
Column Generation based Primal Heuristics

C. Joncour(1,3), S. Michel (2), R. Sadykov (3,1), D. Sverdlov (3), F. Vanderbeck (1,3)

(1) Institut de Mathmatiques, Universit Bordeaux 1, France
(2) Institut suprieur d’tudes logistiques, Universit du Havre, France

(3) Team RealOpt, INRIA Bordeaux-Sud-Ouest, France

Abstract

In the past decade, significant progress has been achieved in developing generic
primal heuristics that made their way into commercial mixed integer programming
(MIP) solver. Extensions to the context of a column generation solution approach
are not straightforward. The Dantzig-Wolfe decomposition principle can indeed
be exploited in greedy, local search, rounding or truncated exact methods. The
price coordination mechanism can bring a global view that may be lacking in some
“myopic” approaches based on a compact formulation. However, the dynamic gen-
eration of variables requires specific adaptation of heuristic paradigms. The column
generation literature reports many application specific studies where primal heuris-
tics are a key to success. There remains to extract generic methods that could be
seen as black-box primal heuristics for use across applications. In this paper we re-
view generic classes of column generation based primal heuristics. We then focus on
a so-called “diving” method in which we introduce diversification based on Limited
Discrepancy Search. While being a general purpose approach, the implementation
of our heuristic illustrates the technicalities specific to column generation. The
method is numerically tested on variants of the cutting stock and vehicle routing
problems.

Keywords: Primal Heuristic, Column Generation.

Electronic Notes in Discrete Mathematics 36 (2010) 695–702

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.088

http://www.elsevier.com/locate/endm

1 Introduction

Heuristics are algorithms that attempts to derive “good” primal feasible so-
lutions to a combinatorial optimization problem. They include constructive
methods that build a solution and improvement methods such as local search
procedure that starts with an incumbent. The term “primal heuristic” gen-
erally refers to methods based on the tools of exact optimization, truncating
an exact procedure or constructing solutions from the relaxation on which the
exact approach relies: techniques range from greedy constructive procedures
to rounding a solution of the linear programming (LP) relaxation, using the
LP solution to define a target, or simply exploiting dual information for pric-
ing choices. Alternatively, exact solvers can be used as subroutines in building
heuristic solutions, for instance to explore a neighborhood in a local search
procedure. Today’s MIP solvers rely heavily on generic primal heuristics: high
quality primal values help pruning the enumeration by bound and preprocess-
ing; they are also essential in tackling large scale real-life applications where
the exact solver is given limited running time.

Heuristics based on exact methods have found a new breath in the recent
literature. The latest developments are reviewed in [5]. Let us just mention
a few landmarks: the Large Scale Neighborhood Search [3], the Relaxation
Induced Neighborhood Search [8], the local branching heuristic [12], the fea-
sibility pump algorithm [1,11]. Meta-heuristic paradigms such as oscillation
between intensification and diversification of the search, and use of histori-
cal memory have also inspired progress in primal heuristics. Recently such
work has been extended from the context of binary integer programs to gen-
eral integer programs. Our purpose is to examine possible extensions to the
case where one works with a Dantzig-Wolfe reformulation of the problem in-
volving an exponential number of columns. The above mentioned landmark
heuristics have not been applied directly to the Dantzig-Wolfe reformulation
because setting bounds on column values can hardly been implemented in
a context of dynamic column generation (the pricing problem ignores such
bounds; modifying it to enforce such bounds typically induces an harder to
solve subproblem). Alternatively, one could potentially develop an implemen-
tation of classic primal heuristics based on projecting the master solution in
the original variable space. But, in some applications, there might not exist
a bijective relation between compact formulation and Dantzig-Wolfe reformu-
lation. Here, we consider how one can develop constructive or improvement
heuristics specifically for the column generation context.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702696

2 An overview of column generation based heuristics

Assume a mixed integer program (IP):

[P] min{cx : Ax ≥ a, Bx ≥ b, x ∈ R
n
+ × Z

p
+︸ ︷︷ ︸

x∈X

}

where a subset of constraints Bx ≥ b defines a subsystem X over which
optimization is “relatively easy” while Ax ≥ a represent “complicating con-
straints”. For many structured applications, Bx ≥ b has a block diagonal
structure with identical blocks. The structure of [P] can exploited by refor-
mulating it as a master program:

[M] min{
∑
g∈G

(cxg)λg :
∑
g∈G

(Axg)λg ≥ a;
∑
g∈G

λg = K ∀k; λg ∈ N ∀g}

where G is the set of generators of X and K is the number of identical blocks
in Bx ≥ b. We assume a bounded subsystem, thus G is an enumeration of the
feasible solutions to X, i.e. X = {xg}g∈G. |G| is typically exponential in the
input size. Reformulation [M] is solved by branch-and-price: at each node of
the branch-and-bound tree the linear relaxation of [M] is solved by column
generation with a pricing problem of the form: minx∈X{(c− πA) x}, where π
is the dual solution associated with constraints Ax ≥ a in [M].

The most commonly used generic primal heuristic in this column genera-
tion context is the so-called restricted master heuristic. The column generation
formulation is restricted to a subset of generators G and associated variables,
and it is solved as a static IP. The restricted set G can either be generated
heuristically, or be made of the columns generated during the master LP so-
lution, or a mixture of both. The main drawback of this approach is that the
resulting restricted master integer problem is often infeasible (the columns of
G – typically defined by the LP solution – may not be combined to an integer
solution). In an application specific context, an ad-hoc recourse can be de-
signed to “repair” infeasibility. Such implementation has been developed for
network design [6], vehicle routing [2,7,20] problems.

Simple greedy heuristic strategies have also been used: one iteratively adds
a greedy selected column (the one with the best so-called “pseudo-cost”) to
the partial solution until feasibility is reached. Column selection criteria can
make use of the pricing procedure: for instance selecting columns that have
the smallest ratio of reduced cost per unit of constraint satisfaction (based on
dual price estimates that can be re-evaluated in the course of the algorithm).
One can also use the master LP solution as a base for column selection. This
gives rise to so-called rounding heuristics. A standard rounding strategy for

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702 697

the common set covering type master formulation consists of 3 steps: (i) an
initial partial solution is obtained by rounding downwards the master LP so-
lution, (ii) columns whose LP values are closest to their rounded part are then
considered for round up while feasible, (iii) an ad-hoc constructive procedure
is used to complete the solution. Local search can be used to improve the
solutions while implementing some form of diversification. Typically one will
remove some of the columns selected in the primal solution and reconstruct
a solution with one of the above techniques. Greedy and rounding heuristics
(sometimes coupled with local search) have been successfully applied (f.i in
[4,19]). However, reaching feasibility remains a difficult issue that is often han-
dled in an application specific manner along with greedy selection of columns,
rounding directions or neighborhood definition. Deriving general purpose ap-
proaches is difficult. A generic way to complete a partial solution in search
for feasibility is to generate further columns through pricing. This is precisely
the strength of diving heuristics.

3 Diving heuristics

A diving heuristic is a depth-first heuristic search in the branch-and-price tree.
At each node, a branch is heuristically selected based on greedy or rounding
strategies. After branching the master LP is re-optimized (exactly or approx-
imately). The branching rule used in such context is typically quite different
from the one used in an exact approach: in a diving heuristic, one is not con-
cerned with balancing the tree and one can overcome issues of variable fixing
that are not compatible with column generation. Generating new columns
in the process of re-optimization is an important feature for the success of
the approach as it allow to construct feasible solutions. Observe that fixing a
partial solution does not impair column generation: the residual master can
be tackled in the same way as the original master LP as no specific bounds on
master variables have been set. In particular, columns previously selected in
the partial solution remain in the formulation and may be selected again at a
further stage.

Diving heuristics admit many possible implementation variants as illus-
trated in previous application specific studies: they were used on vehicle rout-
ing [15,18], crew rostering [14,13], cutting stock [9,19], and lot-sizing [9] prob-
lems. A key feature is the column selection mode that drives the heuristic:
using greedy, random or rounding strategies (rounding down, up, to the closest
integer, or based on a threshold [9,13,15,18]). Note that several columns can
be taken into the solution simultaneously, and a constructive heuristic can be

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702698

applied in an attempt to complete the solution at any stage [4,17]. A template
of such diving procedure is given in Table 1.

Table 1
Depth first search diving heuristic

Algorithm 1

Step 1: Solve the current master LP.

Step 2: Select columns into the current solution at heuristically set values.

Step 3: If the partial solution defines a complete primal solution, record this
solution and goto Step 6.

Step 4: Update the master (right hand side) and the pricing problems (setting
new bounds on subproblem variables to generate proper columns).

Step 5: If residual master problem is shown infeasible through preprocessing,
goto Step 6. Else, return to Step 1.

Step 6: Stop.

In our implementation, columns are selected one at the time in Step 2, se-
lecting in the current master LP solution the λg variable value closest to integer
(among roundings that are feasible for the master program). The selected col-
umn g is taken in the solution at a value equal to the closest integer to λg.
An original feature not found in the above mentioned references is a limited
backtracking that implements a diversification mechanism. The solution ob-
tained through the initial depth-first exploration of the tree is considered as a
reference solution around which we implement a Limited Discrepancy Search
(LDS) [16]. The latter is controlled by two parameters: maxDepth and
maxDiscrepancy: up to depth maxDepth, we considered to deviate from
the reference solution in up maxDiscrepancy ways. Specifically, in Step 2,
we avoid selecting columns present in a tabu list (of size ≤ maxDiscrepancy)
that consists of columns selected in previous branches from which we wish to
diversify the search. In step 6, we backtrack, while the current depth is greater
than maxDepth or the current Discrepancy level = maxDiscrepancy. If
such backtracking is not possible, we stop. Otherwise, we create a new branch
defined by a tabu list made of columns that were tabu at the ancestor node
or were selected in previous child nodes of the ancestor node. The resulting
exploration tree is illustrated in Figure 1 for two parameter settings.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702 699

(a) maxDepth = 3,
maxDiscrepancy = 1

(b) maxDepth = 2,
maxDiscrepancy = 2

Fig. 1. Illustration of a tree search with bounded depth and discrepancy

4 Computational results

We have build our diving heuristic into BaPCod [21], a generic Branch-and-
Price Code that we developed. To test its usefulness, we compare the exact
branch-and-price algorithm with and without the use of the primal heuristic at
the root node, and the use of the diving heuristic only. Table 2 presents com-
putational results on standard instances for the cutting stock problem (CSP)
[22], bin packing problem with conflicts (BPWC) [10] (considering “hard in-
stances” with a conflict graph of density of 10 to 40%), the graph vertex
coloring problem (VCP) and classical vehicle routing problem (VRP) using
the class A instances of http://neo.lcc.uma.es/radi-aeb/webvrp/. For
maxDepth = 3 and maxDiscrepancy = 2, Table 2 reports the problem
class, the instances size, the number of instances tested (#inst.), the number
of unsolved instances within 30 minutes (#unsolv.), the average size of the
branch-and-price tree (#nodes, using the branching scheme of [23]), the av-
erage solution time (in seconds). For the pure heuristic (DH only), we report
the number of instances for which the solution found is not optimal (#un-
solv.) and the average gap of the solution found with the optimum. Even
when the DH solution has no gap with the optimum, it can have a gap with
the column generation dual bound and hence no prove of optimality is known,
which induces branching.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702700

Table 2
Comparing branch-and-price with and without our diving heuristic (DH).

pure B-a-P DH + B-a-P DH only

problem size #inst. #unsolv. #nodes time #unsolv. #nodes time #unsolv. gap time

CSP 50 10 0 245 26 0 0% 2

CSP 80 10 0 417 192 0 0% 14

BPWC 60–500 280 9 148 167 0 2.9 102 2 0.02% 75

VCP 11–211 18 0 17 116 0 1.2 34 0 0% 26

VRP An32-80 27 17 5.25% 70

References

[1] Tobias Achterberg and Timo Berthold. Improving the feasibility pump.
Discrete Optim., 4(1):77–86, 2007.

[2] Y. Agarwal, K. Mathur, and H. M. Salkin. A set-partitioning-based exact
algorithm for the vehicle routing problem. Networks, 19(7):731–749, 1989.

[3] Ravindra K. Ahuja, Özlem Ergun, James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighborhood search techniques. Discrete Appl.
Math., 123(1-3):75–102, 2002. Workshop on Discrete Optimization, DO’99
(Piscataway, NJ).

[4] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional
cutting stock problem with multiple stock lengths. European J. Oper. Res.,
141(2):274–294, 2002. Cutting and packing.

[5] Timo Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,
Technische Universität Berlin, 2006.

[6] A. Chabrier. Heuristic branch-and-price-and-cut to solve a network design
problem. In Proceedings CPAIOR, Montreal, Canada, may 2003.

[7] A. Chabrier, E. Danna, and C. Le Pape. Coopération entre génération de
colonnes et recherche locale appliquées au problème de routage de véhicules.
In Huitièmes Journées Nationales sur la résolution de Problèmes NP-Complets
(JNPC), pages 83–97, Nice, France, may 2002.

[8] Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation
induced neighborhoods to improve MIP solutions. Math. Program., 102(1, Ser.
A):71–90, 2005.

[9] Zeger Degraeve and Raf Jans. A new Dantzig-Wolfe reformulation and branch-
and-price algorithm for the capacitated lot-sizing problem with setup times.
Oper. Res., 55(5):909–920, 2007.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702 701

[10] Albert E. Fernandes Muritiba, Manuel Iori, Enrico Malaguti, and Paolo Toth.
Algorithms for the bin packing problem with conflicts. INFORMS Journal on
Computing, page ijoc.1090.0355, 2009.

[11] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Math.
Program., 104(1, Ser. A):91–104, 2005.

[12] Matteo Fischetti and Andrea Lodi. Local branching. Math. Program., 98(1-3,
Ser. B):23–47, 2003. Integer programming (Pittsburgh, PA, 2002).

[13] Michel Gamache, François Soumis, Gérald Marquis, and Jacques Desrosiers. A
column generation approach for large-scale aircrew rostering problems. Oper.
Res., 47(2):247–263, 1999.

[14] Martin Grötschel, Ralf Borndörfer, and Andreas Löbel. Duty scheduling in
public transit. Jäger, Willi (ed.) et al., Mathematics—key technology for the
future. Joint projects between universities and industry. Berlin: Springer. 653-
674 (2003)., 2003.

[15] Oktay Gunluk, Tracy Kimbrel, Laszlo Ladanyi, Baruch Schieber, and
Gregory B. Sorkin. Vehicle Routing and Staffing for Sedan Service.
Transportation Science, 40(3):313–326, 2006.

[16] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In
Proc. IJCAI-95, Montreal, Quebec, pages 607–613. Morgan Kaufmann, 1995.

[17] Krzysztof C. Kiwiel. An Inexact Bundle Approach to Cutting-Stock Problems.
INFORMS Journal on Computing, page ijoc.1090.0326, 2009.

[18] Sophie Michel. Optimisation des tournées de véhicules combinées à la gestion
de stock. PhD thesis, Université Bordeaux 1, France, 2006.

[19] Nancy Perrot. Integer Programming Column Generation Strategies for the
Cutting Stock Problem and its Variants. PhD thesis, Université Bordeaux 1,
France, 2005.

[20] É. D. Taillard. A heuristic column generation method for the heterogeneous
fleet VRP. RO Oper. Res., 33(1):1–14, 1999.

[21] F. Vanderbeck. Bapcod - a generic branch-and-price code, 2008.
http://wiki.bordeaux.inria.fr/realopt/.

[22] François Vanderbeck. Computational study of a column generation algorithm
for bin packing and cutting stock problems. Math. Program., 86(3, Ser. A):565–
594, 1999.

[23] François Vanderbeck. Branching in branch-and-price: a generic scheme.
Mathematical Programming, 2010. doi 10.1007/s10107-009-0334-1.

C. Joncour et al. / Electronic Notes in Discrete Mathematics 36 (2010) 695–702702

	Introduction
	An overview of column generation based heuristics
	Diving heuristics
	Computational results
	References

