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Abstract. In this paper, we consider an abstract fourth order boundary value prob-
lem where the coefficients are accretive operators in Hilbert space. We show existence,
uniqueness and maximal regularity of the solution under some necessary and sufficient
conditions on the data. To this end, we give an explicit representation formula, using
analytic semigroups, sectorial operators with Bounded Imaginary Powers, the theory of
strongly continuous cosine operator functions and the perturbation theory of m-accretive
operators. Illustrative example is also given.

1. introduction

The main purpose of this paper is to investigate the solutions of the following fourth
order abstract linear differential equation under several sets of assumptions

u(4)(x)− 2Bu′′(x)− Cu(x) = f(x), x ∈ (a, b), (1.1)

where u(x) is a vector-valued function in an appropriate (finite or infinite dimensional)
Hilbert space H, B and C are linear (bounded or unbounded) accretive operators on H,
while the function f ∈ Lp(a, b,H), 1 < p < +∞, a < b. Here we are concerned with
the existence, uniqueness and Lp-maximal regularity of the solutions of (1.1) when this
problem is supplemented with a suitable types of nonhomogeneous boundary conditions.

By using splitting method of Krein, [15], the equation is transformed to the study of
two coupled equations of second order. The first one is an elliptic problem and the second
one is an hyperbolic problem. They are not directly accessible by standard methods. The
main difficulty is to analyse this two kinds of problems simultaneously.

Several authors have studied equation of second order when it is regarded as an abstract
problem of parabolic or hyperbolic type. See, for instance [6], [7], [8], [15], [24], [30] and
references therein cited. Fourth-order equations as (1.1) also arise in a variety of physical
problems as in [16], [17] and [29].

We extend the work done in [29], where a biharmonic equation has been formulated
as (1.1) with C = −B2. But by the same splitting method this work leads to the study
of two coupled elliptic equations of second order. An explicit representation formula
of the solution to (1.1) was given under various boundary conditions. This was done

with the help of the operator
√
B as a root of the characteristic operational equation,

X4 − 2BX + B2X = 0 for what the operator B was assumed to be sectorial operator,
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then the existence of
√
B was ensured, see [29]. The representation formula of the solution

is based on the operator −
√
B which generates an analytic semi-group. The analogy of

this idea to the general case, up to now is still not obvious.
In our analysis, the coupled hyperbolic and elliptic equations of second order are solved

to give an explicit solution to the problem (1.1) with suitable boundary conditions. Our
approach is essentially based on the fractional powers of m-accreive operators, the pertur-
bation theory of such operators, the techniques of the holomorphic semigroups generated
by them and also the theory of strongly continuous cosine operator functions.

Remarkably, for the first time, the solution given is expressed in term of analytic semi-
groups and strongly continuous cosine operator functions. Such results are interesting,
firstly because they provide an existence, uniqueness and Lp-maximal regularity of the
solution for the fourth order abstract boundary value problem (1.1) under some neces-
sary and sufficient conditions on the data. Moreover, they are of interest regarded as an
application of the perturbation theory of m-accretive operators, [10], [11], [13], [20], [21],
[22], [32]. This allows us to find various sufficient conditions on the accretive operators B
and C, under which our results remains valid.

Our paper is organised as follows. Before to give our mains results, we review in Section
2 some basic concepts, notation and properties needed. The precise formulations of the
results of the present work will be given in Section 3, where we describe the problem and
the main assumptions. We also give technical results which help us to prove our main
result. In Section 4, an example of initial boundary problem, to which theory applies, is
given.

2. Preliminaries

Throughout this paper H is a complex Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. For a closed linear operator A on H we denote by D(A), R(A), N (A),
σ(A) and ρ(A) the domain, the range, the kernel, the spectrum and the resolvent set of
A, respectively. The space of bounded linear operators on H is denoted by B(H). For
two possibly unbounded linear operators A, B on H their product AB is defined on its
natural domain D(AB) := {x ∈ D(B) : Bx ∈ D(A)} and their sum A + B is defined in
D(A+B) = D(A)∩D(B). An inclusion A ⊆ B denotes inclusion of graphs, i.e., it means
that B extends A. A possibly unbounded operator A on H commutes with a bounded
operator C ∈ B(H) if the graph of A is C × C-invariant, or equivalently if CA ⊆ AC.

2.1. Accretive operators framework.
The numerical range of an operator A : D(A)→ H is the set

W (A) := {〈Ax, x〉 : x ∈ D(A), ‖x‖ = 1},

It is known that the set W (A) is convex set of the complex plane (the Toeplitz-Hausdorff
theorem), and in general is neither open nor closed, even for a closed operator A. Fur-
thermore, if A is a bounded operator then W (A) has the so-called spectral inclusion
property

σ(A) ⊂ W (A). (2.1)

For unbounded operator additional assumptions are needed to ensure (2.1), this is the

case, when C \W (A) is connected and contains a point of ρ(A), see Theorem V.3.2 in
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[13]. In particular, in the maximal accretive operators case it is always satisfied. We now
recall the definition of accretive operators.

Definition 2.1. Let A be an operator inH with domain D(A). We say that A is accretive
if

W (A) ⊆ C+ = {λ ∈ C : Re(λ) ≥ 0}.
If A is accretive and (I+A) is surjective, we say that A is maximal accretive, or m-accretive
for short.

Operator A is called maximal accretive if for every accretive operator S with A ⊂ S it
follows that A = S. Then A is m-accretive if and only if A is accretive and has no proper
accretive extensions in H.

In particular, every m-accretive operator is accretive, closed and densely defined (see
[13], p. 279). Furthermore,

(A+ λI)−1 ∈ B (H) and
∥∥(A+ λI)−1

∥∥ ≤ 1

λ
, for λ > 0.

In particular, a bounded accretive operator is m-accretive.
An operator A is called dissipative (resp. m-dissipative) if −A is accretive (resp. m-

accretive). A normal operator A (bounded or not) is m-accretive if and only if its spectrum
is contained in the half complex plane C+. Hence a normal accretive operator is m-
accretive. Next we collect some basic results about linear accretive operators, see for
instance [13] or [14].

Lemma 2.2. Let A be an accretive operator. Then R(I +A) is closed if and only if A is
closed.

Proposition 2.3. Let A be an m-accretive operator. Then we have the following.

(1) A∗ is m-accretive.
(2) N (A) = N (A∗).
(3) If A is injective, then A ∈ BIP (H, π/2).

Here, BIP (H, θ) denotes the class of Bounded Imaginary Powers operators of angle θ on
H.

For more details on BIP operators, we refer to [25] or [27].

Proposition 2.4. Let A be a densely defined closed accretive operator. Then A is m-
accretive if and only if A∗ is accretive.

For ω ∈ [0, π/2), we denote by

S(ω) := {z ∈ C \ {0} : | arg(z)| < ω} ,
the open sector of C \ {0} with semi-angle ω. An operator A will be said is ω-accretive if

W (A) ⊂ S(ω) := {z ∈ C : | arg(z)| ≤ ω} ,
or, equivalently,

|Im (〈Ax, x〉) |≤tan(ω) Re (〈Ax, x〉) , for all x ∈ D(A).

An ω-accretive operator A is called m-ω-accretive, if it is m-accretive. We have A is
m-ω-accretive if and only if operators e±iθA are m-accretive for θ = π

2
− ω, 0 < ω ≤ π/2.
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If ω = π/2, then we have S(π/2) = C+ and m-π/2-accretivity means m-accretivity. Also,
m-0-accretive is the nonegative selfadjoint operator.

The resolvent set of an m-ω-accretive operator A contains the set C \ S(ω) and

‖(A− λI)−1‖ ≤
1

dist (λ,S(ω))
, λ ∈ C \ S(ω).

Consequently, the numerical range of m-ω-accretive operator, 0 ≤ ω ≤ π/2, has the
so-called spectral inclusion property (2.1).

It is well known that if A is m-ω-accretive, 0 ≤ ω < π/2, then it generates contractive
C0-semigroup T (t) = e−tA, t ≥ 0, and has an holomorphic continuation into the sector

S(π/2− ω), see Theorem IX-1.24 in [13]. In this case, we can write T (z) = e−zA, for all

z ∈ S(π/2− ω); moreover, we have∥∥e−zA∥∥ ≤ 1, z ∈ S(π/2− ω).

See also [3], for more details.

2.2. Interpolation spaces.
Recall that the general definition of the real interpolation space (X0, X1)θ,q with X0,

X1 two Banach spaces such that X0 ↪→ X1, is described for instance in [19] or in [31]. For
the reader convenience, we give here a definition adapted to our case.

Definition 2.5. Let X be a Banach space, and A : D(A) ⊂ X −→ X a linear operator
such that

(0,+∞) ⊂ ρ(A) and ∃ C > 0 : ∀ t > 0, ‖t(A− tI)−1‖B(X) 6 C. (2.2)

Then, from [9], Teorema 3, p. 665, for θ ∈ (0, 1) and q ∈ [1,+∞), we can define the real
interpolation space

(D(A), X)θ,q =

{
ψ ∈ X :

(∫ +∞

0

t1−θ‖A(A− tI)−1ψ‖qX
dt

t

)1/q

< +∞

}
.

Note that in [31], this space is denoted by
(
X,D(A)

)
1−θ,q.

2.3. Strongly continuous cosine family.
We recall the definition of a strongly continuous cosine family. For more information

we refer to [1] or [5].

Definition 2.6. A family (Cos(t))t∈R of bounded linear operators on H is called a cosine
family when the following two conditions hold

(1) Cos(0) = I.
(2) For all t, s ∈ R, we have

2Cos(t)Cos(s) = Cos(t+ s) + Cos(t− s). (2.3)

It is defined to be strongly continuous, when for all x ∈ H and all t ∈ R, we have

lim
h→0

Cos(t+ h)x = Cos(t)x.

Similarly than for strongly continuous semigroups we can define the infinitesimal gen-
erator.
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Definition 2.7. Let (Cos(t))t∈R be a strongly continuous cosine family, then the infini-
tesimal generator A is defined as

Ax = lim
t→0

2(Cos(t)x− x)

t2
,

with its domain

D(A) =

{
x ∈ H : lim

t→0

2(Cos(t)x− x)

t2
exists

}
.

This infinitesimal generator is a closed densely defined operator. The following well-
known estimates are needed. For a proof we refer to section 3. of [5].

Lemma 2.8. Let A be a closed densely defined operator in H. Then A is the generator
of a strongly continuous cosine family Cos(t)t∈R satisfying

‖Cos(t)‖ ≤ mer|t|, for all t ∈ R, (2.4)

for some r ≥ 0 and m > 0 if and only if, for all λ > r, we have{
λ2 : Re(λ) > r

}
⊂ ρ (A) ,

and for every n ∈ N ∥∥∥∥ dndλn [λ (λ2 − A)−1]
∥∥∥∥ ≤ n!m

(λ− r)n+1
.

Hence the above lemma shows that the spectrum of A must lie within the parabola
{z ∈ C | z = λ2 with Re(λ) = r}.

It is known that A is closed and densely defined. The operator family (S(t))t∈R given
by

Sin(t) =

∫ t

0

Cos(s)ds, for all t ∈ R,

is called the associated sine family.

3. A fourth order linear boundary value problem

The aim of this section is to give various kind of assumptions which allow us to determine
a representation formula of the solution to the following equation

u(4)(x)− 2Bu′′(x)− Cu(x) = f(x), x ∈ (a, b), (3.1)

where f ∈ Lp(a, b;H), H is a Hilbert space, B and C are two operators with domain
D(B) and D(C), respectively.

3.1. Assumptions and statement of main results.
Assume that
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(H1) B2 and C are accretive operators, with D(B2) ⊂ D(C),

(H2) 0 ∈ ρ(B2 + C),

(H3) D(
√
B2 + C) ⊂ D(B),

(H4) B
√
B2 + C =

√
B2 + C B,

(H5) 0 ∈ ρ(B +
√
B2 + C),

(H6) There exists ν > 0 such that

W (
√
B2 + C −B) ⊂ {z ∈ C : 4ν2Re(z) > Im(z)2} .

In all the sequel, we set

L = B +
√
B2 + C and M = B −

√
B2 + C.

The existence of L and M is ensured by Lemma 3.7 below. Thus, equation (3.1) reads as

u(4)(x)− (L+M)u′′(x) + LMu(x) = f(x), x ∈ (a, b). (3.2)

We call classical solution of (3.2), a solution of (3.2) such that

u(·) ∈ W 4,p(a, b;H) ∩ Lp(a, b;D(LM)) and u′′(·) ∈ Lp(a, b;D(L+M)). (3.3)

In the sequel, we will say that a classical solution to a boundary problem is a classical
solution to the equation of the problem satisfying the boundary conditions.

Theorem 3.1. Let f ∈ Lp(a, b;H) with a, b ∈ R, a < b and p ∈ (1,+∞). Assume that
(H1), (H2), (H3), (H4), (H5) and (H6) hold. Then, there exists a unique classical solution
FU , where U = (u1, u2, u3, u4), to problem

u(4)(x)− (L+M)u′′(x) + LMu(x) = f(x), x ∈ (a, b),

u(a) = u1, u′(a) = u2
u′′(a) = u3, u′′(b)−Mu(b) = u4,

(3.4)

if and only if 
u1, u2, u(b) ∈ D(L),

Lu2 ∈
(
D
(√

L
)
,H
)

1
p
,p
,

Lu1, Lu(b), u3, u4 ∈ (D(L),H) 1
2p
,p .

(3.5)

Moreover, FU is given by

FU(x) := Cos(x− a)u1 + Sin(x− a)u2 +

∫ x

a

Sin(x− s)v(s)ds, (3.6)
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where

v(x) :=
(
e−(x−a)

√
L − e−(b−x)

√
Le−c

√
L
)
W (u3 −Mu1)

+
(
e−(b−x)

√
L − e−(x−a)

√
Le−c

√
L
)
Wu4

+
1

2

(
e−(b−x)

√
Le−c

√
L − e−(x−a)

√
L
)
W
√
L
−1
∫ b

a

e−(s−a)
√
Lf(s) ds

+
1

2

(
e−(x−a)

√
Le−c

√
L − e−(b−x)

√
L
)
W
√
L
−1
∫ b

a

e−(b−s)
√
Lf(s) ds

+
1

2

√
L
−1
∫ x

a

e−(x−s)
√
Lf(s) ds+

1

2

√
L
−1
∫ b

x

e−(s−x)
√
Lf(s) ds,

(3.7)

with c := b− a, W :=
(
I − e−2c

√
L
)−1

, Cos(·) is the cosine function family generated by

−M and Sin(·) is the associated sine function.

As a consequence of the previous result and [29], Lemma 3.1, p. 638, we obtain the
following result.

Corollary 3.2. Let f ∈ Lp(a, b;H) with a, b ∈ R, a < b and p ∈ (1,+∞). Assume that
(H1), (H2), (H3), (H4), (H5) and (H6) hold. Then, there exists a unique classical solution
to problem 

u(4)(x)− (L+M)u′′(x) + LMu(x) = f(x), x ∈ (a, b)

u(a) = u1, u′(a) = u2
u′′(a) = u3, u′′(b) = u4,

if and only if (3.5) holds. This solution is given by F(u1,u2,u3,u4+Mu(b)).

Under other boundary conditions, equation (3.1) is more complicated to study. How-
ever, the following result state a representation formula for the classical solution of equa-
tion (3.1).

Theorem 3.3. Let f ∈ Lp(a, b;H) with a, b ∈ R, a < b and p ∈ (1,+∞). Assume that
(H1), (H2), (H3), (H4), (H5) and (H6) hold. If u is a classical solution of (3.1), then
there exist K1, K2, K3, K4 ∈ H such that

u(x) = Cos(x− a)K1 + Sin(x− a)K2

+e(x−a)
√
LK3 + e(b−x)

√
LK4 + F0(x),

(3.8)

where F0 corresponds to FU defined in Theorem 3.1 with U = (0, 0, 0, 0).

Now, we give some new assumptions to replace (H1) and (H2). Under these new
assumptions, we state that the previous results remains true.

Theorem 3.4. Let B2 is m-accretive and C − γI is accretive for some γ > 0 such that
D(B2) ⊂ D(C). Theorem 3.1 and Theorem 3.3 remains valid if we replace (H1) and (H2)
by one of the following assumptions:

(A.1) There are nonnegative constants α ≥ 0, 0 ≤ β < 1 and δ ≥ 0 such that

Re
(〈
B2u,Cu

〉)
≥ −α ‖u‖2 − β

∥∥B2u
∥∥2 − δ ∥∥B2u

∥∥ ‖u‖ , (3.9)

for all u ∈ D(B2).
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(A.2) C is B2-bounded with lower bound lesser than 1. This means that there exist α ≥ 0
and 0 ≤ β < 1 such that

‖Cu‖2 ≤ α ‖u‖2 + β
∥∥B2u

∥∥2 , for all u ∈ D(B2). (3.10)

(A.3) I + (C − γI)(B2 + t0I)−1 is boundedly invertible, for some t0 > 0.
(A.4) sup

t>0

∥∥C(B2 + tI)−1
∥∥ < 1.

(A.5) B is an accretive operator with D(B) ⊂ D(C).
(A.6) D((B2)α) ⊂ D(C), for some 0 < α < 1.
(A.7) Operator C is bounded.

In general, statement of Theorem 3.4 is not true if we only assume that B is accretive.
In fact B2 +C not need to be m-accretive, because B2 fails to be accretive (with the same
vertex) even in the case of an accretive matrix B with numerical range contained in a
sector of angle lesser than π/4, see Example 1.2 in [11].

Conversely, if B2 is m-accretive; then B fails to be accretive. For instance if B = i
d

dx

on L2(R), its spectrum is on both sides of the origin. But B2 = − d2

dx2
is a nonegative

selfadjoint operator. Also the existing general numerical range mapping theorems do not
encompass the question of when B accretive implies B2 accretive. In [11] the authors
considered this question, for both bounded and unbounded sectorial operators. Now, the
accretivity of B2 is relaxed and replaced by some conditions discussed in [11] to guarantees
(H1) and (H2).

Theorem 3.5. Let C−γI be m-ω1-accretive operator for some γ > 0 with 0 ≤ ω1 ≤ π/2.
Assume that C and B2 verify one of the assumptions (A.1)-(A.6) with interchanging
the role of B2 and C. If B is an ϑ-accretive operator in H with ϑ < π/2 such that
D(B) ⊂ D(Re(B)) ∩ D(Im(B)) and

‖Im(B)u‖ ≤ c ‖Re(B)u‖ , for all u ∈ D(B2), (3.11)

for some c ≤ 1. Then B2 +C−γI is m-ω-accretive for some γ > 0 with ω = max{ω1, ω2}
where ω2 ≤ 2 arctan(c).

The following result represents the bounded case (A.7) which follows as a consequence
of [11], Corollary 4.2, p. 700.

Corollary 3.6. Let C − γI be a bounded ω1-accretive operator for some γ > 0 with
0 ≤ ω1 ≤ π/2 and B is bounded operator such that

‖Im(B)u‖ ≤ c ‖Re(B)u‖ , for all u ∈ H, (3.12)

and for some c ≤ 1. Then B2 + C − γI is bounded ω-accretive for some γ > 0 with
ω = max{ω1, ω2} where ω2 ≤ 2 arctan(c) and arctan(c) ∈ [0, π/2].

3.2. Prerequisites.
In this section, we recall and state some technical results which will allow us to prove

the previous theorems.

Lemma 3.7. Under (H1) and (H2), operator B2 +C with domain D(B2) is m-accretive.
In particular, the square root

√
B2 + C is well-defined and unique.



ON THE SOLVABILITY OF FOURTH-ORDER BOUNDARY VALUE PROBLEMS 9

Moreover
√
B2 + C is a m-(π/4)-accretive operator and D(B2) is a core of

√
B2 + C.

This means that the closure of the restriction of
√
B2 + C to D(B2) is again

√
B2 + C.

Proof. Due to (H1), B
2 + C with domain D(B2) is an accretive operator.

Moreover, (H2) implies that B2+C+tI is invertible with bounded inverse, for 0 ≤ t < ε,
for some ε > 0. By Proposition 3.14.(ii) of [4] p. 82, we conclude that B2 + C + tI is
invertible with bounded inverse for all t > 0. Thus B2 +C is m-accretive. The rest of the
lemma is an immediate consequence of [13], Theorem 3.35, p. 281. �

Lemma 3.8. Under (H1), (H2) and (H3), we have

(1) for any ε > 0,

L and −M are m-ψ-accretive operators with ψ = π/4 + ε.

In particular, −L and M generates holomorphic C0-semigroup of contraction.
(2)
√
L and

√
−M are m-φ-accretive with φ = ψ/2.

(3) L,−M ∈ BIP (H, 3π/4).

Proof.

(1) Since D(
√
B2 + C) ⊂ D(B) and D(

√
B2 + C) is dense in H, so is D(B). Since√

B2 + C is m-(π/4)-accretive and invertible, there exists c1 > 0 such that

‖Bu‖ ≤ c1

∥∥∥√B2 + Cu
∥∥∥ , (3.13)

for all u ∈ D(
√
B2 + C). Now, both B and −B satisfy (3.13), in virtue of [13],

Theorem 2.4, p. 499, we obtain the expected results.
(2) From the previous statement and Theorem 3.35 of [13], p. 281.
(3) Thanks to Lemma 3.7,

√
B2 + C is an invertible m-(π/4)-accretive operator. Thus,

due to [25], example 2, p. 431, it follows that
√
B2 + C ∈ BIP (H, π/4).

Therefore, from [26], Proposition 3.1, p. 170, we obtain the expected result.

�

Remark 3.9. Assume that (H1) and (H2) hold. Then

(1) We have D(L) = D(B) ∩ D(
√
B2 + C) = D(M), thus

D(L) = D(L) ∩ D(M) = D(L+M) ⊂ D(B),

and
D(L) = D(L) ∩ D(M) = D(L−M) ⊂ D(

√
B2 + C),

hence, due to (H3), we obtain that

D(L) = D(M) = D(B) ∩ D(
√
B2 + C) = D(

√
B2 + C).

(2) From (H4), L and M are resolvent commuting. Moreover, since D(L) = D(M),
we deduce that LM = ML.

(3) From (H2), since L−M = 2
√
B2 + C, it follows that 0 ∈ ρ(L−M). But, since B

is not supposed to invertible, in general 0 /∈ ρ(L+M).
(4) Assumption (H5) holds if one of the following conditions is satisfied

(i)
∥∥∥B√B2 + C

−1
∥∥∥ < 1.
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(ii) There exists c > 1, such that

Re
(〈√

B2 + Cu,Bu
〉)
≥ c ‖Bu‖2 , for all u ∈ D(

√
B2 + C).

(iii) B is accretive.
(5) Thanks to (H6), due to [2], Theorem 5, p. 526, since −M =

√
B2 + C − B is m-

accretive, then −M is the infinitesimal generator of a cosine function (Cos(t))t∈R,

with Cos(t) = cos(t
√
−M), and the associated sine function (Sin(t))t∈R, with

Sin(t) = sin(t
√
−M). Furthermore, due to [2], p. 518, we have∥∥∥cos(t

√
−M)

∥∥∥ ≤ mer|t|, for all t ∈ R and some r > 0,m > 0.

(6) We can derive a similar result to Theorem 3.4 for assumptions (A.1)-(A.7), if we
assume that B2 − γ1I is m-accretive and C − γ2I is accretive for some γ1, γ2 ∈ R
such that γ1 + γ2 > 0. Also, we can interchanging the role of B2 and C in all
assumptions (A.1)-(A.4), (A.6)-(A.7), taking in account that B2 is accretive
(resp. B2− γI is accretive with some γ > 0) and C − γI is m-accretive with some
γ > 0 (resp. C is m-accretive) such that D(C) ⊂ D(B2), by being careful with
domains. In this case we have D(C) ⊂ D(B2) ⊂ D(B). For what assumption
(A.5) becomes:

B is an accretive operator with D(C) = D(B).

(7) In Theorem 3.4, if assumption (A.5) holds, then it involves (H5).
(8) In Theorem 3.4, if we assume that B and C are bounded operators, then B2 + C

is m-accretive as an accretive bounded operator and also invertible. Hence, (H3)
is automatically satisfied. Moreover, to verify (H4), it suffices to assume that B
and C commute. Finally, from Lemma 3.8, since W (−M) is bounded, (H6) holds.

3.3. Proof to Theorem 3.1.
Assume that (3.5) holds. Then, we have to find a classical solution u to problem (3.4).

To this end, we set

v(·) = u′′(·)−Mu(·).
Moreover, for x ∈ [a, b], we have

v′′(x) = u(4)(x)−Mu′′(x)
= (L+M)u′′(x)−Mu′′(x)− LMu(x) + f(x)
= L(u′′(x)−Mu(x)) + f(x)
= Lv(x) + f(x).

Then, there exists a unique solution to problem (3.4) if and only if there exists a unique
solution to the following hyperbolic problem{

w′′(x)−Mw(x) = v(x), x ∈ (a, b)
w(a) = u1, w′(a) = u2,

(3.14)

where the second member v is the unique solution to the elliptic problem{
v′′(x)− Lv(x) = f(x), x ∈ (a, b)
v(a) = u3 −Mu1, v(b) = u4.

(3.15)
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From Lemma 3.8 and Remark 3.9, using [7], p. 169-170, there exists a unique solution v
to problem (3.15), given by (3.7), such that

v(·) ∈ W 2,p(a, b;H) ∩ Lp(a, b;D(L)). (3.16)

Moreover, since W 2,p(a, b;H) ↪→ C1(a, b;H), with continuous injection, it follows that
v(·) ∈ C1(a, b;H) and due to Remark 3.7, from [30], Proposition 2.4, p. 79, there exists
a unique solution w to problem (3.14) if and only if

w(a) ∈ D(M) and w′(a) ∈ {ϕ ∈ H : Cos(t)ϕ ∈ C1(a, b;H)}.
Thus, due to (3.5), from [30], (2.19) in Proposition 2.2, p. 77, it follows that there exists
a unique solution w to problem (3.14) given by (3.6). Note that by uniqueness, w = FU .

Then, from (3.16), we deduce that

−(L+M)u′′(·) + LMu(·) ∈ W 2,p(a, b;H) ⊂ Lp(a, b;H),

hence, since
u(4)(·) = (L+M)u′′(·)− LMu(·) + f(·) ∈ Lp(a, b;H),

we obtain that (3.3) holds.
Conversely, assume that there exists a unique solution u to problem (3.4) such that

(3.3) holds. Then from [9], Teorema 2’, p. 678, we obtain that (3.5) holds. For the
reader convenience, note that this result has been recall more recently in English in [29],
Lemma 3.1, p. 638.

3.4. Proof to Theorem 3.3.
Let u be a classical solution to (3.2). From Theorem 3.3, there exists a unique classical

solution F0 to problem (3.4). Note that F0 corresponds to FU with U = (0, 0, 0, 0).
Set uh := u− F0. Thus, uh is a classical solution to

u
(4)
h (x)− (L+M)u′′h(x) + LMuh(x) = 0, a. e. x ∈ (a, b).

Now, it remains to determine explicitly uh. To this end, we will solve the previous
homogeneous equation. Due to Remark 3.7, since 0 ∈ ρ(L−M), we set{

v(·) := L(L−M)−1uh(·)− (L−M)−1u′′h(·) ∈ Lp (a, b;D(M))

w(·) := −M(L−M)−1uh(·) + (L−M)−1u′′h(·) ∈ Lp (a, b;D(L)) .
(3.17)

Since uh(·) ∈ W 4,p(a, b;H) ∩ Lp(a, b;D(LM)) with u′′h(·) ∈ Lp(a, b;D(L + M)), it follows
that

v(·) ∈ W 2,p(a, b;H) ∩ Lp(a, b;D(M)) and w(·) ∈ W 2,p(a, b;H) ∩ Lp(a, b;D(L)),

with

v′′(x)−Mv(x) = −(L−M)−1
(
u
(4)
h (x)− (L+M)u′′h(x) + LMuh(x)

)
= 0,

and

w′′(x)− Lw(x) = (L−M)−1
(
u
(4)
h (x)− (L+M)u′′h(x) + LMuh(x)

)
= 0.

From Lemma 3.8 and Remark 3.9, due to the proof of Theorem 5, p. 173, in [7] or (18)
in [8], the solution w(·) of the previous homogeneous equation reads as

w(x) = e(x−a)
√
LK3 + e(b−x)

√
LK4, for all x ∈ [a, b],
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where K3, K4 ∈ H.
Moreover, due to Remark 3.7, from [1], Corollary 3.14.8, p. 209, the solution v(·) of

the previous homogeneous equation reads as

v(x) = Cos(x− a)K1 + Sin(x− a)K2,

where K1, K2 ∈ H.
We also refer to [28], Theorem 1.1, p. 591 and remark at the top of p. 592, to justify

the expression of v(·).
Finally, since

v(·) + w(·) = (L−M)(L−M)−1uh(·) = uh(·),
we conclude that, for all x ∈ [a, b], we have

uh(x) = Cos(x− a)K1 + Sin(x− a)K2 + e(x−a)
√
LK3 + e(b−x)

√
LK4.

Thus, u(·) satisfies (3.8), which gives the result.

3.5. Proof to Theorem 3.4. It suffices to prove that Lemma 3.7 remains valid under
each one of this assumptions.

(1) Assume (A.1). The proof is inspired from [22] and [20]. Let γ > 0. Note first
that B2 + C − γI with domain D(B2) is accretive and densely defined. So, by
Proposition 2.4, to prove that B2 +C − γI is m-accretive, it suffices to show that
B2 + C − γI is closed and its adjoint is accretive.

Let u ∈ D(B2), we have

Re (〈B2u, (C − γI)u〉) = Re (〈B2u,Cu〉)− γRe (〈B2u, u〉)
≥ Re (〈B2u,Cu〉)− γ ‖B2u‖ ‖u‖ ,

it follows from (3.9) that

Re
(〈

(B2 + C − γI)u,B2u
〉)
≥ Re

(〈
B2u,Cu

〉)
− γ

∥∥B2u
∥∥ ‖u‖+

∥∥B2u
∥∥2 ,

hence

Re (〈(B2 + C − γI)u,B2u〉) ≥ (1− β) ‖B2u‖2 − α ‖u‖2

−(γ + δ) ‖B2u‖ ‖u‖ .
(3.18)

Thus

(1− β)
∥∥B2u

∥∥2 ≤ [(γ + δ) ‖u‖+
∥∥(B2 + C − γI)u

∥∥] ∥∥B2u
∥∥+ α ‖u‖2 .

Solving this inequality by taking ‖B2u‖ as a variable, we obtain∥∥B2u
∥∥ ≤ 1

1− β
∥∥(B2 + C − γI)u

∥∥+ κ ‖u‖ , (3.19)

for all u ∈ D(B2), with κ =
γ + δ +

√
α(1− β)

1− β
. On the other hand, since

D(B2) ⊂ D(C) = D(C − γI), with D(B2) dense in H, there exists a constant
ϑ > 0, such that

‖(C − γI)u‖ ≤ ϑ(‖u‖+
∥∥B2u

∥∥), (3.20)
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for all u ∈ D(B2). Now, let a sequence (un)n ⊂ D(B2) such that un −→ u and
(B2 + C − γI)un −→ v. Let n 6= m, by (3.19), we have∥∥B2(un − um)

∥∥ ≤ 1

1− β
∥∥(B2 + C)(un − um)

∥∥+ κ ‖un − um‖ .

Therefore, the sequence (B2un)n converge. Since B2 is closed we conclude that
B2un −→ B2u and u ∈ D(B2). By (3.20), we have

‖(C − γI)(un − u)‖ ≤ ϑ ‖un − u‖+ (1 + ϑ)
∥∥B2(un − u)

∥∥ .
Hence (B2+C−γI)un −→ (B2+C−γI)u and v = (B2+C−γI)u with u ∈ D(B2).
This prove that B2 + C − γI is closed, densely defined and accretive.

Now we show that the adjoint (B2 +C − γI)∗ of (B2 +C − γI) is accretive. It
follows from (3.18) that

Re
(〈

(B2 + C − γI)u,B2u
〉)

+ α ‖u‖2 + (γ + δ)
∥∥B2u

∥∥ ‖u‖ ≥ 0,

for all u ∈ D(B2). Hence we obtain

Re

(〈
(B2 + C − γI)u,

(
I +

1

n
B2

)
u

〉)
+

1

n
α ‖u‖2 +

1

n
(γ + δ) ‖B2x‖ ‖u‖ ≥ 0,

for all n ∈ N \ {0}. Now let v ∈ H. Then for u =

(
I +

1

n
B2

)−1
v ∈ D(B2), we

have

Re

(〈
(B2 + C − γI)

(
I +

1

n
B2

)−1
v, v

〉)

+
1

n
α ‖v‖2 +

1

n
(γ + δ)

∥∥∥∥∥B2

(
I +

1

n
B2

)−1
v

∥∥∥∥∥ ‖v‖ ≥ 0,

for all v ∈ H, n ∈ N \ {0}. In particular, for v ∈ D((B2 + C − γI)∗), we obtain

Re

(〈(
I +

1

n
B2

)−1
v, (B2 + C − γI)∗v

〉)

+
1

n
α ‖v‖2 +

1

n
(γ + δ)

∥∥∥∥∥B2

(
I +

1

n
B2

)−1
v

∥∥∥∥∥ ‖v‖ ≥ 0,

for all n ∈ N\{0}. Letting n to +∞, we conclude that (B2 +C−γI)∗ is accretive.
(2) Assume (A.2). We have, for u ∈ D(B2),

‖(C − γI)u‖2 = ‖Cu‖2 + γ2 ‖u‖2 − 2Re (〈Cu, u〉) .
Since C − γI is accretive; then C is also accretive, hence

‖(C − γI)u‖2 ≤ ‖Cu‖2 + γ2 ‖u‖2 ,
for all u ∈ D(B2). Now, using (3.10), we obtain

‖(C − γI)u‖2 ≤ b
∥∥B2u

∥∥2 + (γ2 + a) ‖u‖2 ,
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for all u ∈ D(B2). This implies that C − γI is B2-bounded with lower bound
lesser than 1. By Theorem 2 in [10] we deduce that B2 + C − γI is m-accretive.
Also (3.10) implies (3.9) in the case of δ = 0, see [20], Remark 4.4. Thus the
assumption (3.9) is stronger than the relative boundedness.

(3) Assume (A.3). Then, I + (C − γI)(B2 + t0I)−1 is boundedly invertible, for some
t0 > 0.

Indeed, since B2 + C − γI is densely defined and accretive, it suffices to show
that R(B2 + C − γI + t0I) = H. But, this follows immediately from

B2 + C − γI + t0I = (I + (C − γI)(B2 + t0I)−1)(B2 + t0I),

and clearly B2 + C − γI + t0I is invertible.
(4) Assume (A.4). Due to Proposition 2.12, p. 55 in [32], the lower bound β in (3.10)

is equal to sup
t>0

∥∥C(B2 + tI)−1
∥∥. Hence (A.4) implies (A.2), see [21], Theorem 1,

p. 851.
(5) Assume (A.5). Since B is an accretive operator, from Theorem 1.2 in [12], we

have for an arbitrary ν > 0,

‖Bu‖2 ≤ ν ‖u‖2 +
1

ν

∥∥B2u
∥∥2 , (3.21)

for all u ∈ D(B2). On the other hand, since D(B2) ⊂ D(B) ⊂ D(C − γI), with
D(B2) dense in H, there exists a constant ϑ1 > 0, such that

‖(C − γI)u‖2 ≤ ϑ1(‖u‖2 + ‖Bu‖2), (3.22)

for all u ∈ D(B). Now, by (3.21) and (3.22) we obtain that

‖(C − γI)u‖2 ≤ ϑ1(1 + ν) ‖u‖2 +
ϑ1

ν

∥∥B2u
∥∥2 , (3.23)

for all u ∈ D(B2) and all arbitrary ν > 0. Choosing ν > 0 large enough, we obtain

that
ϑ1

ν
< 1. Thus, C − γI is B2-bounded with lower bound lesser than 1. Then,

B2 + C − γI with domain D(B2) is m-accretive.
(6) Assume (A.6). From Theorem 6.10 in [23], there exists a constant κ > 0 such

that for every u ∈ D(B2) and an arbitrary ρ > 0, we have∥∥(B2)αu
∥∥2 ≤ κ(ρα ‖u‖2 +

1

ρ1−α
∥∥B2u

∥∥2).
Since D((B2)α) ⊂ D(C) = D(C − γI), with D((B2)α) dense in H, there exists a
constant υ > 0, such that

‖(C − γI)u‖2 ≤ υ
∥∥(B2)αu

∥∥2 ,
for all u ∈ D((B2)α). It follows that

‖(C − γI)u‖2 ≤ υκ(ρα ‖u‖2 +
1

ρ1−α
∥∥B2u

∥∥2),
for all x ∈ D(B2). Choosing ρ > 0 large enough, we obtain that

υκ

ρ1−α
< 1. Thus,

C − γI is B2-bounded with bound less than 1.
(7) Assume (A.7). In this case C is B2-bounded with lower bound equal zero.
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3.6. Proof of Theorem 3.5.
By definition C − γI is m-ω1-accretive operator, means that e±iθC − γI are also m-

accretive for θ =
π

2
− ω1 with 0 ≤ ω1 ≤

π

2
.

In fact that B is an ϑ-accretive operator in H and fulfill the requirements of Theo-
rem 4.1, p. 699 in [11], then B2 is ω2-accretive with ω2 ≤ 2 arctan(c), c ≤ 1.

Then e±iθB2 are also accretive for θ =
π

2
− ω2, 0 ≤ ω2 ≤ 2 arctan(c). Since all the

inequalities given in (A.1)-(A.6) are invariant up to the factor eiθ for all θ, it follows that

e±iθC + e±iθB2 − γI are m-accretive for all θ =
π

2
− ω with 0 ≤ ω ≤ max{ω1, ω2}. This

implies that B2 + C − γI is also m-ω-accretive with ω = max{ω1, ω2}.

4. An example

We consider the following fourth order linear partial differential problem:

(E)



∂4u

∂x4
(x, y)− 2ip0(y)

∂3u

∂y∂x2
(x, y)− 2ip1(y)

∂2u

∂x2
(x, y)− αp0(y)

∂u

∂y
(x, y)

−(αp1(y) + β)u(x, y) + γu(x, y) = f(x, y), x, y ∈ (0, 1)

u(0, y) = u(1, y) =
∂u

∂x
(0, y) = 0, y ∈ (0, 1)

∂2u

∂x2
(0, y) =

∂2u

∂x2
(1, y) = 0, y ∈ (0, 1)

u(x, 0) = u(x, 1) = 0, x ∈ (0, 1)

∂2u

∂x2
(x, 0) =

∂2u

∂x2
(x, 1) = 0, x ∈ (0, 1)

where,

• α ∈ R, β ∈ C, p0, p1 ∈ C1(0, 1) and p0(x) 6= 0 for all x ∈ [0, 1],

• γ = −
(
r + 1

4ε
m1 +m2

)
, with r, ε > 0 chosen such that m0 − ε(1 + r)m1 > 0, for

some non-negative constants m0, m1 and m2 described below,
• f ∈ L2((0, 1)2;C).

We set 
D(B) = {ψ ∈ H1(0, 1) : ψ(0) = ψ(1) = 0}

Bψ = p0
∂ψ

∂y
+ p1ψ, for allψ ∈ D(B),

and 
D(C) = {φ ∈ H1(0, 1) : φ(0) = φ(1) = 0}

Cφ = αp0
∂φ

∂y
+ (αp1 + β)φ, for allφ ∈ D(C).

Note that such operators are well-defined, see for instance [13], Example 2.6, p. 144.
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Then, the fourth order differential problem (E) reads as u(4)(x)− 2iBu′′(x)− (C − γI)u(x) = f(x), x ∈ (0, 1)
u(0) = u′(0) = 0
u′′(0) = u′′(1) = 0,

(4.1)

where u(x) := u(x)(y) and f(x) := f(x)(y), with f ∈ L2(0, 1;H) and H = L2(0, 1;C). In
view to use Theorem 3.1, the boundary condition u′′(1)−Mu(1) = 0 reads as u′′(1) = 0.

The following result states the existence and uniqueness of the solution to problem
(4.1).

Theorem 4.1. Let H = L2(0, 1;C). Assume that

(1) α ∈ R, β ∈ C, p0 ∈ C2(0, 1) , p1 ∈ C1(0, 1) and p0(x) 6= 0 for all x ∈ [0, 1],

(2) p1 −
1

2
p′0 ≥ 0 and αp1 + Re(β)− α

2
p′0 ≥ 0,

(3) there exist some non-negative constants m0, m1 and m2 given by

p20 > m0 > 0, |p0| |p′0 − 2p1| ≤ m1 and
∣∣p21 + p0p

′
1

∣∣ ≤ m2, (4.2)

such that γ = −
(
r + 1

4ε
m1 +m2

)
, with r, ε > 0 such that m0 − ε(1 + r)m1 > 0.

(4) B
√
−(B2 − C + γI) =

√
−(B2 − C + γI)B.

(5) 0 ∈ ρ(iB +
√
−(B2 − C + γI)).

(6) There exists ν > 0 such that

W (
√
−(B2 − C + γI)− iB) ⊂ {z ∈ C : 4ν2Re(z) > Im(z)2} .

Then, there exists a unique classical solution u(·) to problem (4.1). Moreover, u(·) is
determined as in Theorem 3.1.

Proof. In order to use Corollary 3.2, we need first to verify assumptions of Theorem 3.3.
The proof is split into several steps:

(1) We prove that −B2 − γI is m-ω-accretive, with ω = arctan

(
1

r

)
.

For ψ ∈ D(B2) ⊂ {ψ ∈ H2(0, 1) : ψ(0) = ψ(1) = 0} ⊂ D(B), we have

−B2ψ = −p20ψ′′ − p0(p′0 + 2p1)ψ
′ − (p21 + p0p

′
1)ψ.

Thus, there exists a nonegative constants m0, m1 and m2 such that (4.2) holds.
From Example V-3.34, p. 280 in [13], operator B2 is m-ω-accretive operator with

vertex γ, where γ = −
(
r + 1

4ε
m1 +m2

)
, ω = arctan

(
1

r

)
, r, ε > 0 chosen such

that {
0 < ε <

m0

m1(1 + r)
, if m1 > 0,

0 < ε, if m1 = 0.

Hence operator −B2 − γI is m-ω-accretive, with ω = arctan

(
1

r

)
.
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(2) Now, we show that C is accretive.
Let φ ∈ D(C), we have

〈Cφ, φ〉 = α

∫ 1

0

p0(y)φ′(y)φ(y)dy +

∫ 1

0

(αp1(y) + β) |φ(y)|2 dy.

By integration by parts,

〈Cφ, φ〉 = −α
∫ 1

0

p0(y)φ(y)φ′(y)dy +

∫ 1

0

(αp1(y) + β − αp′0(y)) |φ(y)|2 dy.

Also

〈Cφ, φ〉 = 〈φ,Cφ〉 = α

∫ 1

0

p0(y)φ(y)φ′(y)dy +

∫ 1

0

(αp1(y) + β) |φ(y)|2 dy.

Thus

Re 〈Cφ, φ〉 =

∫ 1

0

(αp1 +Re(β)− α

2
p′0) |φ(y)|2 dy.

Since αp1 + Re(β)− α

2
p′0 ≥ 0, then C is accretive.

(3) In particular, B is accretive.
Indeed, if we take α = 1 and β = 0 in the previous proof, we obtain

Re 〈Bφ, φ〉 =

∫ 1

0

(p1 −
1

2
p′0) |φ(y)|2 dy.

Now, since p1 −
1

2
p′0 ≥ 0, then B is accretive.

(4) Then, we show that −(B2 −C + γI) with domain D(B2) is m-accretive. Also, we

prove that −(B2−C+γI) admits an unique square root
√
−(B2 − C + γI) which

is m-π/4-accretive with

D(
√
−(B2 − C + γI)) = {ψ ∈ H1(0, 1) : ψ(0) = ψ(1) = 0}.

From statement (1), −(B2 + γI) with domain D(B2) is m-accretive. Due to
statement (2), C is accretive and from [18],

D(
√
−(B2 + γI)) = {ψ ∈ H1(0, 1) : ψ(0) = ψ(1) = 0} = D(C).

Now the desired result holds from Theorem 3.4 with (A.6). Therefore, due to [18],
we have

D(
√
−(B2 − C + γI)) = {ψ ∈ H1(0, 1) : ψ(0) = ψ(1) = 0}.

(5) It remains to prove that −(B2 − C + γI)−1 exists and is bounded.
As previously, for ψ ∈ D(B2) ⊂ {ψ ∈ H2(0, 1) : ψ(0) = ψ(1) = 0} ⊂ D(B), we

have

[B2 − C + γI]ψ = p20ψ
′′ + (p0p

′
0 + p1(2p0 − α))ψ′ + (p21 + p′1(p0 − α)− β + γ)ψ.

Since p0 ∈ C2(0, 1) and p1 ∈ C1(0, 1), it follows that p′′0 and p′1 are continuous on
[0, 1]. Thus, 2(p′′0p0+(p′0)

2), p′0(p
′
0+2p1)+p0p

′′
0+p′1(2p0−α) and p21+p

′
1(p0−α)−β+γ

are continuous on [0, 1]. By a similar way as in [13], Section 3-III, p. 146-149, we
prove that −(B2 − C + γI)−1 exists and is bounded.
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(6) Finally, L = iB+
√
−(B2 − C + γI) and −M = −(iB−

√
−(B2 − C + γI)) with

domain D(
√
−(B2 − C + γI)) ⊂ D(B) are m-accretive operators.

See Lemma 3.8.

�

Remark 4.2. In Theorem 4.1, assumption (6) holds when p0, α, p1 are positive constants
and β = 0. Further, we can see that if α = 1, then B = C so assumption (4) holds. Now,
by choosing appropriate constants p0, p1 such that∥∥∥B(

√
−(B2 − C + γI))−1

∥∥∥ < 1,

then assumption (5) holds.
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