
MPQ-trees for orthogonal packing problem

Cédric Joncour 2

University of Bordeaux (LaBRI, INRIA), France

Arnaud Pêcher 1

University of Toulouse (IRIT, INRIA), France

Petru Valicov 3

University of Bordeaux (LaBRI), France

Abstract

Finding a feasible solution for a bi-dimensional Orthogonal Packing Problem (OPP-
2) consists in deciding whether a set of rectangular boxes (items) can be packed in
a ”big” rectangular container without overlapping. The rotation of items is not
allowed. In this paper we present a new algorithm for solving OPP-2, based on the
characterization of solutions using interval graphs proposed by Fekete and Schepers.
The algorithm uses MPQ-trees - combinatorial structures introduced by Korte and
Möhring.

Keywords: Orthogonal Packing Problem, interval graph, MPQ-tree.

1 Email:arnaud.pecher@irit.fr
2 Email:cedric.joncour@math.u-bordeaux1.fr
3 Email:valicov@labri.fr

Electronic Notes in Discrete Mathematics 36 (2010) 423–429

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.054

http://www.elsevier.com/locate/endm


Let V be a set of D-dimensional rectangular shapes. For d ∈ {1, ..., D}
and v ∈ V , wd(v) ∈ Q+ describes the length of v in the dimension d. The
same notation is used for the container C.

The D-dimensional orthogonal packing problem (OPP-D) is to decide if V
fits into the container C without overlapping (V is a feasible set). Formally
speaking, we want to find out whether ∀d ∈ {1, ..., D} there exists a function
fd : V → Q+, such that ∀v ∈ V, fd(v) + wd(v) ≤ wd(C) and ∀v1, v2 ∈ V ,
(v1 �= v2), [fd(v1), fd(v1) + wd(v1)) ∩ [fd(v2), fd(v2) + wd(v2)) = ∅.

Let pv ∈ Q+ be the value associated to an item v ∈ V . The d-dimensional
knapsack problem (OKP-d) consists in computing a feasible set V ′ ⊆ V such

that
∑

v∈V ′
pv is maximal.

In this paper, we consider the bi-dimensional case, which has been the
most studied so far [11,9,6,12,7,3,5,8,1].

1 Fekete & Schepers’ model

For each dimension d, let us consider the projections of items on every axis
xd: let Gd = (V, Ed) be the interval graph, with vertex set V and edge set Ed,
such that ij is an edge if and only if the projections of items i and j intersect
(see Fig. 1).

Fig. 1. Example of 2D packing and its associated interval graphs

Fekete and Schepers proved the following characterization of feasible sets:

Theorem 1.1 (Fekete & Schepers [10]) A set of boxes V is feasible, if
and only if there is a set of D graphs Gd = (V, Ed), d ∈ {1, ..., D} such that:

P1: Every graph Gd is an interval graph.

P2: For every stable set S of Gd,
∑

s∈S

wd(s) ≤ wd(C)

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429424



P3:
D⋂

j=1

Ed = ∅

Fekete, Schepers and van der Veen gave an efficient algorithm for solv-
ing OKP-D by solving its subproblem OPP-D [12]. Their algorithm is based
upon the enumeration of the tuples of graphs satisfying the properties of the-
orem 1.1. Despite its efficiency, their algorithm may enumerate symmetrical
solutions. Our aim is to handle those symmetry issues more efficiently.

2 Our approach

Our algorithm is based upon the characterization of interval graphs involving
MPQ-trees, introduced by Korte and Möhring [13]. An MPQ-tree is an
extension of the notion of PQ-tree defined by Booth and Lueker [4]. It allows
the encoding of an interval graph by exploiting the property of consecutiveness
of its maximal cliques. The main idea of our approach is to generate couples
of MPQ-trees in order to obtain a couple of interval graphs which satisfies the
conditions of theorem 1.1. Contrary to Fekete and Schepers, by generating
MPQ-trees, we are able to assert that the search space stays within the set
of interval graphs.

2

3

54

6

7

81

{2} {2,5} {5,7} {7}

{1} ∅

{3,4} {6}

∅ {8}

Fig. 2. An interval graph and its associated MPQ-tree.

Let G be an interval graph and T its associated MPQ-tree. Each branch
of T represents a maximal clique of G. The internal nodes of T are of type
P or Q. All the nodes (internal or leaves) are labeled by sets of vertices of G
(potentially empty) as follows:

• a P node is labeled by a set of vertices of G which are only contained in all
cliques represented by the subtree of T rooted in this node.

• a leaf is labeled by a set of vertices of G contained only in the clique repre-
sented by this leaf.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429 425



• a Q node, with m sons F1, ..., Fm, is labeled by a list of sets Si, i ∈ {1, ...,m}
each of them being called a section. Each section Si (i ∈ {1, ...,m}) contains
the vertices of G contained in all cliques represented by the subtree rooted
in Fi and also in all cliques represented by the subtree rooted in another Fj

(j ∈ {1, ...,m} and j �= i).

An interval graph is obtained from its (M)PQ-tree by reading its leaves
from left to right. Hence, different (M)PQ-trees may encode the same interval
graph. To avoid treating the same interval graph, the notion of equivalence of
PQ-trees was introduced by Booth and Lueker [4]. This notion is conserved
for MPQ-trees. Two MPQ-trees are equivalent if one can be obtained from
the other by carrying out the following operations a finite number of times:

(i) Arbitrarily permute the sons of a node P

(ii) Reverse the order of sons of a node Q

One of the advantages of using MPQ-trees is that they allow us to easily
represent a valid packing configuration. Figure 3 shows a possible solution
with respect to the tree from figure 2 (the cliques correspond to the intersec-
tions of projections of items on the vertical axis):

Fig. 3. A valid packing configuration corresponding to the MPQ-tree from figure 2

Using the properties of MPQ-trees described above, we designed an algo-
rithm to generate an MPQ-tree for each dimension in order to check if a set
of items is feasible. The algorithm tries to construct the tree recursively by
adding vertices one by one, using the templates defined in [13]. The execution
is continued as long as the properties P2 and P3 from Theorem 1.1 are sat-
isfied. If for each dimension a valid MPQ-tree is constructed, then the given
set of vertices is feasible.

In order to predict unfeasible solutions earlier, we introduced some op-
timizations using similar ideas from [9,8]. Since we have some information
about the relative position of the items already inserted in the MPQ-tree,

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429426



we are able to estimate unused spaces, and cut the enumeration procedure
rapidly if the remaining area is too small to contain the remaining items.

3 Computational results

We report the performance of our algorithm on 37 classical benchmarks for
OKP-2 from [3,2,7,12]. To solve OKP-2 we used a basic branch-and-bound
procedure to select the items to test. Once the items have been selected, the
algorithm generating the MPQ-trees checks their feasibility.

The program was implemented in Java 6 and was tested on a PC (Pentium
4, 3GHz), which is comparable to the one used by Fekete and Schepers [12].

Table 1 shows the running times of our algorithm along with the ones
existing in the literature, as reported in [12]. The first column (JPV) gives our
runtimes. The columns FS and BB correspond respectively to the algorithms
of Fekete, Schepers & van der Veen [12], and Baldacci & Boschetti [1]. The
columns A0, A1, A2 and A3 correspond to the algorithms of Caprara and
Monaci, as depicted in [5].

4 Conclusions

The running times of our algorithm are of interest since it is one of the two
algorithms to solve all benchmarks within the time limit of 1800 seconds (with
the exception of the instance gcut13 which is still an open benchmark, the
optimal value being unknown). Our running times are significantly better for
6 instances (cgcut2, gcut3, gcut8, gcut11, gcut12 and okp1), though Fekete
& Schepers’ algorithm outperforms ours for the 2 instances okp2 and okp5.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429 427



Benchmark JPV FS BB A0 A1 A2 A3

ngcut1 - 12 0 0 0

hccut2 - 5 0 0 0

cgcut1 0 0 0 0 1 1 1

cgcut2 135 >1800 >1800 >1800 >1800 533 531

cgcut3 3 0 95 23 23 4 4

gcut1 0 0 0 0 0 0 0

gcut2 0 0 0 0 0 25 0

gcut3 0 4 2 >1800 2 276 3

gcut4 109 195 46 >1800 346 >1800 376

gcut5 0 0 0 0 0 0 0

gcut6 0 0 1 0 0 9 0

gcut7 0 2 3 1 0 354 1

gcut8 48 253 186 1202 136 >1800 168

gcut9 0 0 0 0 0 0 0

gcut10 0 0 0 0 0 6 0

gcut11 2 8 3 16 14 >1800 16

gcut12 6 109 12 63 16 >1800 25

gcut13 >1800 >1800 >1800 >1800 >1800 >1800 >1800

okp1 1 10 779 24 25 72 35

okp2 67 20 288 >1800 >1800 1535 1559

okp3 1 5 0 21 1 465 10

okp4 1 2 14 40 2 0 4

okp5 319 11 190 40 >1800 513 488

Table 1
Running times in seconds

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429428



References

[1] Baldacci, R. and M. A. Boschetti, A cutting plane approach for the two-
dimensional orthogonal non-guillotine cutting stock problem, EJOR 183 (2007),
pp. 1136–1149.

[2] Beasley, J. E., Algorithms for unconstrained two-dimensional guillotine cutting,
JORS 36 (1985), pp. 297–306.

[3] Beasley, J. E., An exact two-dimensional non-guillotine cutting tree search
procedure, Operations Research 33 (1985), pp. 49–64.

[4] Booth, K. S. and G. S. Lueker, Linear algorithms to recognize interval graphs
and test for the consecutive ones property, in: Proceedings of the seventh Annual
ACM Symposium on Theory of Computing (STOC’75), 1975, pp. 255–265.

[5] Caprara, A. and M. Monaci, On the two-dimensional knapsack problem, Oper.
Res. Lett. 32 (2004), pp. 5–14.

[6] Carlier, J., F. Clautiaux and A. Moukrim, New reduction procedures and lower
bounds for the two-dimensional bin packing problem with fixed orientation,
Computers and Operations Research 34 (2007), pp. 2223–2250.

[7] Christofides, N. and E. Hadjiconstantinou, An exact algorithm for orthogonal
2-d cutting problems using guillotine cuts, European Journal of Operational
Research 83 (1995), pp. 21–38.

[8] Clautiaux, F., J. Carlier and A. Moukrim, A new exact method for the
orthogonal packing problem, European Journal of Operational Research 183
(2007), pp. 1196–1211.

[9] Clautiaux, F., A. Jouglet, J. Carlier and A. Moukrim, A new constraint
programming approach for the orthogonal packing problem, Computers and
Operations Research 35 (2008), pp. 944–959.

[10] Fekete, S. P. and J. Schepers, On more-dimensional packing i: Modeling,
Technical report, University of Köln, Germany (1997).

[11] Fekete, S. P. and J. Schepers, On more-dimensional packing iii: Exact
algorithms, Technical report, University of Köln, Germany (1997).

[12] Fekete, S. P., J. Schepers and J. van der Veen, An exact algorithm for higher-
dimensional orthogonal packing, Operations Research 55 (2007), pp. 569–587.

[13] Korte, N. and R. H. Möhring, An incremental linear-time algorithm for
recognizing interval graphs, JOC 18 (1989), pp. 68–81.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 423–429 429


	Fekete & Schepers' model
	Our approach
	Computational results
	Conclusions
	References

