next if v0,1 = 0 the inequality is trivial. If v0,1 > 0 then v1(t) > 0 for all
t ≥ 0. Next the U -equation of system (2.9) rewrites

U ′(t) = Λ− U(t)− U(t)

(
λ1β1v1(t) +

∞∑
n=2

λnβnvn(t)

)
,

hence setting B(t) = U(t) + 1
2β1v1(t), then as R2(t) =

∑+∞
n=2 λnβnvn(t), using

the v1 equation of (2.9) we find that for all t ≥ 0

B′(t) = Λ− U(t)− 1

2
λ1β1v1(t)U(t)−R2(t)U(t)− 1

2
β1µv1(t). (3.12)

We now estimate w2(t, x) and R2(t). Let n ≥ 2 be fixed. By integrating the
vn-equation for system (2.9) we find

vn(t) = v0,ne
∫ t
0
λnU(s)ds−µt,

then since λn ≤ λ2 we get

|vn(t)| ≤ |v0,n|e
∫ t
0
λ2U(s)ds−µt,

and, as for the proof of Lemma 3.1, we readily establish

|vn(t)| ≤ |v0,n|
(
v1(t)

v0,1

)λ2
λ1

e−
λ1−λ2
λ1

µt.
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As a consequence, the following estimates hold

‖w2(t, .)‖L2(R) ≤ ‖v0‖L2(R)

(
v1(t)

v0,1

)λ2
λ1

e−
λ1−λ2
λ1

µt, (3.13)

and

|R2(t)| ≤ λ1‖β‖L2(R)‖v0‖L2(R)

(
v1(t)

v0,1

)λ2
λ1

e−
λ1−λ2
λ1

µt. (3.14)

Next let k > 0 be some constant to be chosen later. Since β1 > 0, Young’s
inequality ensures that(

v1(t)

v0,1

)λ2
λ1

≤ λ2

λ1

β1v1(t)

k
+
λ1 − λ2

λ1

(
k

β1v0,1

) λ2
λ1−λ2

, (3.15)

Coming back to (3.12), thanks to the non negativity of λ1β1v1, we first write

B′(t) ≤ Λ− U(t)−R2(t)U(t)− 1

2
β1µv1(t),

then writing −R2 ≤ |R2| and using estimates (3.10), (3.14), and (3.15), we
obtain the following estimate

B′(t) ≤Λ− U(t) +

{
λ2

k
max(Λ, U0)‖β‖L2(R)‖v0‖L2(R) −

µ

2

}
β1v1(t)

+ (λ1 − λ2)

(
k

β1v0,1

) λ2
λ1−λ2

‖β‖L2(R)‖v0‖L2(R) max (Λ, U0) ,

so that choosing k =
4λ2 max(Λ,U0)‖β‖L2(R)‖v0‖L2(R)

µ , and setting

d = min
{

1,
µ

4

}
,

and

f = Λ + (λ1 − λ2)

(
k

β1v0,1

) λ2
λ1−λ2

‖β‖L2(R)‖v0‖L2(R) max (Λ, U0) ,

we find B′(t) ≤ f − dB(t), hence

B(t) = U(t) +
β1v1(t)

2
≤ max

{
U0 +

β1v0,1

2
,
f

d

}
,

for all t ≥ 0. This ends the proof of 2.
Finally combining (3.13), (3.14) and the previous result yields (3.11) and

completes the proof of the lemma.
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3.2 Proof of Theorem 2.2

Due to (3.11), let us observe that ‖v(t, .)−v1(t)ϕ1(·)‖L2(R) tends to 0 as t→∞,
therefore the asymptotic behaviour of (U, v) is given by the one of the solution
(U, v1) of (2.9) which satisfies the following system of equations{

U ′(t) = Λ− U(t)− λ1β1v1(t)U(t)−R2(t)U(t),

v′1(t) = v1(t) (λ1U(t)− µ) .
(3.16)

which is asymptotically autonomous since, thanks to (3.14), we have R2(t)→ 0
as t→∞.

Next let us first recall a result for the limit system associated to (3.16).

Lemma 3.3 Consider the system{
V ′(t) = Λ− V (t)− λ1β1w(t)V (t),

w′(t) = w(t) (λ1V (t)− µ) .
(3.17)

Then the following properties hold true:

(i) If R0 = λ1Λ
µ ≤ 1 then the above system has a unique bounded and non

negative complete orbit (V (t), w(t)) ≡ (Λ, 0) for all t ∈ R.

(ii) Assume R0 > 1. Let (V (t), w(t))t∈R be a bounded non negative complete
orbit. Then one has

inf
t∈R

w(t) > 0 =⇒ (V (t), w(t)) ≡
(
µ

λ1
,
R0 − 1

λ1β1

)
, ∀t ∈ R.

(iii) Assume R0 > 1. Let (V (t), w(t))t≥0 be a bounded and non negative orbit.
Then one has

∃t0 ≥ 0, w(t0) > 0 =⇒ lim
t→∞

(V (t), w(t)) =

(
µ

λ1
,
R0 − 1

λ1β1

)
.

The proof of this result is based on standard Lyapunov arguments. We refer for
instance to [10] for the proof of this lemma (with additional diffusion terms).

We now split our arguments into two parts. We first consider the caseR0 ≤ 1
and then we will investigate the case R0 > 1.

The case R0 ≤ 1: let us show that (U(t), v1(t)) → (Λ, 0) as t → ∞. To that
aim, let {tn}n≥0 be a given sequence such that tn →∞. Consider the sequence
of functions (Un(t), wn(t)) = (U, v1) (t+ tn).

Since (U, v1) is bounded in the C1−norm due to proposition 3.2 and Sys-
tem (3.16), one may assume possibly along a subsequence that (Un, wn)(t) →
(V,w)(t) locally uniformly for t ∈ R and (V,w) is a bounded and non-negative
complete orbit of the autonomous problem (3.17).

However since R0 ≤ 1, Lemma 3.3 applies and ensures (V (t), w(t)) ≡ (Λ, 0).
This completes the first part of the result.
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The case R0 > 1: let us first notice that if v0 ≡ 0 (or equivalently v0,1 = 0)
then v1(t) = 0 for all t ≥ 0 and we obviously obtain (U(t), v1(t)) → (Λ, 0) as
t→∞.

We now consider the case v0 6≡ 0, that is v0,1 > 0. To that aim let us define

M0 = {(U0, v0,1) ∈ (R+)2, v0,1 > 0}.

Then the following lemma holds true

Lemma 3.4 A uniform weak persistence property holds for System (3.16) in
the following sense

∀(U0, v0,1) ∈M0, lim sup
t→+∞

v1(t) ≥ V ∗1 with V ∗1 =
R0 − 1

λ1β1
.

Proof. Indeed if by contradiction we assume that there exists η ∈ (0, V ∗1 ) and
(U0, v0,1) with v0,1 > 0 such that lim supt→+∞ v1(t) < η, then there exists t1 > 0
such that ∀t ≥ t1, v1(t) ≤ η. Moreover, for any s and t such that t ≥ s ≥ t1 we
have

v1(t) = v1(s)e
∫ t
s

(λ1U(r)−µ)dr.

Let us denote U = lim inft→+∞ U(t). Let α > 0 to be chosen later, there exists
t2(α) ≥ t1 such that

∀t, s ∈ R, t ≥ s ≥ t2 =⇒ v1(t) ≥ v1(s)e
∫ t
s

(λ1(U−α)−µ)ds,

then as v1 is bounded and positive on R+ we have the following necessary
condition on U

U ≤ µ

λ1
+ α. (3.18)

Next let (tn)n≥0 be a sequence that tends to ∞ as n → ∞ and such that
limn→+∞ U ′(tn) = 0 and limn→+∞ U(tn) = U , as v1(tn) ≤ η for n large enough
we have

U ′(tn) ≥ Λ− U(tn)− λ1β1ηU(tn)−R2(tn)U(tn),

passing to the limit this gives

U ≥ Λ

1 + λ1β1η
. (3.19)

Now as η < V ∗1 = R0−1
λ1β1

, then R0
1

1+λ1β1η
> 1 and we can choose α > 0 such

that αλ1

µ < R0
1

1+λ1β1η
− 1. This choice implies that

Λ

1 + λ1β1η
>

µ

λ1
+ α,

which is absurd since (3.18) and (3.19), and Lemma 3.4 is proved.
Next we have the following result
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Lemma 3.5 A strong persistence property holds for System (3.16) in the fol-
lowing sense

∀(U0, v0,1) ∈M0, lim inf
t→+∞

v1(t) > 0.

Proof. Assume by contradiction that for some initial condition (U0, v0,1) ∈M0,
lim inft→+∞ v1(t) = 0. Due to Lemma 3.4 there exists a sequence (tn) that
tends to infinity such that ∀n, v1(tn) ≥ η, for some η ∈ (0, V ∗1 ). Then there
exists a sequence (Tn) with Tn > tn for all n and limn→+∞ v1(Tn) = 0. As v1

is continuous, we define

hn = inf{h ∈ (0, Tn − tn), v1(Tn − h) = η/2}.

Let us set X(t) = (U(t), v1(t)). We define for all t ≥ −Tn the sequence
of solutions Yn(t) = X(t + Tn). As in the case R0 ≤ 1, possibly up to a
subsequence, as n tends to infinity, {Yn(t)}t≥−Tn converges – locally uniformly
– toward a complete orbit {Y (t) = (V (t), w(t))}t∈R of the autonomous system
(3.17). Moreover as limn→+∞ v1(Tn) = 0 then w(0) = 0, hence ∀t ∈ R, w(t) = 0.
Assume now that (hn) is bounded from above then up to a sub-sequence (hn)
converges toward some h̄ ≥ 0 and w(−h̄) = η/2 > 0, a contradiction. Hence up
to a subsequence limn→+∞ hn = +∞.

Similarly we define Yn(t) = X(t + Tn − hn), ∀t ≥ −Tn + hn ≥ −tn and
consider its limit as n tends to infinity, that is the complete orbit {Y (t) =
(V (t), w(t))}t∈R of system (3.17). Then w(0) = η/2 and by definition of (hn)
and as limn→+∞ hn = +∞ we also have ∀t ≥ 0, w(t) ≤ η/2, which is impossible.
Indeed due to Lemma 3.3 (iii) a complete orbit of system (3.17) with w(0) > 0
converges as t → +∞ toward the stationary orbit (U∗1 , V

∗
1 ) and V ∗1 > η/2. By

contradiction the lemma is proved.
To conclude the proof of Theorem 2.2, consider a solutionX(t) = (U(t), v1(t))

of system (3.16) for t ∈ R+ associated to an initial condition in M0. As
X(t) is bounded on R+, there is a sequence (tn)n≥0 that tends to infinity
and (U∗, V ∗) ∈ (R+)2 such that limn→+∞X(tn) = (U∗, V ∗), and thanks to
Lemma 3.5, V ∗ > 0. Then if we are able to prove that (U∗, V ∗) = (U∗1 , V

∗
1 ),

then the proof of theorem 2.2 is complete.
To do so let us set Yn(t) = X(t + tn), ∀t ≥ −tn. As n tends to infin-

ity {Yn(t)}t∈R locally uniformly converges toward a complete orbit {Y (t) =
(V (t), w(t))}t∈R of system (3.17) with Y (0) = (U∗, V ∗). Thanks to Lemma 3.5
there exists η′ > 0 such that lim infn→+∞ v1(t+ tn) ≥ η′, hence ∀t ∈ R, w(t) ≥
η′. And Lemma 3.3 (ii) applies and implies Y (t) ≡ (U∗1 , V

∗
1 ) and we necessarily

have (U∗, V ∗) = (U∗1 , V
∗
1 ). The proof is complete.

4 Proof of Theorem 2.6

Here again we split this section into two parts. We first derive some estimates by
including the dependence upon the parameter ε that we will be assumed to be
small enough. The second part of this section focuses on the proof of Theorem
2.6.
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4.1 Estimates

In this section we derive estimates with an explicit dependence on ε for the
proof of Theorem 2.6. Thus in this section and the next one we assume that
Assumptions 2.1, 2.3 and 2.4 are satisfied.

We start with an estimate in L1(RN ) of the eigenvectors ϕε1 and ϕε2 of the
operator Lε associated to the first eigenvalues.

Lemma 4.1 The eigenvectors ϕε1 and ϕε2 satisfy the following estimates:
There exists a positive constant C > 0 such that for all ε << 1 small enough one
has for i = 1, 2

Cε
N
2 ≤ ‖ϕεi‖L1(RN ) and ‖ϕεi‖L1(RN ) = o(1) as ε→ 0. (4.20)

Proof. We start with the first estimate in (4.20). In the following c denotes
any positive constant that does not depend on the parameter ε. To that aim
recall that for i = 1, 2, one has λεiϕ

ε
i = Lε(ϕ

ε
i ), while the operator Lε is given

in (2.6). Since λεi , Θ, Jε are non negative functions and since Θ is bounded on
R (Assumption 2.3), we have

λεi |ϕεi (x)| ≤ max
y∈RN

Θ2(y) Jε ∗ |ϕεi |(y).

Next using Young’s inequality to estimate the convolution product we obtain
that

λεi‖ϕεi‖L2(RN ) ≤ c‖Jε‖L2(RN )‖ϕεi‖L1(RN ),

with λεi ≥ c > 0 for ε << 1. Next recalling the normalisation ‖ϕεi‖L2(RN ) = 1

and thanks to Assumption 2.1, namely J ∈ L1(RN ) ∩ L∞(RN ), we get

‖Jε‖L2(RN ) =

(∫
RN

Jε(x)
1

εN
J
(x
ε

)
dx

)1/2

≤ c ε−N2 ,

and the estimate follows.
For the second estimate in (4.20), let us observe that using the concentration

property stated in Assumption 2.4 (ii) we get for each ν > 0 and ε small enough:

‖ϕεi‖L1(RN ) =

∫
B(xi,ν)

|ϕεi |dx+

∫
RN\B(xi,ν)

|ϕεi |dx ≤
∫
B(xi,ν)

|ϕεi |dx+ C(ν, ε).

Next Cauchy-Schwarz inequality yields∫
B(xi,ν)

|ϕεi |dx ≤

(∫
B(xi,ν)

1 dx

)1/2

‖ϕεi‖L2(RN ) ≤ cνN/2.

As a consequence for each ν > 0 one gets

lim sup
ε→0

‖ϕεi‖L1(RN ) ≤ cνN/2,

and the result follows letting ν → 0.
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Remark 4.2 Note that Assumption 2.4 (ii) and the above theorem implies that
for any ν > 0 one has

lim
ε→0

∫
RN\B(x1,ν)

ϕε1
‖ϕε1‖L1(RN )

dx = 0.

Since ϕε1 > 0 this implies that
ϕε1

‖ϕε1‖L1(RN )
→ δx1

as ε → 0 for the narrow

topology.

Next we give estimates for the initial conditions v0,1, v0,2 and for the coeffi-
cients β1, β2.

Lemma 4.3 There exists some constant c > 0 such that the initial condition
v0,1 = vε0,1 satisfies the following estimates for all ε small enough

0 < v0,1 ≤ cC(ρ, ε), (4.21)

where ρ > 0 is defined in Assumption 2.3 and C(ρ, ε) is defined in Assumption
2.4 (ii). Moreover there exists c > 0 such that for all ε << 1 one has

cε
N
2 ≤ v0,2 ≤ o(1). (4.22)

Lastly, coefficients β1 and β2 satisfy

cε
N
2 < β1 ≤ o(1), cε

N
2 < β2 ≤ o(1), (4.23)

with c a positive constant independent of ε.

Proof. First note that since v0 ≥ 0 and v0 6≡ 0 then v0,1 > 0 since ϕε1 > 0. Next
because of Assumption 2.3 on the initial condition v0 one also has

v0,1 =

∫
RN\B(x1,ρ)

v0(x)ϕε1(x)dx ≤ ‖v0‖∞ C(ρ, ε).

Hence (4.21) follows.
Next since v0 is continuous and v0(x2) > 0, one obtains due to Assumption

2.4 (ii)

vε0,2 = ‖ϕε2‖L1(RN )

∫
RN

v0(x)
ϕε2(x)

‖ϕε2‖L1(RN )

dx ∼ ‖ϕε2‖L1(RN )v0(x2) as ε→ 0.

Hence (4.22) follows from (4.20).
Finally since β(x) > 0 for all x ∈ RN , so that β(x1) > 0 and β(x2) > 0,

(4.23) follows from a similar argument as above using (4.20), Assumption 2.4
(ii) and Remark 4.2.

We now give an upper bound of the solution that doesn’t depend on ε, after
some transition phase.
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Lemma 4.4 (Upper bound) For k ∈ (0,+∞), we set tεk = k
ε ln

(
1
ε

)
. Let us

consider the function Q = Qε = U+βε1v1+ 1
2β

ε
2v2. There exist positive constants

c and k1 such that for all ε > 0 small enough the following upper bound holds
true

0 < Q(t) ≤ c, ∀t ≥ tεk1
.

Proof. First recall that U > 0, β1 > 0 and v1 > 0 while β2 > 0 and v0,2 > 0
for ε << 1, so that v2(t) > 0 for any t ≥ 0 as soon as ε is small enough. Hence
Q(t) > 0 for ε small enough.

Next let R3(t) =
∑+∞
n=3 λnβnvn(t). Thanks to similar computations as the

ones performed to prove (3.14) we readily establish

|R3(t)| ≤ |λ3| ‖β‖L2(R)‖v0‖L2(R)

(
v2(t)

v0,2

)λ3
λ2

exp

(
−λ3 − λ2

λ2
µt

)
. (4.24)

In the remainder of this proof, c denotes any constant that doesn’t depend on
ε and that may change from line to line.

Thanks to assumption (2.4) on the spectral gap estimate for the eigenvalues
λ2 − λ3, we have

λ3/λ2 = 1− κ(ε)ε < 1 with κ(ε) > 0,∀ε > 0 and lim
ε→0

κ(ε) > 0.

Then for any t ≥ tεk0
= k0

ε ln
(

1
ε

)
with k0 > 0 and any ε small enough, one has

|R3(t)| ≤ cεck0

(
v2(t)

v0,2

)1−κ(ε)ε

.

Thanks to the previous lemma for all ε small enough we have 1 ≥ vε0,2 ≥ cε
N
2 ,

and (
vε0,2
)−1+κ(ε)ε ≤ cε−N2 ,

we choose k0 such that k = ck0 −N/2 > N/2, then

|R3(t)| ≤ cεk (v2(t))
1−κ(ε)ε

, ∀t ≥ tεk0
.

Next using Young’s inequality, for η > 0 and p, q ≥ 1 with 1/p + 1/q = 1, we
readily find that

cεkv
1−κ(ε)ε
2 ≤ cp η

p

p
εpk +

1

qηq
v
q(1−κ(ε)ε)
2 ,

so we choose the following values of p, q and η

q =
1

1− κ(ε)ε
, p =

1

κ(ε)ε
, η =

(
2

λ2βε2
(1− κ(ε)ε)

)1−κ(ε)ε

,

in order to have the following equality for the second term

1

qηq
v
q(1−κ(ε)ε)
2 =

1

2
λ2β

ε
2v2.
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For the first term we obtain

cp
ηp

p
εpk = cpκ(ε)ε

(
2

λ2βε2
(1− κ(ε)ε)

) 1−κ(ε)ε
κ(ε)ε

ε
k

κ(ε)ε .

Notice that

(1− κ(ε)ε)
1−κ(ε)ε
κ(ε)ε → e−1 as ε→ 0,

and thanks to (4.23) we have βε2 ≥ cε
N
2 and βε2 = o(1), hence for ε small enough

(
2

λ2βε2

) 1−κ(ε)ε
κ(ε)ε

≤
( c

εN/2

) 1
κ(ε)ε

,

so that

cp
ηp

p
εpk ≤ cε exp

(
1

κ(ε)ε
(ln c+ (k −N/2) ln ε)

)
.

Since we chose k > N/2, then limε→0
1

κ(ε)ε (ln c+ (k−N/2) ln ε) = −∞. There-

fore for ε small enough

cp
ηp

p
εpk ≤ cε,

so that finally we have, for any ε small enough and t ≥ tεk0
,

|R3(t)| ≤ cε+
1

2
λ2β

ε
2v2.

Reporting this estimate in the first equation of (2.9) we retrieve that

∀t ≥ tεk0
, U ′(t) ≤ Λ−U(t)− λ1β

ε
1v1(t)U(t)− 1

2
λ2β

ε
2v2(t)U(t) + cεU(t), (4.25)

and the second equation of (2.9) yields

(βε1v1)′ = βε1v1(λ1U − µ), and

(
1

2
βε2v2

)′
=

1

2
βε2v2(λ2U − µ). (4.26)

Let Q = U + βε1v1 + 1
2β

ε
2v2, assuming that ε is small enough to ensure that

min(µ, 1− cε) ≥ m > 0 with m independent of ε, then adding (4.25) and (4.26)
yields

Q′(t) ≤ Λ−mQ(t) for all t ≥ tεk0
,

so that
∀t ≥ tεk0

, Q(t) ≤ Q(tεk0
)e−m(t−tεk0

) + Λ. (4.27)

Now to crudely estimate Q(tεk0
) let us recall that ∀t ≥ 0, U(t) ≤ max(Λ, U0),

hence from the second equation of (2.9) there exists a constant c > 0 such that
for all n ∈ N we have for any t ≥ 0,

|vn(t)| ≤ |v0,n|ect,
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so that as |βεi | = o(1) is bounded we finally have Q(t) ≤ cect for all t ≥ 0, which

implies Q(tεk0
) ≤ cect

ε
k0 . Then, coming back to (4.27) we find

∀t ≥ tεk0
, Q(t) ≤ cect

ε
k0 e−m(t−tεk0

) + Λ,

Let tεk1
= k1

ε ln 1
ε with k1 > k0 be given. Then

∀t ≥ tεk1
, Q(t) ≤ cect

ε
k0 e−m(tεk1

−tεk0
) + Λ = cε

mk1−(m+c)k0
ε + Λ,

hence finally for k1 large enough and ∀t ≥ tεk1
, Q(t) = U(t) +βε1v1(t) + 1

2β
ε
2v2(t)

is bounded uniformly with respect to ε.
Finally we prove the following estimates for v1 and R3 =

∑+∞
n=3 λnβnvn.

Lemma 4.5 Let k1 be defined in the previous lemma. The following estimates
hold true for ε small enough

∀t ∈
[
tεk1
, G(ε)−1

]
, v1(t) ≤ cε−NC(ρ, ε) = o(ε∞), (4.28)

∀t ≥ tεk1
, |R3(t)| ≤ cε−N exp (−cεt) , (4.29)

wherein c is a positive constant independent of ε << 1.

Proof. Using Lemma 3.1 we have the following identity

∀t ≥ 0, v1(t) = v0,1

(
v2(t)

v0,2

)λ2/λ1

e
λ1−λ2
λ1

µt.

Using estimate (4.22) we have, for ε << 1,

(v0,2)
−λ2
λ1 ≤ cε−N2 .

Hence due to Assumption 2.4 on the spectral gap and (4.21), there exists κ ∈ R
independent of ε such that

∀t ≥ 0, v1(t) ≤ cε−N/2C(ρ, ε) (v2(t))
λ2/λ1 ecG(ε)t.

Now using Lemma 4.4 and estimate (4.23) readily implies (4.28).
Next, coming back to (4.24), that is

∀t ≥ 0, |R3(t)| ≤ |λ3| ‖β‖L2(R)‖v0‖L2(R)

(
v2(t)

v0,2

)λ3
λ2

e−
λ3−λ2
λ2

µt,

as above we use estimates (4.22) for v0,2, Assumption 2.4 (ii) on the second
spectral gap and Lemma 4.4 combined with (4.23) to retrieve (4.29) for ε small
enough.
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4.2 Proof of Theorem 2.6

To achieve this, we use the estimates of the previous section combined with
arguments featuring some degree of similarity with the ones given for the proof
of Theorem 2.2, but taking into account the dependence on ε of the solution
and of the parameters.

Thus we start with a lemma ensuring a kind of weak persistence property
in some sense for the solution (Uε, vε2) of (2.9) on an interval of the form [tεk, t

ε
` ]

uniformly with respect to ε. Here we use for each real number ` the notation

tε` =
`

ε
ln

1

ε
.

And the following lemma holds true

Lemma 4.6 Let us recall that

Rε0 =
λε1Λ

µ
, λ0 := ‖Θ‖2∞ = lim

ε→0
λε1, R0

0 = lim
ε→0
Rε0 =

λ0Λ

µ
,

and set (U∗2 , V
∗
2 ) =

1

λ0

(
µ,R0

0 − 1
)
.

Let α ∈ (0, V ∗2 ) be given. Then there exist positive constants k2 > k1 and

k̃α > 1 such that the following property holds for the product βε2v
ε
2: for each

k > k2 and each ` ≥ k̃αk, there exists ε0 > 0 small enough such that for any
ε ∈ (0, ε0) one has

tε` < G(ε)−1 and sup
t∈[tεk,t

ε
` ]

βε2v
ε
2(t) ≥ α,

where k1 is the constant defined in Lemma 4.4 above.

Proof. Set P ε(t) := −λε1βε1vε1(t)−Rε3(t). Thanks to Lemma 4.5, there exist two
constants k2 > k1 and c1 > 0 independent of ε such that for ε small enough

∀t ∈
[
tεk2
, G(ε)−1

]
, |P ε(t)| ≤ cεc1 . (4.30)

Next recalling that R0
0 = λ0Λ

µ > 1 and α ∈ (0, V ∗2 ), let us fix kα > 0 such that

µ

(
R0

0

1 + λ0α
− 1

)
> kα > 0.

Setting k̂α := 1 + µ
kα

, we complete the proof of our lemma by showing that for

each k > k2 and each ` ≥ k̂αk, there exists ε0 > 0 small enough such that for
any ε ∈ (0, ε0) one has

tε` < G(ε)−1 and sup
t∈[tεk,t

ε
` ]

βε2v
ε
2(t) ≥ α.

Recalling the assumption on the spectral gaps, G(ε)| ln ε| << ε as ε → 0, and
in order to prove this statement we argue by contradiction. To that end, we
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assume that there exist k > k2, ` > k̃αk and a sequence of positive numbers
{εn}n≥0 tending to zero such that for all n ≥ 0

tεn` < G(εn)−1 and βεn2 vεn2 (t) < α, ∀t ∈ [tεnk , t
εn
` ] . (4.31)

In this proof we shall set vn = βεn2 vεn2 , λn = λεn2 and (Un, vn) = (Uεn , vεn) for
the sake of simplicity. Then (Un, vn) satisfies the non autonomous system{

U ′n(t) = Λ− Un(t)− λnvn(t)Un(t) + Pn(t)Un(t),

v′n(t) = vn(t) (λnUn(t)− µ) ,
(4.32)

wherein we have set Pn(t) = P εn(t).
In the remainder of this proof, let c denote any constant independent of n.

First due to the choice of k2 > k1 one has (see (4.30))

|Pn(t)| ≤ cεc1n , ∀t ≥ t
εn
k , ∀n ≥ 0. (4.33)

Next from the first equation of (4.32) and (4.33) we have for all n ≥ 0 and
t ∈ [tεnk , t

εn
` ],

U ′n(t) ≥ Λ− cα(εn)Un(t),

with
cα(εn) = 1 + αλn + cεn

c1 > 0.

Hence for any n ≥ 0 one has

∀t ∈ [tεnk , t
εn
` ] , Un(t) ≥ Λ

cα(εn)
+

(
U(tεnk )− Λ

cα(εn)

)
e−cα(εn)(t−tεnk ).

Replacing this estimate in the right-hand side of the second equation of (4.32)
and integrating we find for any t ∈ [tεnk , t

εn
` ]:

vn(t) ≥ vn(tεnk )e(
λnΛ
cα(εn)

−µ)(t−tεnk ) × e
λ(Un(tεnk )− Λ

cα(εn) )
∫ t
t
εn
k

e−cα(εn)(s−tεn
k

)ds
.

(4.34)
Let us estimate the factors in right hand-side of (4.34). From the second equa-
tion of (4.32), ∀t ≥ 0, v′n(t) ≥ −µvn(t), hence

vn(tεnk ) ≥ βεn2 vεn2 (0) exp (−µtεnk ) ,

and, using estimates (4.22) and (4.23) on vε2(0) and βε2 we have βεn2 vεn2 (0) ≥ cεNn ,
and therefore

vn(tεnk ) ≥ c exp ((N + µk/εn) ln εn) .

To estimate the second factor in (4.34), note that, as n→∞,(
λnΛ

cα(εn)
− µ

)
→ µ

(
R0

0

1 + λ0α
− 1

)
> kα > 0.
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So, for any n large enough one has

λnΛ

cα(εn)
− µ ≥ kα > 0,

so that
e(

λnΛ
cα(εn)

−µ)(tεn` −t
εn
k ) ≥ e

kα(`−k)
εn

ln 1
εn .

For the third factor in (4.34) one has

λn

(
Un(tεnk )− Λ

cα(εn)

)∫ t

tεnk

e−cα(εn)(s−tεnk )ds ≥ − λn
cα(εn)

∣∣∣∣Un(tεnk )− Λ

cα(εn)

∣∣∣∣ ,
and Un(t) being bounded uniformly with respect to εn and non negative, the
third factor is greater than some negative constant.

Finally we recover from (4.34) that

vn(tεn` ) ≥ c e(
kα(`−k)−µk

εn
−N) ln 1

εn ,

so that, since ` > k̃αk, one has kα(`− k)− µk > 0. And for any n large enough
we obtain vn(tεn` ) ≥ α, which contradicts (4.31). This concludes the proof of
this lemma.

Next we are able to prove a lemma ensuring a kind of strong persistence
property for vε2 on some interval of the form [tεk, G(ε)−1] uniformly with respect
to ε. The proof of this lemma is rather similar to the proof of Lemma 3.5.

Lemma 4.7 Let α ∈ (0, V ∗2 ) be given. Let k > k2 and ` > k̃αk given. For each
ε > 0 small enough, let kε ∈ [k, `] be given and provided by Lemma 4.6 such that
βε2v

ε
2

(
tεkε
)
≥ α. Then there exists η > 0 such that for all ε small enough

βε2v
ε
2(t) ≥ η for any t ∈ [tεkε , G(ε)−1].

Remark 4.8 In particular, since kε ≤ ` one also has for all ε small enough

βε2v
ε
2(t) ≥ η, ∀t ∈

[
tε` , G(ε)−1

]
.

Proof. To prove this lemma we argue by contradiction and we assume that
exists a sequence of positive numbers (εn)n≥0 that tends to zero and a sequence
(Tn)n≥0 with

Tn ∈
[
tεnkεn

, G(εn)−1
]

such that lim
n→+∞

βεn2 vεn2 (Tn) = 0.

As in the proof of the previous lemma we set Un(t) = Uεn(t), vn(t) =
βεn2 vεn2 (t) and we define Xn = (Un, vn) a solution of (4.32). We also set tn =
tεnkεn

.

Now as vn(Tn) → 0 as n → ∞ and vn(tn) ≥ α > 0, there exists a sequence
(hn) defined for n large enough by

hn = inf
{
h ∈ (0, Tn − tn), v(Tn − h) =

α

2

}
.
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In other words one has vn(Tn − hn) = α
2 , vn(t) ≤ α

2 on [Tn − hn, Tn] and
vn(Tn) → 0 as n → ∞. Next since vn(tn + ·) is uniformly bounded on [0,∞)
(see Lemma 4.4) as well as its derivative, and since it satisfies the second equa-
tion in (4.32), it readily follows from Arzelà-Ascoli compactness theorem that
hn → +∞ as n → ∞ (see the similar proof of Lemma 3.5 for more details).
Moreover, one may assume, possibly along a subsequence, that the sequence
of functions (Un, vn) (Tn − hn + t) → (U∞, v∞) (t) locally uniformly for t ≥ 0
wherein (U∞, v∞) becomes a bounded non-negative orbit of the autonomous
system corresponding to system (4.32) with Pn ≡ 0 and λn = λ0, i.e.{

U ′∞(t) = Λ− U∞(t)− λ0v∞(t)U∞(t),

v′∞(t) = v∞(t) (λ0U∞(t)− µ) ,
(4.35)

that furthermore satisfies v∞(0) = α
2 and v∞(t) ≤ α

2 , ∀t ≥ 0. However such a
solution doesn’t exist by applying Lemma 3.3 (iii) and recalling that R0

0 > 1
and α < V ∗2 . This contradiction completes the proof of the lemma.

Before going to the proof of Theorem 2.6 let us prove the following proposi-
tion that roughly shows that the function βε2v

ε
2(t) remains in a small neighbour-

hood of V ∗2 =
R0

0−1
λ0

on some interval of the form [tεk, G(ε)−1] for any ε << 1.

Proposition 4.9 Assume R0
0 > 1. There exists k > 1 large enough such that

for any δ > 0 there exists ε0 > 0 small enough such that for all ε ∈ (0, ε0) one
has

|Uε(t)− Uε2 |+ |βε2vε2(t)− βε2V ε2 | ≤ δ, ∀t ∈
[
tεk, G(ε)−1 − tε1

]
.

Proof. Fix α ∈ (0, V ∗2 ). Let k > k̃αk2 be given. Hence Lemma 4.7 applies and
ensures that

βε2v
ε
2(t) ≥ η for t ∈ [tεk, G(ε)−1],

for some positive constant η independent of ε and for any ε << 1 small enough.
To prove Proposition 4.9 we fix k̂ > k and we again argue by contradiction

by assuming that there exist δ0 and a sequence (εn) that tends to 0 such that
for all tεnk < 1

G(εn) we have

sup
t∈

[
tεn
k̂
, 1
G(εn)

−tεn1
] (|Uεn(t)− Uεn2 |+ |β

εn
2 vεn(t)− βε2V

εn
2 |) > δ0.

Hence there is a sequence (tn) such that tn ∈
[
tεn
k̂
, 1
G(εn) − t

εn
1

]
and

|Uεn(tn)− Uεn2 |+ |β
εn
2 vεn(tn)− βε2V

εn
2 | > δ0.

As for the proof of the previous lemma by considering

Y εn(t) := (Uεn(t+ tn), βεn2 vεn(t+ tn)), for (t+ tn) ∈
[
tεnk , G(εn)−1

]
.

Since tεnk − tn ≤ tεnk − t
εn
k̂
→ −∞ and G(εn)−1 − tn ≥ tεn1 → +∞ as n → ∞,

possibly along a sub-sequence, it converges locally uniformly for t ∈ R toward
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some limit function (U∞, V∞)(t) as n tends to infinity. This limit function
becomes a complete orbit of (4.35) that satisfies (U∞, V∞) (0) 6= (U∗, V ∗) and
V∞(t) ≥ η > 0, ∀t ∈ R. This contradicts Lemma 3.3 (ii) and concludes the
proof of Proposition 4.9.

We complete this section by the proof of Theorem 2.6.
Proof of Theorem 2.6.

For the sake of simplicity we set vε = βε2v
ε
2, λε = λε2. Then (Uε, vε) satisfies

the non autonomous system
dUε

dt
(t) = Λ− Uε(t)− λεvε(t)Uε(t) + P ε(t)Uε(t),

dvε

dt
(t) = vε(t) (λεUε(t)− µ) ,

where again P ε(t) := −λε1βε1vε1(t)−Rε3(t).
We linearise this system around (Uε2 , V

ε
2 ) defined in (2.8). So we set V ε(t) =

Uε(t)− Uε2 , wε(t) = vε(t)− βε2V ε2 and Y ε(t) = (V ε(t), wε(t)). Then we readily
compute that

dY ε

dt
= AεY

ε + Fε(Y
ε) +Gε(t, Y

ε),

where Aε, Fε and Gε are respectively defined by

Aε =

 −Rε0,2 −µ

Rε0,2 − 1 0

 , Fε(Y
ε) =

(
−λεV εwε
λεV

εwε

)
, Gε(t, Y

ε) =

(
P ε(t)(Uε2 + V ε)

0

)
.

Let us remark that tr (Aε) = −Rε0,2 and det(Aε) = µ(Rε0,2−1). As limε→0Rε0,2 =
R0

0 > 1 we readily prove that the real parts of the eigenvalues of Aε are nega-
tive and uniformly bounded away from 0 for ε small enough. Moreover as the
coefficients of Aε are bounded, there are positive constants α and M that don’t
depend on ε such that, for all X ∈ R2 and t ≥ 0, ‖eAtX‖ ≤ Me−αt‖X‖ where
‖ · ‖ is the `1 norm on R2.

By definition of Fε and as λε is bounded there exists some constant K
independent of ε such that

∀Y ∈ R2, ‖Fε(Y )‖ ≤ K‖Y ‖2. (4.36)

Let δ > 0 such that δMK ≤ α/2. Due to Proposition 4.9 there exists k > 0
such that

∀t ∈
[
tεk, G(ε)−1 − tε1

]
, ‖Y ε(t)‖ ≤ δ. (4.37)

Again in the remainder of this proof c will denote any positive constant
independent of ε. Thanks to Lemma 4.5, for any p > N/2 there exist some real
number k1 > 0 and a constant c such that we have

∀t ≥ tεk1
, |P ε(t)| ≤ cεp. (4.38)
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We set k = max{k, k1} for simplicity’s sake. Then Duhamel’s formula writes

Y ε(t) = eAε(t−t
ε
k)Y ε(tεk) +

∫ t

tεk

eAε(t−s)(Fε(Y
ε(s)) +Gε(s, Y

ε(s))) ds.

Thanks to (4.36), (4.37), (4.38), and as Uε is bounded by a constant independent
of ε, we have for all t ∈

[
tεk, G(ε)−1 − tε1

]
‖Y ε(t)‖ ≤ δMe−α(t−tεk) +M

∫ t

tεk

e−α(t−s)(δK‖Y ε(s)‖+ cεp) ds,

then, as δMK ≤ α/2, we retrieve that for all t ∈
[
tεk, G(ε)−1 − tε1

]
‖Y ε(t)‖ ≤ δMe−α(t−tεk) + cεp +

α

2

∫ t

tεk

e−α(t−s)‖Y ε(s)‖ ds.

Next it follows from Grönwall inequality that for all t ∈
[
tεk, G(ε)−1 − tε1

]
eαt‖Y ε(t)‖ ≤ δMeαt

ε
k + cεpeαt +

α

2

∫ t

tεk

(
δMeαt

ε
k + cεpeαs

)
e
α
2 (t−s) ds,

and we have the following upper estimates

α

2

∫ t

tεk

δMeαt
ε
ke

α
2 (t−s) ds ≤ δMe

α
2 (t+tεk),

α

2

∫ t

tεk

cεpeαse
α
2 (t−s) ds ≤ cεpeα2 (t−tεk).

Finally we have proved that

‖Y ε(t)‖ ≤ δMe−α(t−tεk) + cεp + δMe−
α
2 (t−tεk) + cεpe−

α
2 (t+tεk),

therefore there exists ` > k such that for all t ∈
[
tε` , G(ε)−1 − tε1

]
and ε small

enough ‖Y ε(t)‖ ≤ cεp. Then coming back to the definition of Y ε and thanks to
estimate (4.23) for β2 we have for all t ∈

[
tε` , G(ε)−1 − tε1

]
|Uε(t)− Uε2 | ≤ cεp, |vε2(t)− V ε2 | ≤ cεp (βε2)

−1 ≤ cεp−N/2.

Finally, as the eigenvalues λεn are uniformly bounded, with a slight modification
of the proof of Lemma 4.5 we readily establish that

∀t ∈
[
tεk1
, G(ε)−1

]
, |βε1vε1(t)| ≤ cε−NC(ρ, ε) = o(ε∞),

and

∀t ≥ tεk1
,

∥∥∥∥∥
+∞∑
n=3

βεnv
ε
n(t)ϕn(·)

∥∥∥∥∥
L2(R)

≤ cε−N exp (−cεt) .

Hence let q = p−N/2 > 0 and we have for all ε small enough

∀t ∈
[
tε` , G(ε)−1 − tε1

]
, |Uε(t)− Uε2 |+ ‖vε(t, .)− V ε2 ϕε2(.)‖L2(RN ) ≤ cε

q.

This concludes the proof of Theorem 2.6.
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