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We consider an application of the inventory routing problem. A fleet of vehicles is devoted to
collecting a single product from geographically dispersed sites. Each site has its own accumulation
rate and stock capacity. On each visit, the vehicle empties the stock. At the tactical level, the
objective is to minimize the fleet size and an estimate of the distance travelled. Moreover, for
practical purposes, routes must be geographically clustered and the planning must be repeated over
the time horizon with constrained periodicity. We develop a truncated branch-and-price-and-cut
algorithm combined with rounding and local search heuristics that yield both primal solutions and
dual bounds. Periodic plannings are generated for vehicles by solving a multiple choice knapsack
problem. The issues related to the construction of the customer plannings are dealt with in a master
program. The key to the success of the approach is the use of a state-space relaxation technique in
formulating the master program to avoid the symmetry in time. Real-life instances of the problem
are solved with reasonable optimality gaps.
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1 Introduction

The Inventory Routing Problem (IRP) combines issue of routing for pick-up or deliveries with
inventory management at customer sites. Three decisions have to be made: (i) when to serve a
customer; (ii) how much to deliver to a customer when it is served; and (iii) which delivery routes
to use. Many variants are discussed in the literature [1, 2, 5]. The existing approaches tend to
make restrictive assumption (such as assuming a fixed partition policy) or to adopt a hierarchical
optimization scheme where planning is decided before routing. Most approaches are heuristics with
no warranty on the deviation to optimality and are specific to the problem variant.

We consider real-life instances of the problem (using data coming from our industrial part-
ner). In the application that motivates our study, the stock management policy is simple with
deterministic consumption rate and an order-up-to-level policy. Section 2 describes this problem
and our assumptions. The problem is well-suited for decomposition, hence our approach relies
on Dantzig-Wolfe reformulation [9] as outlined in Section 3. The latter eliminates the symmetry
in vehicle indexing (vehicles are identical) but still suffers from a symmetry in time (shifting the
starting time of routes in a periodic solutions can define a symmetric solution). Hence, we model
average behavior by considering a single aggregate variable for all routes that only differ by their
starting date. Cutting planes are added to the master to improve the formulation. Dual bounds are
obtained by LP relaxation and tightened through partial branching. Heuristics based on column
generation give primal bounds. Sections 4 and 5 present methodology to obtain respectively dual
and primal bounds. Primal heuristics developed here in a column generation context are generic
and can be used for others problems.



2 The Problem

The application considered here concerned the design of routes for collecting a single product from
customers who accumulate it in their stock. At the tactical planning level, filling rates at collection
points are seen as determinist. The stock management rule is simple: at each pick-up, the stock is
emptied (this is the equivalent of an “order up to level” policy). Thus, the collected quantities can
be normalized in number of periods that have passed since the last visit. The customer stock ca-
pacity implies a maximum interval between two visits, tmax. The stock management costs reduce
to the transportation cost.

In search for a periodic solution, we restrict the solution space by imposing that route period-
icity are selected from a restricted set P: for example P = {1,2,3,4,6}. For each route, we must
select its periodicity p € P and its first occurrence, i.e. its starting date s < p. Then, the solution is
H periodic where H is bounded by the least common multiple of the periodicities (in our example
H < T =12). T is the maximal length of the regeneration cycle. The planning requirements boil
down to ensuring that the stocks produced on each period of the regeneration cycle are picked-up
in some route.

The exact routing of vehicles is considered as an operational issue. At the tactical planning
level, we define a route by the cluster of visited customer sites. The quantities collected at each visit
point are defined in such a way that their sum does not exceed the vehicle capacity. The operational
routing cost is approximated by the sum of the distances to the cluster center defined as one of the
visited points (it is the seed of the route). Thus, each route is associated to a star in the graph
of customer points. This measure favor the grouping of customers that are geographically close to
each other. The planning constraints will induces the formation of clusters that group customers
sharing the same frequency of collect.

The cost function includes fixed costs per vehicle (the main objective being to minimize the
number of vehicle used), but it also includes our cluster approximation of routing costs that yields
clusters of points that are geographically gathered around their seed.

3 A Dantzig-Wolfe Decomposition approach

The problem decomposes into planning issues on the hand and routing issues on the other. We
formulate the planning problem in terms of variables associated with the selection of routes. The
definition of a route specifies the visited customers, the quantities picked-up at each site (expressed
in number of periods worth), the periodicity and the starting date.

Once the periodicity, p, of a route is fixed, as well as its starting date, s, and its seed, k, the
problem of selecting the members of the cluster and associated picked-up quantities reduces to a
variant of the multiple choice knapsack problem: let ¢;¢ equal to 1 if the customer ¢ is in the cluster
and the quantity that is collected is the production of ¢ periods; the associated profit is p;s; the



knapsack formulation is

max Y ; Pidie (1)
b = 1 (2)
¢

o < 1 Vi#k (3)
l
Z iy < W (4)
il
¢ € {01} Vil (5)

where d; is the accumulation rate at customer site ¢+ and W is the vehicle capacity.

Let {(c?,¢9,p%,5)}qeq be the enumerated set of periodic routes, g, that are defined as the
solutions, ¢? to the above knapsack subproblem along with their cost, ¢?, and the definition of a
periodicity p? and a starting date, s?. From the information given by (¢?, p?, s7), one can generate
an indicator matrix 67 with d}, = 1 if the demand of period ¢ for customer i € N is covered by route
q and zero otherwise, while §f , = 1 if the vehicle is used in period ¢ and zero otherwise. Then, the
inventory routing problem can be formulated as:
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where 0 < a < 1is a coefficient to balance both term in the objective, A\, = 1 if periodic route ¢ is
used and zero otherwise, while Vmax is the maximum number of vehicles used in a period. The
variables A, and associated columns are generated dynamically in the course of the optimisation
procedure (using a column generation approach).

The above formulation suffers from a symmetry in ¢: equivalent solutions can be defined that
differ only by a permutation in the choice of starting dates. To avoid this drawback, we aggregate
periods and model an average behavior. Technically speaking, we implement a state space relaxation
in the space of the columns: aggregating all columns that differ only by their starting dates, we
project our column space as follows

{(cq7¢q7pq78q>}qEQ pT’Oj {(CT7¢r7pr)}TER'
At each column r is associated a set of columns ¢ such that r is the projection of ¢:
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While the former formulation is referred to as the discrete time master problem, the reformulation
obtained after performing this mapping is called the aggregate master. It takes the form:
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where ), is the number of times that a vehicle uses periodic route r (A, = > 4eQ(r) Ag) and Vaver
is the average number of vehicles used per period.

We show that discrete and aggregate master program have the same optimal LP solution, but
the solution of the aggregate master by column generation is much faster. Hence, we use the
aggregate master to compute dual bounds. However, from an integer solution point of view, both
formulations are not equivalent: the aggregate formulation is a relaxation of the problem. Hence,
the discrete time formulation remains useful for computing primal bounds through heuristics.

4 Branch-and-Price-and-Cut

To obtain dual bounds, the aggregate master is solved to LP optimality by column generation. The
pricing problem consist in generating a periodic route: the knapsack problem (1-5) is solved for
each periodicity and each seed. A dynamic program [6] returns the knapsack solution. To speed
up the resolution time, a preprocessing is performed at each step (the dynamic program is called
only if there is hope to find a good solution and some items are deleted). Then the enumeration
of the pricing subproblems associated with each pair (periodicity, seed) stops as soon as a column
with negative reduced cost is found.

A cutting planes procedure is implemented based on a family of valid inequalities that we
derived from (12) using a rounding procedure. Let h be an integer ranging from 1 to 7' — 1 and
i € N such that tmax; > 1, theses inequalities take the form:
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After each addition of a cut, we return to the column generation procedure.

Then, we further improve the dual bound through a truncated branch-and-bound procedure:
we branch only on variable Vaver. Given the structure of our objective that focuses on vehicle
use, this branching has an important impact of the bound. Moreover, the branch were Vaver is
rounded down can often be proved infeasible.

The dual bound improvement observed by adding cut is small (less than 2% in our numerical
tests), but the improvement obtained through partial branching can get bigger (depending on the
instance, it ranges from less than 1% up to more than 15%).



5 Heuristics based on column generation

To obtain primal bounds, we adapt several classical heuristics to the context of a column generation
approach. We provide a classification of such methodologies and a review of previous work where
greedy, local search, rounding or other LP based heuristics have been used in a decomposition
approach [3, 4, 7, 8].

A natural way to obtain an integer solution is to solve the master restricted to the set of gener-
ated columns as an integer program. For this, we must use the discrete master formulation (note
that each column r generated for the aggregate master translates into a column ¢ for each feasible
starting date s in the discrete master). The rounding heuristic differs from the restricted master
heuristic by the fact that new columns are generated in the course of the procedure but instead of
fully exploring a branch-and-bound tree, a heuristic selection of a branch is made at each node: a
column of the LP solution is rounded up and the master LP is re-optimized by column generation.
For this implementation we use both the aggregate and the discrete master programs: LP solution
are computed for the aggregate master; but the partial master solution is recorded in the discrete
formulation (choosing a starting date for each column selected by the rounding procedure) and the
columns used in the aggregate formulation are restricted to those that could be part of an integer
solution to the residual discrete master program. Our third heuristic is a local search procedure
where a neighbor solution is defined by removing a few columns from the current integer solution
and re-building a complete integer solution with the rounding heuristic procedure.

Our computational experiments show that solving the restricted discrete master program to
integer optimality is quite computationally intensive (for instances with 100 customers we have no
solution after 2 hours of computing time); this is partially due to symmetry. With the rounding
heuristic, we obtain primal bounds whose optimality gap is around 10% for instances of industrial
size (our test bed includes instances with up to 260 customers). By imposing some restrictions on
solution space (such as further restricting the set P) we sometime get smaller optimality gaps, a
post-optimisation procedure gives the solution on the larger set P. The local search procedure only
allows small improvements.

6 Conclusion

We consider a real-life application of the inventory routing problem on a tactical planning level. Our
primal heuristics based on exact optimisation tools provides much better solutions than the greedy
heuristic approaches that we originally tested. Our dual bounds allow us to provide a guarantee
on the optimality gap. Moreover, comparison with the solution currently used by our industrial
partner show significant improvements. The key to success is a formulation modelling an average
behavior to avoid symmetry.
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