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Abstract

The multi-dimensional orthogonal packing problem (OPP) is a well studied opti-
mization problem [3,9]. Given a set of items with rectangular shapes, the problem is
to decide whether there is a non-overlapping packing of these items in a rectangular
bin. Rotation of items is not allowed.

Fekete and Schepers introduced a tuple of interval graphs as data structures to
store a feasible packing, and gave a very efficient algorithm. In this paper, we
propose a new algorithm using consecutive one matrices as data structures, due to
Fulkerson and Gross’s characterization of interval graphs. Computational results
are reported, which show its effectiveness.
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The multi-dimensional orthogonal knapsack problem (OKP) is to compute
the maximum value of a feasible set: if every item i ∈ I has a positive value
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pi, the aim is to exhibit a subset of items I ′ ⊂ I admitting a non-overlapping
packing such that

∑
i∈I′ pi is maximal.

We consider the D-dimensional orthogonal packing problem and the D-di-
mensional orthogonal knapsack problem (with D ≥ 2). Fekete and Schepers
[9,10] introduced a new approach using graph theory. Their algorithm is one
of the fastest, even in the two dimensional case. They used some tuple of
interval graphs as data structures to store a feasible packing. Though Fekete
and Schepers’ s algorithm is very efficient, there are sill symmetry issues.
We propose a new algorithm using some consecutive one matrices as data
structures, due to Fulkerson and Gross’s characterization of interval graphs.
Our approach is able to eliminate some of these symmetry issues.

This abstract is organized as follows. In the first section, we describe our
model and algorithm. In the second section, we give computational results
with respect to standard benchmarks.

1 Consecutive ones matrices for orthogonal packing

Let n denote the number of items and D be the dimension of the Euclidean
space. Let I = {1, . . . , n} be a set of items. For every d ∈ {1, . . . , D} and
i ∈ {1, . . . , n}, let wd

i be the width of item number i w.r.t. dimension d. For
every d ∈ {1, . . . , D}, let W d be the width of the bin w.r.t. dimension d. The
set of items I is feasible if there is a tuple of coordinates (x1

i , . . . , x
D
i ) ∈ R

+
D

for every item i ∈ I s.t.

∀i ∈ I, ∀d ∈ {1, . . . , D} : xd
i + wd

i ≤ W d (1)

∀i, j ∈ I(i �= j), ∃d ∈ {1, . . . , D} : [xd
i , x

d
i + wd

i ) ∩ [xd
j , x

d
j + wd

j ) = ∅ (2)

We denote by feasible packing, a set of tuple of coordinates of a feasible
set of items satisfying the constraints (1) and (2).

A feasible packing verifies touching assumption if every item is immediately
to the ”right” of an other item or touches the ”left border” (w.r.t. every
dimension):

xd
i ∈ {0} ∪ {

xd
j + wd

j : j ∈ I \ {i}} ∀i ∈ I, d ∈ {1, . . . , D}
Lemma 1.1 For every feasible set of items I, there is an associated feasible
packing which verifies touching assumption.

Given a finite multi-set of intervals of R, an interval graph G = (V, E) is
an undirected graph such that each interval corresponds to a vertex of the
graph, and two vertices are adjacent iff the corresponding intervals overlap.
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Following Fekete and Schepers[9,10], a packing class is a collection of D
graphs G1, . . . , GD with (shared) vertex set I and edge sets E(Gd) such that:

P1: for every d ∈ {1, . . . , D}, Gd is an interval graph;

P2: for every d ∈ {1, . . . , D}, for every stable set S of Gd,
∑

s∈S wd
s ≤ W d;

P3:
⋂

d∈{1,...,D}
E(Gd) = ∅.

Therefore to check whether a set of items is feasible, the algorithm of
Fekete and Schepers enumerates all packing classes associated to I. However,
in some cases, there are distinct packings of a feasible set of items whose
associated packing classes are different. Hence there are still symmetry issues
in this model. A matrix M ∈ Mn,m(B) has the consecutive ones property if
for every row, the set of 1s occur consecutively. We are now ready to state
Fulkerson and Gross’ characterization of interval graphs:

Theorem 1.2 [11] A graph G is an interval graph if and only if there is a
vertex/clique matrix of G which has the consecutive ones property.

Without loss of generality, let I = {1, . . . , n} be the set of items. From
now on, ∀d ∈ {1, . . . , D}, let md ≤ n, Md ∈ Mn,md(B) be a matrix with
consecutive ones property; ∀k ∈ {1, . . . , md}, let Qd

k = {i ∈ I : Md
ik = 1}

be the set of items in column k and let Cd
k ∈ B

n be the column k of matrix
Md representing the characteristic vector of Qd

k; let Qd
md+1

= ∅ and let Qd =

{Qd
1, . . . , Q

d
md}.

We define the width λd
k of Qd

k ∈ Qd, ∀d ∈ {1, . . . , D} by:

λd
k = max

i∈I
i∈Qd

k,i/∈Qd
k+1

⎧⎨
⎩wd

i −
∑

1≤l<k/i∈Qd
l

λd
l

⎫⎬
⎭ (3)

A strip decomposition associated to I is a D-tuple of consecutive ones
matrices (M1, . . . , MD) ∈ M(B) with non-zero rows such that:

• for every dimension d ∈ {1, . . . , D},
every column of Md is maximal (4)

∀i ∈ I, ∀k ∈ {1, . . . , md} such that i ∈ Qd
k, we have

wd
i −

∑
1≤l<k/i∈Qd

l

λd
l > 0 (5)

∑
k∈{1,...,md}

λd
k ≤ W d (6)
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• for every pair i, j ∈ I(i �= j), there is a dimension d ∈ {1, . . . , D} such that,

∀k ∈ {1, . . . , md}, i /∈ Qd
k or j /∈ Qd

k (7)

Lemma 1.3 For every i ∈ I and d ∈ {1, . . . , D}, wd
i ≤

∑
1≤k≤md/i∈Qd

k

λd
k

Lemma 1.4 A set of items I is feasible with touching assumption if and only
if there is a strip decomposition associated to I.

Due to Lemma 1.4, to check feasibility, we only have to design an algorithm
which returns whether there is a strip decomposition associated to the set of
items I. We proceed dimension by dimension, by enumerating all consecutive
ones matrices which satisfy the strip decomposition constraints (4), (5), (6)
and (7). This is a main point of our approach: almost all the work is done in
first dimension.

To ensure that constraint (7), is satisfied, we proceed like this: for every
dimension d ∈ {1, . . . , D − 1}, let Sd denote the set of all matrices output
by the recursion w.r.t. dimension d. Then for the last dimension d = D, for
every (D − 1)-tuple of matrices (M1, . . . , MD−1) ∈ S1 × . . . × SD−1, we look
for a consecutive ones matrix such that constraint (7) is satisfied. If any, we
have a strip decomposition, and the set of items is feasible. If we fail to find
out such a tuple of matrices, the set of items is not feasible.

1.1 Early detection of unfeasibility

In this subsection, we exhibit additional constraints which are valid for all strip
decompositions associated to I. These constraints are used in the algorithm
to reduce the enumeration tree of strip decompositions.

Assume that the first k columns of the matrix in the recursion are set.
Every item which has only 0 entries in these columns has to be packed in the
remaining columns. Therefore the following constraint, which says that the
available width must exceed the biggest width of items that are not packed
yet, is a valid constraint:

Lemma 1.5 For every d ∈ {1, . . . , D} and k ∈ {1, . . . , md},∑
l∈{1,...,k}

λd
l + max

i/∈{Qd
1,...,Qd

k}
wd

i ≤ W d (8)

In the bi-dimensional case, a maximal clique Q w.r.t. one dimension in-
duces a stable set in the other dimension. Therefore, for every column Q, the
sum of weights of the items of Q (the ”height” of Q) can not exceed the size
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of the container in the other dimension. In D dimensions, we have this valid
following constraint:

Lemma 1.6 For every d ∈ {1, . . . , D} and k ∈ {1, . . . , md},∑
i∈Qd

k

( ∏
d′∈{1,...,D}

d′ �=d

wd′
i

)
≤

∏
d′∈{1,...,D}

d′ �=d

W d′ (9)

Assume that the first k columns in the recursion are set. The sum of all
items volume which have only 0 entries in these columns has to be packed in
the remaining volume. Therefore the following constraint is a valid constraint:

Lemma 1.7 For every d ∈ {1, . . . , D} and k ∈ {1, . . . , md},( ∏
d′∈{1,...,D}

d′ �=d

W d′
)( ∑

l∈{1,...,k}
λd′

l

)
+

∑
i∈Qd

k∩Qd
k+1

(
wd

i −
∑

l∈{1,...,k}
i∈Qd

l

λd
l

)( ∏
d′∈{1,...,D}

d′ �=d

wd′
i

)

+
∑

i/∈{Qd
1,...,Qd

k}

( ∏
d′∈{1,...,D}

wd′
i

)
≤

∏
d′∈{1,...,D}

W d′ (10)

1.2 Breaking some symmetry issues

The first solution which is found by our recursive algorithm is the biggest
matrix satisfying strip decomposition constraints without 0 rows, with respect
to the lexicographic order. Hence, if we are able during the recursion to detect
that if the packing is feasible, then a solution with biggest lexicographic order
should have already been found, then we can safely stop it and return that the
packing is infeasible. We defined several data structures (which are described
in the full paper) in order to early detect such configurations: these greatly
improved the efficiency of the algorithm.

2 Computational results

The main benchmarks are devoted to the bi-dimensional orthogonal knapsack
problem. Our algorithm only checks if a given set of items admits a feasible
packing. Therefore, to run these benchmarks, we used a basic branch-and-
bound algorithm, calling our algorithm to check feasibility.
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The algorithm to check feasibility and the branch-and-bound procedure
have been implemented in Java 6 and tested on a PC with a 3GHz Pentium
IV processor. Runtimes reported by Fekete & Schepers in [10] were obtained
from a similar PC, but their algorithm was developed in C++.

We used classical 2D-OKP benchmarks from [3,5,10] and the two dimen-
sional guillotine cutting problems benchmarks from [2,6].

In Table 1, the column JP (resp. FS, resp BB, resp. A0, A1, A2 and A3)
corresponds to our algorithm (resp. Fekete & Schepers’ algorithm with data
reported from [10], resp. Baldacci & Boschetti’s algorithm with data reported
from [1], resp. Caprara & Monaci’s algorithms, as depicted in [4]).

We report in Table 1 the running times of the algorithms. On cgcut and
gcut instances, our algorithm seems to be significantly faster, especially in the
case of instances cgcut2, gcut4, gcut8 and gcut12. This seems to indicate
that we better handle symmetry issues due to items of same shape.

Results on the five okp instances are less conclusive: Fekete & Schepers’
algorithm is faster (with the exception of okp1). On these instances, the
number of calls to the algorithm to check feasibility is far much bigger in our
case than in Fekete & Schepers’. Hence, Fekete & Scheper’s branch-and-bound
algorithm to handle the knapsack problem is more efficient.

The instance gcut13 is still open. We were able to provide a feasible
solution of value 8647565 (involving 17 items) , thus slightly improving Fekete
& Schepers’s lower bound of value 8622498 [10].

3 Conclusion

In this paper, we gave an exact algorithm to solve the multi-dimensional or-
thogonal knapsack problem, which is based upon Fekete & Schepers’ char-
acterization of feasible packings by so-called packing classes. This algorithm
has two stages: the first stage is a basic branch-and-bound algorithm to select
a subset of items and the second stage checks whether this subset of items
admits a feasible packing. Our main contribution is for the second stage: to
check feasibility, we used consecutive ones matrices as data structures to store
feasible packings. In contrary to Fekete & Scheper’s approach, by using con-
secutive ones matrices, we have a partial knowledge of the relative positions
of the items and their coordinates. This enabled us to handle some symmetry
issues in a close manner to the algorithms of Clautiaux, Moukrim and Carlier
[7,8].

Computer experiments on standard benchmarks show that this new al-
gorithm is competitive. For further work, data structure such as PQ-trees
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Benchmark JP FS BB A0 A1 A2 A3

ngcut1 . . . ngcut11 0 0 0

hccut2 . . . hccut5 0 0 0

cgcut1 0 0 0 0 1 1 1

cgcut2 39 >1800 >1800 >1800 >1800 533 531

cgcut3 0 0 95 23 23 4 4

gcut1 0 0 0 0 0 0 0

gcut2 0 0 0 0 0 25 0

gcut3 0 4 2 >1800 2 276 3

gcut4 28 195 46 >1800 346 >1800 376

gcut5 0 0 0 0 0 0 0

gcut6 0 0 1 0 0 9 0

gcut7 0 2 3 1 0 354 1

gcut8 17 255 186 1202 136 >1800 108

gcut9 0 0 0 0 0 0 0

gcut10 0 0 0 0 0 6 0

gcut11 1 8 3 16 14 >1800 16

gcut12 3 109 12 63 16 >1800 25

gcut13 >1800 >1800 >1800 >1800 >1800 >1800 >1800

okp1 1 10 779 24 25 72 35

okp2 477 20 288 >1800 >1800 1535 1559

okp3 7 5 0 21 1 465 10

okp4 23 2 14 40 2 0 4

okp5 >1800 11 190 40 >1800 513 488

Table 1
Running times (s)
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should be investigated, as they were designed to store more efficiently the lin-
ear consecutive ordering of the maximal cliques of interval graphs. Another
matter of investigation is to derive from this algorithm an efficient mixed inte-
ger programming formulation for the multi-dimensional orthogonal knapsack
problem.
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