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Abstract

We study the solvability of some boundary-value problems for differential-operator
equations of the second order in LP(0,1; X), with 1 < p < +00, X being a UMD complex
Banach space. The originality of this work lies in the fact that we consider the case where
two spectral complex parameters appear in the equation and in abstract Robin bound-
ary conditions. Here, the unbounded linear operator in the equation is not commuting
with the one appearing in the boundary conditions. This represents the strong novelty
with respect to the existing literature. Existence, uniqueness, representation formula,
maximal regularity of the solution, sharp estimates and generation of strongly continu-
ous analytic semigroup are proved. Many concrete applications are given for which our
theory applies. This paper improves, in some sense, results by the authors in [7] and it
can be viewed as a continuation of the results in [1] studied only in Hilbert spaces.
Key Words and Phrases: Second order boundary value problems with two spectral
parameters, Robin boundary conditions, spectral estimates, functional calculus, genera-
tion of analytic semigroups.
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1 Introduction
In this article, we consider a new spectral problem that is given by the equation
u”(z) + Au(z) — Mu(z) = f(x), =€ (0,1), (1)
together with the abstract Robin boundary conditions
u'(0) — Hu(0) — pu(0) = dy,  u(l) = uy. (2)

Here, A\, i are complex parameters, A, H are closed linear operators in a complex Banach
space X, f belongs to LP(0,1; X) with 1 < p < +o0, dp, u; are given elements of X. We
develop a completely different approach from the ones used until now. It allows an easier
verification of the assumptions and their application to concrete problems.

Many boundary value problems with a spectral parameter in the equation and in the
boundary conditions arise in different concrete problems. We shall cite some interesting
papers related to this research. In one of these last works, see [5], the article considers a
class of boundary problems with a spectral parameter in the boundary conditions. In [4], the
author considers some second order elliptic boundary value problems on bounded domains



with boundary conditions depending nonlinearly on the spectral parameter. In [2], we find
a study, in a separable Hilbert space, of the following boundary-value second-order elliptic
differential-operator equation:

{ u'(z) + Au(z) — du(x) = f(z), x € (0,1)
M (0) — au(l) = f1, u(l) = fq,

where « is a complex number with Re(a) > 0 and —A is a linear self-adjoint operator
garanteeing the ellipticity of the equation. Note that here, the parameter A appears in the
nonlocal boundary condition. Recently, in [1], the authors consider the following boundary-
value problem for an elliptic differential-operator equation of second order

{ Nu(z) —u"(z) + Au(x) = f(x), z€(0,1)
u'(0) + Au(l) = f1, Bu'(1) + Au(0) = fa,

where the same spectral parameter appears in the equation quadratically; here —A is a closed
positive linear operator in a separable complex Hilbert space. In [7], the authors consider
Problem (1)-(2) in a complex Banach space X, where A = w is a positive spectral parameter
and ¢ = 0. For w large enough, under some geometrical assumptions on the space X and
hypotheses on operators A—wl and H, including the fact that they commute in the resolvent
sense, the authors furnish necessary and sufficient conditions on the data dp,u; to obtain
the existence and uniqueness of a solution u of (1)-(2) with maximal regularity. Recently,
in [9], the authors develop an interesting new approach in a non commutative framework,
concerning some general Sturm-Liouville problems with the same Robin boundary condition
in 0.

In our study of Problem (1)-(2), the ellipticity of the equation is guaranteed by hypothesis
(5) below; this assumption allows us to consider, for suitable A, u, the operators

Ay = (Qx — Hu) + 2@ (Qx+ Hu)
Qrn=—-V—-A+X, H,=H+pl.

In all the sequel, for any closed linear operator T' on X, D(T') denotes the domain of T
and p(T) the resolvent set of T. The key point will be to obtain the invertibility of the

determinant A, of system (1)-(2) with estimates of HAA , for appropriate A\, u. To

1
n“HL(X)
this end, we consider two different situations:

1. D(H) C D(A)
2. D(v—=A) C D(H),

where in the first case, we say that operator H is principal, while in the second case, it is
operator v/—A which is principal. Concrete applications will illustrate these two cases at the
end of this work; the first one is adapted to related problems concerning some heat equations
with dynamical boundary conditions of reaction-diffusion type or with Wentzell boundary
conditions, whereas the second one will concern, for instance, problems involving the Caputo
derivative in the boundary conditions.

Four new and essential results sum up this work.

1. We solve the above equation by giving an explicit and simplified representation of the
solution adapted to each case and we show that it verifies the optimal regularity, that
is

w € W2H(0,1; X) 1 17(0,1; D(A)),

see Theorem 2.1 and Theorem 2.4.



2. We give sharp estimates of this solution in each case according to the complex spec-
tral parameters A, u belonging to some appropriate precised set, see Theorem 2.2 and
Theorem 2.5 .

This part essentially uses the results of [13], where some inequalities on resolvent
operators are precised.

3. Thanks to these estimates, we obtain the generation of analytic semigroups correspond-
ing to each case, see Theorem 2.3 and Theorem 2.6.

4. Using the same tools, we study the Dirichlet case and obtain similar results to those
obtained with Robin boundary conditions, see Theorem 2.7, Theorem 2.8 and Theo-
rem 2.9.

This article is organized as follows. Section 2 describes the assumptions, including two
spectral parameters A, u, and enunciates the main results of this paper. In Section 3, we deal
with our model without spectral parameter so that we retrieve in a simple manner results
of previous works, see [9] and [19]. Section 4 is devoted to some precise estimates of Dore-
Yakubov type, which will be useful to analyze our model. Sections 5 and 6 concern the study
of our model with spectral parameters A, u under two different types of behaviour concerning
operators with respect to their domains and to the parameters. Moreover sharp estimates
in A\, are furnished for the solution. In Section 7, we furnish results for (1) together with
Dirichlet boundary conditions. Then, in Section 8, we apply the results of Sections 5, 6, 7
to generation of semigroups. Finally, Section 9 deals with examples of applications.

2 Assumptions and statement of main results

In all this work, we will use the following notation: for ¢ € (0,7), we set

Sy = {z € C\ {0} : Jara(2)| < 0} U {0} 3)
Our goal is to seek for a classical solution to Problem (1)-(2), that is a function u such that
i) we W2P(0,1; X)N LP(0,1; D(A)),

i) u(0) € D(H),
i) wu satisfies (1) and (2).

We suppose that
X is a UMD space. (4)

Recall that X is a UM D space means that for all ¢ > 1 the Hilbert transform is continuous
from L4(R; X) into itself, see [6]; we also assume that
J o€ (0,m): Spy Cp(A) and 3C4 >0

VA€ Sp, (=207, € 1fAA! (5)

and

sup He—é’A\s\ (_A)is
seR

We now set for A € Sy, 0 € C
H,=H+upl, Qy=-vV-A+XM and Q=-v—-A

The existence of the previous square roots is ensured by subsection 5.1 below and for operator
H we consider the two following types of hypotheses:

VseR, (—A)* e L(X), 304 € (0,7):
< +00.

L(X)



2.1 First case

D (H) c D(A), (7)
and
Jp1 € (0,7),3CHr >0:
S,. C p(—H) and su + H! < COy. (8)
(Cp(-H) and sup (1+|u) |, < O

For r > 0, we set

i
Qoo,01,r = {()\au) € Spy X Sy 1 |A| =7 and ’|/\’| > r}.

Then, we have the following main results:

Theorem 2.1. Assume (4)~(8). Let dp,u; € X and f € LP(0,1; X) with p € (1,400).
Then, there exists ro > 0 such that for all (A, x) € Qg 01,70, the two following statements
are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

uwe WP (0,1; X)NLP(0,1;D(A)), u0) € D(H),

and u satisfies (1)-(2).

2. uy € (D(A),X) 1

Tp’p.

Moreover in this case u is unique and given by (24) where @, A are replaced by Qx, Ay -

Here, (D(A), X) 1

2p

Hw”(D(A),X%m = |Jw| + </ Htl 1/2PA Hp dt>

Theorem 2.2. Assume (4)~(8), dp € X and u; € (D(A),X)zip. Then, there exists a
D’

constant M > 0 such that, for (A, ) € Q.01 and f € LP(0,1; X) with 1 < p < +o0, the
unique classical solution u of (1)-(2) satisfies

p denotes the classical real interpolation space equipped with the norm

max {(1 + |)‘D ”uHLP((]J;X) ) HU HLP(O 1;X) ‘ Lo (0,15 X)} < Ma (d()uulu A, 1 f)7
where
L+ Al + [ 1-L
a(do, u1, A, i, f) = TS (HdOH + HfHLP(O,l;X)) + llutllpeay,x) . o A2 Jluall-
2p’

Now, define in Y = LP(0,1; X) with p € (1, +00), the following operator

A: DA CY — Y
u — A(u(),

with domain

DA ={ueY :u(x)e D(A) ae. z€ (0,1) and A(u(-)) €Y}.



Here, we consider the Banach space Z := Y x X. For u € C, we build a linear operator
Pa,u,y on Z, by setting

Papp: DPapy)cZ — Z
(u,v) — (v + Au, v/ (0) — Hv — pw),

where D (Pa,m,y) = {(u,v) € W x D(H) : u (1) =0,u(0) = v} with
W =W?2P(0,1; X) N LP(0,1; D(A)) C Y.
We then obtain:

Theorem 2.3. Assume (4)~(8). Set ¢y := min{gg,p1}. Then, for each p € C with
larg (p)| < ™ — @2, we have

1. Pa,H,u is the infinitesimal generator of a Cp-semigroup.

2. If o € [1/2,7), then Pa p, is the infinitesimal generator of an analytic semigroup.

2.2 Second case

D(Q)c D(H), (9)
Je €(0,1/2], 3Cuqg >0, sup (1+)° | HQ " o)< Cryo: (10)
te[0,4-00)
(@—H)" ((D(Q), X)) QT ((D(Q), X)) (11)
here, we have not supposed that (Q — H )71 is an operator but we have used the set-theory

notation:
Q- H)" (D(Q),X)y,,) = {£€ D@ : (Q-H)E (D(Q),X)y,}

In order to obtain spectral estimates for the solution of (1)-(2), we will replace (11) by
the new assumption:

(Q-H) " (D(Q)cD(Q), (12)
where, as above

Q-H) ' (D) ={£€D(@Q):(Q-H)¢eD(Q)}.

Now, for p > 0, we set

A
I, = {()\,u) €Sy, xC: A = p and \,u\ll/a > p}.

Then, we have the following main results:

Theorem 2.4. Assume (4)~(6) and (9)~(11). Let dp,u; € X and f € L”(0,1; X) with
1 < p < 4o0. Then, there exists pg > 0, such that for all (A, u) € Il ., the two following
statements are equivalent:

1. Problem (1)-(2) has a classical solution u, that is,

uwe WP (0,1; X)NLP(0,1; D (A)), u0) € D(H),

and u satisfies (1), (2).



2. uy € (D(A),X)1 , and (Qx— Hy) 'do € (D (4),X) 1

2p° 2p°P

Moreover in this case u is unique and given by (24), where @, A are replaced by Qx, Ay .
Theorem 2.5. Assume (4)~(6) and (9), (10), (12). Let (X, ) € Iy po, do € X with

(Qx— Hy) ™' do € (D (A) X)L

Z)7p7

u € (D(4),X) 1

L and feLP(0,1;X),

with 1 < p < 400. Then, there exists a constant M > 0, which does not depend on
do,u1, (A, ) and f, such that the unique classical solution u of (1)-(2) satisfies

max {(1 + |A|) HUHLP(O’LX) 9 ||u//||LP(071;X) 9 Qg\u Lp(O,l;X)} < M/B (dO,U1, )‘7 /’La f) 9
where
B (doyur, At ) = lldoll + 1f | oo, + |[(@r = Hy) ™" o

(DAX) 1,

1
+A T

_ _ 1
(Qu = H,) ™ do| + llurllpeay xy, -+ A2 ]
2p’

Now, we define for u € C, operators

£A7H7M: D(EA,HM)CY — Y

u s W+ Au, (13)

where A, Y are defined above and D (L4, g,,) is the space of functions u satisfying

u € W2P(0,1; X) N LP(0,1; D(A))
u(0) € D (H)
u'(0) — Hu(0) — pu(0) = u(1) = 0.

We then obtain:

Theorem 2.6. Assume (4)~(6), (9), (10) and (12). Then, for any u € C, we have

1. La,m, is the infinitesimal generator of a Cp-semigroup.

2. If g € [7/2,), then L4 m, is the infinitesimal generator of an analytic semigroup.

2.3 Dirichlet case

Now we consider the spectral problem

{ u'(x) + Au(z) — Mu(z) = f(x), =€ (0,1)

u(0) = ug, u(l) = us. (14)

We first state the following result on existence and uniqueness of the solution.

Theorem 2.7. Assume (4)~(6). Let up, vy € X, A € Sy, and f € LP(0,1; X) with
1 < p < +00. Then the two following statements are equivalent:

1. Problem (14) has a classical solution w.

2. ug,u1 € (D(A),X)

1 .
%71)

Moreover in this case u is unique and given by (68) where @ is replaced by Q.



Now, we state our new results on sharp estimates and generation of semigroup.
Theorem 2.8. Assume (4)~(6) and ug,u1 € (D(A), X) 1 ,. Then, there exists a constant
2p 7

M > 0 such that, for A € Sy, and f € LP(0,1; X) with 1 < p < 400, the unique classical
solution u of problem (14) satisfies

max {(1 + (Al HUHLP(O,LX) ) HU//HLP(O,I;X) ) HQ?\“HLP(OJ;X)}

_ 1
sM (HfHLP(o,l;X) Hluollpayx) . +llwllipwx,  + A2 (ol + ||U1H)> :
2

p 3
Now, we define operator
La: D(La)CY — Y
u — u” + Au.
where D (L) = {u € W*P(0,1; X) N LP(0,1; D(A)) : u(0) = u(1) = 0}. We then obtain
Theorem 2.9. Assume (4)~(6). Then, we have

1. L4 is the infinitesimal generator of a Cy-semigroup.

2. If g € [7/2,7), then L4 is the infinitesimal generator of an analytic semigroup.

2.4 Remarks

Remark 2.10. Assume (5) and (9). Let (A, ) € Sy, xC. Then assumption (12) is equivalent
to

(@x— H,)"H (D (@) c D(Q7). (15)
In fact, if £ € D (Q), there exists ¢ € X such that £ = Q7!(, so
Q-H)§ = [Qx—Hy+pl+(Q—-QN)]E

= (@x—Hu)E+uE+(Q - Q) Q7'C,
and it will be seen in Lemma 4.4 below that there exists Ty € £(X) such that
Q=Q\+T, and Q7'T, =T,.Q".
Therefore
(Q-H)¢—(Qx—Hy)E=ps+ Q'€ D(Q).
This proves that
(Q~H)"(D(Q)) = (Qx~ H) ™ (D(Q)).
Remark 2.11. Assume (5). If there exists w € [0,1/2) such that D((—A)*) C D (H) then,
in virtue of Lemma 2.6 statement a) in [13], there exists C,, > 0 such that, for ¢t > 0
THQ ey < IH (=A™ lleeoll (=AY (=A+) 7 || x)
Cw .
(1+41)Y%’
so we have (9) and (10) with e =1/2 —w € (0,1/2].
Remark 2.12. In this paper we have supposed that 0 € p(A), but in the theorems above
written for |A| large enough, and those concerning generation of semigroups, we can drop

this invertibility assumption; more precisely all the previous Theorems remain true if we
replace (5) by

<

Jdpo € (0,7), Jwg >0: Sy, C p(A—wol) and 3C4 > 0 :

_ C
‘(A —wol = AT) 1H£(X) ST +/|‘>\|‘

YA € Sy,




3 Problem without parameters

In this section we study a problem similar to (1)-(2), but without the parameters A and pu:

{ u’(z) + Au(z) = f(x), x€(0,1)

W/'(0) — Hu(0) = do, u(l) = uy. (16)

3.1 Hypotheses

Here our hypotheses are

(H1) X is a UMD space,

C
H 0,+ Cco(A d A—1tl -1 <
(H2) [0,400) Cp(A) an te[%l,lfoo)H( ) HL(X) 1+t
(Hs) Vs € R, (—A)” € £L(X) and
404 € (0,7) : —Oalsl(— 4)ts < ,
ac(0.m) EE]EHE A gy < o0

(Hy) A:=(Q— H)+e>?(Q + H) is closed and boundedly invertible, where Q := —v/—A.
(Hs) QAL ((D(Q),X)y,,) € (D(Q),X)yp-

Note that here we are neither in case 1, nor in case 2. In the following remark we discuss
about assumption (Hs).

Remark 3.1.
1. Assume (Hz) and (Hy). If we suppose moreover
ATIAT = ATIATY (17)
then (Hs) is satisfied. In fact, the following assertions are equivalent.

(a) A7IAE = A1AL
b) VAep(d), (A=A)'AT=AT1UA-A)",
() QAT =ATTQ

Then, under (17), we have Q (Q — tI) ' QA = QA*Q (Q — tI)~" and since
(D(Q), X)), = {z € X :t7PQQ—tD) "z e LARy; X)
we get (Hs). Finally we remark that if
VCeD(H), A'¢eD(H) and A 'HC=HATY, (18)
then (17) and (Hs) are satisfied.
2. Assume (H,) and (Hy); if we use the classical notation
(D(Q), X)111/pp = {¥ € D(Q): Qv € (D(Q), X) 1/}

then (Hs) writes
(D0 X0) < P,

8



3. In [8], problem (16) has been studied under more restrictive assumptions, that are
(H1) ~ (Hy) and the commutativity hypothesis

I €p(H): ANH-NI) = (H - NI)PATY (19)
which, from statement 1., implies (Hs).

4. Assume (Hj) and (Hy). If Q — H is boundedly invertible then, due to AA~! = I and
A7'A = I, we get that

A =(Q-H)T —(Q-H) e (Q+ H)AT!
(Q-H) ' =AT + AT (Q+ H) (Q-H)
from which we deduce that for any £ € (D (Q), X)

(20)

1/p.p
QA € (D(Q), X)y),| = [QQ—H) €€ (D(Q), X)) ;

so we can replace in the previous proposition assumption (Hs) by the equivalent one
-1
() QQ-H)" ((D(Q), X)) € (D(Q), X)), (21)

5. Assume (Hs) and (Hy). If we suppose that QA~1¢ € D(Q), then we have (Hj), see
Lemma 5 p. 76 in [9]. Similarly, when @ — H is boundedly invertible, using (20) we
have that

v eD(Q), QQ-H)'¢eDQ)
implies (H}) and then (Hs).

3.2 Interpolation spaces

Let us give now some necessary conditions to obtain a classical solution for our problem (16)
using known properties of interpolation spaces.

Lemma 3.2. Suppose that Problem (16) has a classical solution u. Then:

1. w(0),u(l) € (D(Q2),X)L7p = <X7D(Q2))1—2i,p7 which implies that

2p

w(0), u(1) € D(Q) and Qu(0), Qu(1) € (D(Q),X),,,.

2.4/ (0), W (1) € (D@, X) 3,1, = (D(Q). X)L,

Proof. Suppose that Problem (16) has a classical solution u. Then, from
we WP (0,1; X) N LP (0, 1;D(Q2)) . 1<p<+oo,
we have u (0),u (1) € (D(Q?%), X) 1

p= (X,D(Q%),_ 1 L See [16], Teorema 2’, p. 678. But,
2p? 2p?
due to [16], Teorema 6, p. 676, we obtain

(P(@) %), ,,, = P(Q): X141, = {# € D(Q): Qv € (D(Q), Xy, } € D(Q).

from which it follows that

u(0),u(l) € D(Q) and Qu(0),Qu(l) € (D(Q),X) -
Similarly, by using Teorema 2, in [16], p. 678, we have

W' (0),4' (1) € (D(Q?), X) = (D(Q).X)1,,.

1 1
54’%@ P



3.3 Representation formula
Under (Hz), if u is a classical solution of (16) then there exist £y,& € X such that
u(a) = e + 'R + T () + T (x), z€(0,1], (22)

where
I(x)= éQ_l /Ox @)L f(s)ds and J(z) = %Q_l /xl e f (5)ds, (23)

see [7], p. 989. Note that here, unlike [7], we do not suppose that A and H commute. Now,
~1
taking into account the fact that I — €2 is invertible, we set T = (I — 62Q) € L(X) and

S(x)=T (er - e(l_z)QeQ> eL(X), ze]0,1];
then formula (22) takes the following form
u(@) = S @) po+ 5 (1 — ) +T () +T(x), ze€[0,1],
with p1g = & + €9&1, 1 = e9&y + &1 and we deal with this new writing. We note that

up = u(0) = puo + J (0)
ur =u(l) =p +1(1)
W (0) = TQ (1 +¢22) o — 2TQe%1 — QJ (0),

and we determine pg, p1 by using the boundary conditions u(1) = uy and v/ (0) — Hu(0) = dy.
So p1 =wug — I (1) and

TQ (I +€*2) jig — 2TQe%p — QJ (0) = H (o + J (0)) = doy
hence
TQ (1 +¢*) (uo+J (0) = H (o + 7 (0)) = do+2TQe%n
+QJ(0) +TQ (I + eQQ) J(0),
thus
Q(I+¢) = (1=e) H] (to+J(0) = (I-¢*?)do+2Qe%
+(1=¢*2) QI (0)+Q (I +¢*2)J (0);

but A =Q <I+62Q) — (I—e2Q) H, so

p=u —I(1)

po = AL [ (1 = €22) do +2Qeu1 +2QT (0)] — J (0).

Finally, if u is a classical solution to (16), then

u(x) =S @) po+S(1—a)u +1(x)+J(z), z€][0,1], (24)
where
p=mu1 —I(1)
o = A1 [(1 - eQQ) do +2Qe%u; +2Q.7 (o)] — J(0) (25)

S(z) = (I - eQQ)_l (ef"Q - e(l_I)QeQ) .

When (19) is satisfied, we can check that this representation formula coincides with the
one given in [8] p. 528. We can also, after computations, verify that (24) is the same formula
as the one in [9], p. 92 (with L = M = @) and also compare it with (34)~(38) pp. 54-55, in
[19].

10



3.4 Regularity results
The following results will be useful to study the regularity of the solution of (16).

Lemma 3.3. Let p € (1,400),% € X and n € N\ {0}. Then, under (Hs), we have
1.z e e LP(0,1,X).

2.z Qe € LP (0,1, X) if and only if ¢ € (D (Q™),X) 1

np’p ’

See for instance [23], Theorem at p. 96.

Lemma 3.4. For f € LP (0,1, X) with 1 < p < 400, under (Hy) ~ (Hs), we have

T 1
1z Q/ e9Lf (5)ds € LP (0,1, X) and z+— Q/ etTRf (s)ds € LP (0,1, X).
0 T

1
2. :L‘»—>Q/ TR (s)ds € LP (0,1, X) .
0

For statements 1 and 2 which are consequences of the Dore-Venni Theorem, see [15],
p. 167-168 and also (24), (25) and (26) in [14].

Lemma 3.5. Let ¢,y € X and 1 < p < +00. Then, under (Hj), we have

Lz Q%S (z)y € LP(0,1; X) < ¢ € (D (Q?) ,X)%vp,

v Q*S(1—2)x € LP(0,1;X) <= x € (D(Qz),X)%p.

2. x> Q*S () +Q*S(1—2)x € LP(0,1; X) <= ¢, x € (D (Q*), X) 1

2p7p '

Proof.

1. Since T = (I — eQQ)il =1+ (I — eQQ)il, we have

S (z) = e*? + (I - 62Q)71 e*@e2Q — (I + 29 (I - eQQ)1> 1~ eC,

then, by Lemma 3.3
Q*S ()¢ € LP(0,1;X) <= Q%% e LP(0,1;X)
<~ ¢e (D (Q2),X)%’p.
2. For any v, x € X, we have
Q*S ()¢ +Q*S (1 — ) x € LP(0,1; X), (26)

if and only if Q?S (-)% € LP(0,1; X) and Q%S (1 —-) x € LP(0,1; X).

In fact, assume (26), then
Q*S ()Y +Q%S(1—-)x € LP(1/2,1; X),
but Q%S ()¢ € LP(1/2,1; X), therefore QS (1 —-) x € LP(1/2,1; X), which gives

Q*S (1 —-)x € LP(0,1; X).

11



Lemma 3.6. Consider f, pt1 defined in (25). Then
< A ldye (D(A),X).

{ po € (D(4),X) 1, .

1
P
meDA),X)y, < ueDA),X),,.

Proof. From [17], Proposition 3.5, p. 1676, we have J (0),1 (1) € (D (A) ,X)%p, thus:
p?

w € (D(A),X) = u € (DA),X)

1 1 .
%J) E»p

Moreover pg = A" tdy — A1 [eQQdo +2Qeuy +2QJ (0)} — J(0), with
e*?dy +2Qe 1 +2QJ (0) € (D (Q), X) 1,

and from (Hs)

QA‘l {eszo + 2Q€Qu1 +2QJ (0)} € (D(Q) aX)l/p,p’

which means that

AT ey +2Qe%p +2Q7 (0)] € (D(Q), X) 141, = (D(A), X)

Finally: uo € (D (A),X)1 < A7 ldye (D(4),X)

1 .
%7]2 %71)

3.5 Resolution of Problem (16)

Proposition 3.7. Let f € LP(0,1; X) with 1 < p < 400 and assume that (Hy) ~ (Hs) are
satisfied. Then the following assertions are equivalent:

1. Problem (16) admits a classical solution w.

2. ul,Afldo € (D (A) ,X)

1
%7]3

Moreover in this case u is unique and it is given by (24).

Proof. From the previous study we know that if Problem (16) admits a classical solution u
then w is unique and given by (24). Moreover u defined by (24) satisfies

w(0) = o+ J (0) = A [ (T = @) do + 2Qe%p1 +2Q7 (0)] € D (H),

and then u is a classical solution of (16) if and only if Q%u (-) € LP(0,1; X).
But from Lemma 3.4, Q%I (-),Q?J (-) € L?(0,1; X), so Lemma 3.5 and Lemma 3.6 imply
that
Q%*u(-) € LP(0,1; X) <= Q?S(z)po+ Q*S (1 — ) € LP(0,1; X)

= o, € (D (A)aX)i,p
— ul,A_ld()G(D(A),X)%

p7p’

this proves that statement 1. is equivalent to statement 2. ]

Remark 3.8. In the previous Proposition, if moreover, () — H is boundedly invertible,

then using (20) we can replace the condition A=*dy € (D (4),X) 1 , by the simpler one
2p?

(Q—H)""do € (D(4),X) 1,

12



4 Dore-Yakubov estimates

This section is devoted to Dore-Yakubov Estimates and applications. The results are based
on those given in [13] and we have used the definitions and notations from this paper. We
consider here a complex Banach space F, which is not necessarily a UMD space.

Definition 4.1. W is an operator of type ¢ € (0,7) with bound C,if W : D(W)C E — E
is a closed linear operator such that Sy C p(=W) and

VA € Sy, H(W+ ”>_1H£(E> STT Al

where S is defined by (3).

In all this section, we fix ¢ in (0,7), Ain S, and L : D (L) C E — E an operator of
type ¢ with bound Cp, satisfying D (L) = E.
We set

Dy =L+ X and € (¢) :=min{p, 7 — ¢} € (0,7/2).
Note that € (9) = ¢ if p € (0,7/2], and e () =7 — p if p € [7/2, 7).

Lemma 4.2.

6
1. Let 8 € (0, (¢)); then Dy is an operator of type # with bound Cy := C,/ cos (ﬁ)
Moreover for v € Sy we have : H(D,\ + VI>_1H < L.
LE) T N+ +1

2. Let # € R and v € C such that § = ‘5’ € (0,e(y)) and Re (ue*ig/Q) > 0. Then
Ca

< : with
)

lv| 4+ A+ 1

-1
D/l\/ >+ vl is boundedly invertible and H (D}\/ > vl )

L(E

C,5:=CL/ [COS (arg (v) — g) cos (cp;—ﬁ)] .

3. Let ¢ € <7T T + c (tp)); then D}\/Q is a linear operator of type 1 with bound

22 " 2
P —e(p)

Ky :=CL/ cos? (By) where 3y, = % + 5 € (0,7/2).

Moreover for v € Sy, we have

(o4 o) 5

<——F
cey [+ VIAT+1

(27)

Proof. This Lemma is essentially based on Lemmas 2.3 and 2.4 in [13]. The novelty is in
some precisions given on the estimates in statement 2. and 3., which integrate the behaviour
with respect to the complex parameters A and v.

1. See [13], (2.1) in Lemma 2.4, p. 99.

2. The idea is to use the calculus given in [13], in Lemma 2.4, at the end of p. 99:

L(E)

)

(o3 +)”
L(E)

1 oo p1/2,i0/2
J

— -1 5
- 0 0
e 1 7 (D,\+7“e I) edr

™

13



S 1 Cy
but usi Dy +rel < —F, t that
u usmgH( A+ re ) i ST Fra we get tha
1 400 1/2 1
H(Di/2 + ) H < & i dr
L(E) T Jo ’T@"e + 1/2‘ Al +7+1
< Cy /+oo /2 1 d
< — — r
™ Jo coS (arg(;,;)@)‘ (T' + |7/|2) ‘)\‘ +r4+1
< Co - /+oo r/2 dr
T cos (arg (v) — %) 0 (7“ + \V\Q) (r+|Al+1)
Cr 1

cos (arg (v) — g) cos (¢ + 0) /2) V] + VIA + T
The last equality, follows from
a,b>0.

+o0 7’1/2 T
A e e Ly v

3. Estimate (27) is deduced from Statement 3. as in [13], Lemma 2.4, p. 100.

O
From the previous Lemma, we deduce that
_ Co

P D n! ST E— 2

v =0, H( A+ i) Hz:(E) A +v+1 (28)
and ) %
Vv € Sy /o, H DY? +uI) < L : (29)
o |OE ) < A

where Cy = Cp/ cos (p/2) and K, := CL/ cos® (¢/2).
Here, since D) is boundedly invertible, we have also that Di/ % s boundedly invertible
and then p (D/l\/ 2) contains a ball centered in 0. The following Lemma specifies the size of

this ball with respect to A € S,.
Lemma 4.3. We have

—1/2 Ky,
1. |D < —.
H A H[L(E) VIN+1
VI 1/2 1/2 _ 2Ky,
2. Forze B (O, 2|[(‘L ) 1z € p(D)\/ ) and H(D)\/ —2I) 7| gm) < T
Proof. For statement 1., it is enough to consider (29) with v = 0.
For statement 2, we consider z € B (0, ”2|I)‘<|;L1>, then
—1/2 —1/2 VIAI+1T K
0 < 11205 ey = 121D 22y < —1/2<1,

2K, M +1
SO D/l\/ R g D/l\/ 2 (I - zD/:l/ 2) is boundedly invertible with

(I — ZD;1/2> - 2hs

< —.
cey  VIAI+1

I(DY? = 2D) Y| zm) < HD;1/2H£(E) X

14



Now we will compare Di/ ? and D(l)/ ?. This has been already done for A > 0 in [18],
Proposition 3.1.7 p. 65. Here X is a complex parameter: we furnish a precise estimate for

the bounded operator T which extends Dl/ 2 Dé/ 2,

Lemma 4.4.
1. There exists a unique T € L£(E) such that

Dy* = Dy + 1, (30)

2. T\D,,''* = D;;'/*T), for any X € S,,.
3 1 Txll gy < CoCrv/IAlL

Proof. First, notice that L = Dy and D (L) € D (Dy*) n D (Dy/?). Thus, if T € £(E)

satisfies (30) then T} is unique since D (L) = E.
We have (see for example [13], p. 100)

_ _ 1t 1 1 [t 1
DA1/2_D01/2 = - \[(DA—&—tI) Lt — - \/(D0+t1) dt
0 0
1
— — D tl Do +tl) | dt
7T/ \[ A1) = (Do + 1)
)\
= = / L+tI—tI)(D,\+tI)_1(D0+tI)_1dt
T
= / D)\—i-tf) dt

+—L*1/ \/E(DAthI)_l (Do + 1) dt
™ 0

= —AL'DPy LTy

A [T
where Ty = f/ VE(Dy + 1) (Do + t1) "L dt € L(E).
™ Jo
This proves that D (D/l\/2) = D( 1/2> (L1/2). We then deduce (30) by writing,

for ( € D (L1/2>

Dy/2¢ = Dy/*¢ = (L + 1) Dy V?¢ — LDy P = Ty¢.

Statement 2., is an easy consequence of the definition of 7. Statement 3. follows from
(28), since

L(E) w+t+1t+1 VIAI+1+1
O
From Lemma 2.6, p. 103, in [13], for A € S,, we have that G := —Di/2 generates

a semigroup (etG*) bounded, analytic for ¢ > 0 and strongly continuous for ¢ > 0.

Moreover, it satisfies

{ 3Ky >0, 3cp >0, V¢t > 1/2, VA€ S,

max {|| e || gy, | Gae'® () b < Koe 1P,

15



Lemma 4.5. Let —oo < a <b < +o00. For z € [a,b], A € S, and f € LP(a,b; E), we set

‘ e ’ G
Uys (a;):/a e f(5)ds  and Vs (x):/w eBT2GN £ (5)ds. (31)

There exists My, > 0 such that for any f € LP(a,b; E) and any A € S,

ML ML
1O 2o (0 5) < NOES! I llpapmy  and VAl o pm) < NES! 1N o (a5 -

Proof. We fix ¢ € (;T ;T (2('0)) and use notations and estimates of Lemma 4.2. We first

focus on Uy ¢. Let « € [a, b]. We apply the Dunford-Riesz Calculus to define e’®» and obtain

1 z _
Ussa) = %/ /e@”*s)z (2 — G f(s) d= ds
a Jy
1 x
- (z—s)z 1/2\-1
22'77/(1 Ae (I +D\'7) " f(s) dz ds,

VIAL+1

where the path v is the boundary positively oriented of S, U B(0,¢) with e = ¥ie
L

Then
1 x r+oo i . ;
Upg(z) = %/ / e (v T 4 D)/?) 7! f(s)e drds
/ / (z—s)eet® (66101+D1/2) 1f( )5zewd9d8
2177 2m— w

- / / (x—s)re*“l’ (Te—i¢[ + Di/Z)_lf(s)e_iwdeS,
7T

hence

10,5 ()]

N

oLl o e D s
T A i e R IR

+217r/;/:00 He(H»ww H H (re "1 + DY?)~ HL(E) drds.

We deduce, from Lemma 4.2, statement 4. and Lemma 4.3, statement 3., that

drds

N

1O ()]

17T/a /€+OO He(z—s)reiwf(s)H — )\’
% / /:”“”He(x_s)aew )| 2;@

1 v too —s)re”*
o[ L e wf(s)Her/A!

drds,
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hence

Kw/ / ®) BN
U < x S?"COS d d
V@) 5O s
5 (:p s)e cos(0) ) dods
== 1765
+oo p(z— s)rcos(t/))
<2l / ) Il ds
€ T+ )\| +1
ek /2” w/ (2=5)e cos(v)
—_— e\FT8)ECos s)|| dsdf
s 5]
z +oo p(z— s)rcos(tp)
< 2 / ) I
T Ja € r—+ )\| +1
2e Ky, (x—s)e cos(v))
e s)|| ds.
s 7))
So, setting
o) =22 [ ([T ) s
)\f € r+ \/MT
QEKL z _ .
U2 p) = ——&L e(x s)e cos(1)) s)|| ds,
/\,f( ) \/m " ”f( )H
we have
1 2
100 Aoy < [Tt oy 1O oy (32)
. 1 1 p
Estimate of HU/\»f Lotad)’ Define g € L' (R), F € L? (R) by
+o0 tr cos(y)
/ g ift>0 IF@) ift € (a,b)
g(t) == e r+J/Al+1 and F(t) := 0 elsewhere
0 elsewhere, ’
and thus
K z K b
Uls@) = 2 [ glw=9) 1 6)lds+ =2 [ gl s)15(5)] ds
K too K
= 20 [ gl 9F(s) ds ==Y (g4 F) (o).

Then, from Young’s inequality, we obtain

1

K
|0k B g Pl < S ol ey 1Pl oo

Lr(a b)

Setting ¢ = \/|\| + 1 and noting that ¢/¢ = 1/2K, we have
+o00 +00 etrcos
ol = [ f v

+00 etpe cos(1)
- / L o) a
0 e/t p+1

B 1/+°° _dp
— Leos(Y) ek, p(p+1)
In (2K, + 1) / cos ()

VIA[+1 ’
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and finally

Ul < Kyln (2K, + 1) /mcos (1)

H Mlpeap) N+ 1 Hf”Lp(a,b;E)-

Estimate of ||U? . Define F € L? (R) as above and h € L' (R) as follows
Ml Le (a,b)

etecos(¥) if £ >0
ht) = { 0 elsewhere;

then, as previously
2e K L

2 (N _
Uss(x) = NOES

therefore from Young’s inequality, we get
2K/ |cos (¥)]

LP(a,b) = W Hf”LP(a,b;E) .

From (3%) and the two previous estimates, we obtain the expected result on U,.
Setting f(-) := f(- —a —b), we note that

(h* F)(x);

|03

Vs (x) = U/\?f~(b+a—a:); (33)

then, there exists My > 0 such that
My,

‘f‘LpabE WHf“LpabE)

My,
”V>\7f||LP(a,b;E)< N[+ 1 ‘

O

Definition 4.6. We say that a closed linear operator A on E, has the LP regularity property
on [a,b], if the Cauchy problem

{ u'(t) = Au(t) + f(t), te (a,b)
-0,

admits, for any f € LP(a,b; E), a unique solution us € WP (a,b; E) N LP (a, b; D(A)).
In this case, there exists K > 0 such that for any f € L? (a,b; E)

+H|Auf||Lp(abE K”f”LP (a,b;E) *

/
f LP(a,b;E)
For details on the L? regularity property we refer to [11] and [12].

Lemma 4.7. Assume that G = —L'/2 has the L? regularity property on [a, b], and consider
Uy,f, Vs defined in (31). Let A € S, then:

1. The linear operator Gy = — (—L + )\[)1/2 has the LP regularity property on [a, b].
2. For any f € LP(a,b; E), Uy f,Va s € WP (a,b; E) N LP (a,b; D(G)), U, 5 is the unique

solution to
{ V'(t) = Go(t) + f(t), te€(a,b) (34)
v(a) =0,
and V), ¢ is the unique solution to
{ o() = ~Gu(t) + f(t), t € (a,b)
v(b) = 0.

18



3. There exists My, > 0 (which does not depend on ) such that for any f € LP(a,b; E)
we have

VIAI+1Ux s

| Lo(apim) + HUi,f LrapE) T 1GAUNf | 2o (a:5) < MLl Lo (a5

L?(a,b;E) S Mg Hf‘|Lp(a7b;E) .

VITFTIVA A poanry + V25 llGava

LP(a,bE

Proof. Let A € S,. We consider T}, defined in Lemma 4.4, statement 1. and due to (30),
we have Gy = G —T).

1. Let f € LP(a,b; E). Here, we want to show that (34) admits a unique solution in
WP (a,b; E) N LP (a,b; D(G)).

o First, we set g(.) = e(=Oxf(.) € LP (a, b; E).
o Then we consider Uy, defined by (31) which is the solution to

{ u/'(t) = Gu(t) + g(t), t € (a,b) (35)

but G has the LP regularity property on [a, b], so
Uo,y € W' (a,b; E) N LP (a,b; D(Q)) .
e Since Ty € L(E) and Uy g € WP (a,b; E) N LP (a,b; D(G)) we get that
v = e (T Uo,gs (36)
is also in WP (a,b; E) N LP (a,b; D(G)) with
v = —The ("I, 4 e~ (T Upg-

So using (35) and the fact that TG = GT) on D (G) (see Lemma 4.4, statement
2.) we deduce that

Vo= —Tae I+ eI (GU g + g)
= (G-T)) e_('_a)TAU(Lg + 6_('_a)T/\g-

Finally v satisfies

{ww=@—nw@+ﬂmtew@
0.

e From Lemma 4.2, statement 5, we have Gy = G — T so v = e*('*a)Tkavg is a
solution of (34) with the expected regularity. Moreover if w is another solution
of (34) then e~ (=% Ty satisfies (35), so e~ (4 Tw = Uy, and w = v; this proves
the uniqueness of the solution of (34).

2. From (31) we have that U, s is a formal solution of (34); then Uy ; = 67(.7G)T>‘U07g
and has the expected regularity. We use (33) to study V) ;.
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3. Since G has the LP regularity property on [a,b], there exists K > 0 such for any
h € LP(a,b; E)

HU(/)’hHLP(a,b;E) + ”GUo’hHL”(a,b;E) < Kl o a ey -

Now let A € S,. U, s satisfies (34) so

Uy f(t) = (G =Tx) Ux s(t) + f(t), t€ (a,b)
{ Uns(a) = 0;
thus setting hy = —T\Uy 5 + f
{ U (t) = GUxf(t) +ha (t), t € (a,b)
Uy,f(a) =0,
then Uy y = Upp, and

/ _ /
HUA,f LP(a,b:E) + ||G>\U>\,fHLp(a,b;E) - HUO,h)\ LP(a,b;E) + ||GU0,h>\”Lp(a7b;E)

< DM eez 108 ooy + 1 ooy

My,
< G WW 1A ee ey + 11 o (ap )

< Mpfllra e -
For the estimate of T, we have used Lemma 4.4, statement 3.

Moreover, using again (33) to study V) f, we obtain the expected result.

5 Spectral problem (1)-(2): first case

5.1 Preliminary estimates

In this subsection we suppose that X, A, H satisfy (4)~(6). Note that the results of Section 4,
can be applied to our operator —A, since due to (4), (5), —A is densely defined and from
(5) we have that —A is an operator of type o with bound C4. For A € Sy, —A + A is
an operator of type @ (for any 6 € (0, (0)); in particular if we set Q) = —(—A 4+ \)/2,
then from Lemma 4.2, statement 2., () generates a semigroup (e‘tQ*)Dowhich is bounded,

analytic for t > 0 and strongly continuous for ¢ > 0. Moreover, there exists K > 0, such that
K

A+ v

YA E Sp,  11QY )<

furthermore, from Lemma 4.3, statement 3., we have B (0,1/2K) C p(Q)), so there exists
0 > 0, which does not depend on A such that Q,+dI generates a bounded analytic semigroup;
thus, for some K1 > 1

YA€ Sy, V20, || €9 o)< Kie (38)
There exist also Ky, cg > 0 such that
VA€ Spy, VE21/2, Vje{0,1,2}: (30)
” Q.g\etQ)\ H[,(X)< K0€*200|,\‘1/2.
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Lemma 5.1. There exists a constant M > 0 independent of A € S,,, such that for any
A € Sy, operators I + e are invertible in £ (X) and

<M, (40)

YA € S, H(Iie%)_l "
X

Proof. Let A € Sy,. For t > 0, we have HetQA L) < Ki1e7*; we choose k € N\{0} such

that Kje 2% < 1/2 < 1. Then I — ¢?*® is invertible with

-1 1

< =2,
cxy  1-1/2

H 2kQA

thus 0 € p(I — e%@*) since
I = (I—é&*@) (I 42 4. 62(k—1)QA) (I — Q)1

= (I- erQx)—l (I F 2@ .y 62(/€—1)Q/\> (I— ).

Moreover
H(I_ ezQA>—1 " [(1+ @ 44 209 (1 - ‘?%Q”*lHqX)
S (1 + HQQQA L(X) Tt H€2Qx L(X)) H )" HE(X)
< 2Kk
We obtain the same result for I + 2@, O

5.2 Spectral estimates

In this subsection we assume that X, A, H satisfy (4)~(8).

Let A € Sy, 10 € Sy, We recall that H, = H + pl and furnish estimates concerning
operators 0y, H,, which are easy consequences of our assumptions.

In the following, M denotes various constants, independent of A, i, which can vary from
line to line.

Lemma 5.2. Let A\ € Sy, 0 € Sp,. Then (—A+ M) H,' € £(X); moreover there exists a
constant M > 0 independent of A € Sy, and p € S, such that

maX{HHHngm ’ AHJlHL(X)} <M, (41)

HQiHJIHL(X) < Jrl‘j\_‘ |:|w’ (42)
e L+ A+ [l
-1 o

02y < (1 [pal) (14 AN o

Proof. Note that (—A + \I) is closed, so due to (7), (—A + \I) H,jl is bounded. Then

HHHM_IHL(X) = B4l = gl | < e+ [ “I)_IHL()O S A

moreover

HAHF?IHL(X) S HAHAHHJIHL(X) S HAH71HL‘,(X) HHH;1H£(X) M
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and

_ H(—A + ) H,;luﬁ(x)

+ H)\ (H + ,uI)’lHﬁ(X) <M (1 + 1 B\'u) .

|@xm .

< Jam

Finally, since
2 pr—1
|3,

)

@387 i, = o3 @Ry <05

(X)
we deduce (43) from (41) and (37). O
For A € Sy, 1t € Sy, , let us recall that
Ay = (Qx = Hy) + €9 (Qx + Hy)
Note that, since D (H,) C D(Q3%), we have D (A, ) = D (H,) = D(H). We now introduce,

for r > 0, the notation

2
Qo010 = {()\,u) € Spy X Sp, 1 |A| = r and ’rﬁ\“ > r},

and furnish results on Ay ,.

Lemma 5.3. There exist 19 > 0 and M > 0 such that for all (A, 1) € Qyg.0,.r, We have

0€p (([ -~ eQQA)*l (I T e%h) O\H ' — I)

-1 -1 (44)
ooy mray ]
L(X)
0ep(Ay,) and HA;LHL(X) < 1 _]ym‘, (45)
" L+ A+ |l
HQiA;:LHc(X) b M#‘ (46)

Note that QiA;L has the same behaviour as QyH, ', see (43) and (52).

Proof. Let (A, 1) € Qg for some 7 > 0. From (7), we have Q\H,,' € L(X), hence
-1
(I - eQQA> (I + eQQA> QAHJI — I € L(X); moreover, from (40) and (43), we obtain

[(1-e9) 7 (1+9) qu,!

L(X)
-1
<M,
1+ |yl A )
L+ L) (L4 ADY2 (@ ul) @+ A2
1 |)\‘1/2

SN2 e
<M
r1/2
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So there exists 19 > 0 such that for all (A, u) € Qg 1., We have

[(1-e9) 7 (142 Quy!

<1/2. (47)
Let (A, i) € Qgg.01,70- Then (47) proves (44). We deduce that

Ly, = (I - 62@) {(I - eQQA)_l (1 T eﬂ%) O\H, ' - I} € L(X),

is boundedly invertible. Moreover

Ly, = [(I =) (1429) Qum, - 1} B (1-e)™"

satisfies

< 2M.
L(X)

2w
Now, we write Ay, = (I—}—ezQA) Qx — (I— eQQ*) H, = Ly,H,, so Ay, is boundedly
invertible with

1_ —17-1
Ay H Ly

this furnishes (45). Finally, L;’LHL(X) < 2M and (42) gives

s L+ N+ Dl

- HQ?\HJIHL(X) HLA’/‘H[L(X) = 1+ |

|@tasi]

£(X)
L]

Lemma 5.4. Assume (4)~(6), let f € LP (0,1; X) with 1 < p < 400 and set for z € [0, 1]

Lot [* @-s 1
Iy (x) = 5QAl/O @) f(5)ds and I g (z) = §Q>\1/ e~ f(5)ds; (48)
then, there exists M > 0 (independent of A and f) such that

1@xIxy W< MAF 0 and [@xx g (O)ff < M IS

LP(0,1;X)

(49)

LP(0,1;X) ’

moreover I ¢, Jy s € WP (0,1; X) N LP (0,1; D (A)) with

|Q3ns| MIflL,.. and Q3]

LP(01X) Lr( 01X) Hf”u’(mm

Proof. From (38), we have
1 1
Qg (W< [ 991 () ds < M [ 17 )l ds < MU,

s Ol < [

We apply Lemma 4.7 with E = X, L = —A, Gy, = Q), a=0, b= 1 so that

9 (s) (d8<M/ 1f ()l ds < M| f]

LP(0,1;X)

1 __ 1
Dy =50 Uny and Jyp=5Q3 Wiy
2 1 9 1 . .
then Q31 r = iQ’\U’\’f and Q5J) r = §Q>\V>\7f have the desired estimates. ]
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Lemma 5.5. Assume (4)~(6) and let f € LP(0,1; X) with 1 < p < +00. Set for z € [0, 1]
vo (r) = "y 4 (0) and vy (z) = "Iy (1).

where I y and J)y ¢ are given by (48). Moreover, there exists M > 0 (independent of A and
f) such that

Q3w

Lr(01x) S M gy » 3 =051 (50)
Proof. From [17], Proposition 3.5, p. 1676, we have
s(0) € (D@D, X) 1, = (D(QN) X)y
P P

so for z € (0,1], we can write
1
Qo) = Q[ @ f(s)ds
0
T 1
= Q)\/ e(T=8)@x 250 £ () d8+€25CQAQ)\/ e £ (5) ds
0 T

= 2Q3L\, (2) + 26" P Q3T (2),

with g = €2@*f (-). From Lemma 5.4, statement 1. and (38), we have

2. 2
{ [ Q75 O oy < MRS Ol oo iz < M Il
2
HQAI/\»Q LP(0,1;X) sM HgHLP 0,1;X) SM Hf||Lp(o,1;X) )
from which we deduce Hin()HLP(O,l;X) M HfHLp(O’l;X)-

The same estimate runs for vy since

v = e Irpa—)(0) and | f(1—-)

LP(0,1:X) HfHLP(o,l;X) '

5.3 Proofs to Theorem 2.1 and Theorem 2.2

Let rg be fixed as in Lemma 5.3.

5.3.1 Proof to Theorem 2.1
We apply Proposition 3.7, with A, H, @ and A replaced by
A= X, H+pl,Qy and Ay 4,

since in this case Problem (16) becomes Problem (1)-(2). So, it is enough to verify that
(4)~(8) imply (H1) ~ (Hs).

It is clear that (4), (5), (6) imply (H1),(H2), (Hs) mentioned in section 3. Moreover,
due to (45), assumptions (4)~(7) imply (Hy). Finally, under (4)~(7)

A, (X) € D(@nD(H) < D (),

so that QA)_\L (X) € D(Q) and then (Hs) is satisfied.
Note that here, the condition A;Ldo €e(D(A),X) Lo is automatically realized since for
I’ p7

any dy € X, we have Ay} dy € D(Q) N D(H) C D (Q?).

24



5.3.2 Proof to Theorem 2.2

Let (A, i) € Qg 010 and f € LP (0,1; X). We recall that, taking into account the notations
(48), we have, for z € [0, 1]

u(e) = Sy (2) o+ Sy (1 — )y + Ing (2) + g ().

where
=y — Iy g (1)

po = A5l [(1 = €22) do +2Qae@ i1 +2Qu Iy 1 (0)] = o1 (0)
Sy (z) = (I — eQQ*>_1 (er* — e(l_m)leQ*) eL(X).

So we can write u = hg + hy — ho + hg + hy with

ho <:c>:S () AL [(1 = €9) do +2Qx (a1 (0) — @1 4 (1))]

hi (z) = 28y (z) Ay L QreP g

ha () :su ) Jag (0) + 83 (1—2) Iy s (1) (51)
hs (x) =S\ (1 — ) u;

ha(x) = Iys () + Ing ().

Estimate of Q3hg. For £ € X and z € (0,1), we have

HQ%S/\ (l‘) A;LfH = H I - €2Q>‘>_1 ([ — 62(1_1’)QA> emQ*Q?\A;Lé

2Q>\ L 2000, TQx
H (I € )’L(X) e HQ/\ /\ﬂHL(X) €l
LMl
1+ |l ’
so, from (46) and (49), we deduce
L+ A+ [p
2 < - - = Qx
@t @) < M (ol +21Qud s O+ 26, 1@aTn (0]
L+ A+ [p
S TN (”dOH + HfHLP(O,l;X)) ‘
Then
L+ Al [p]
HQ)\ Ol Lo (0.1:3) MW (HdOH + ”fHLP(O,l;X)) -

Estimate of Q%\hl. As above, we have for £ € X and z € (0,1)

@i )] < st R (g

o lall).

and from (39), we deduce that [|Q3h1 (z)|] < M |lu1]], hence

M fua]l -

Join

LP(O,l,X)
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Estimate of Q3hs. For £ € X and z € (0,1], we have

HQ%SX (x)EH = H 2Q)\ -1 (I B e?(l—a?)QA) QP ’
< H ZQ,\ -1 (I — 62(1—1‘)Q/\) - HQier*f ‘
< M[@3e . (52)

T @ < v (e o] + [t 0l
and then, from (50)

+|@ua-

| @3 o) < Mo

<01 ([la%
Estimate of Q3h3. Due to (52), we have, for z € [0,1)

HQihza (JU)’
From Theorem 2.1 in [13], since u; € (D(A),X)QL » = (X, D(4))
p7

LP(0,1;:X) LP(0,1;X)

<M HQie(lfx)QAulH _

1 we get
17%71)7 g

HQihza

_ 1
<M HQie(lﬂ)Qkul <M <HU1||(D(A),X) L IU1II> :
LP(0,1;X) LP(0,1;X) 2p°P

Estimate of Q3hs. From Lemma 5.4, we get

s

LP01X) Hf”LP(OlX)
Summarizing the previous study we obtain that

|@3u < Mo (do, ur, A i, f) (53)

LP(0,1;X)

Moreover, since u satisfies (1), that is,

U”(ﬂj‘) - Qiu(w) = f(x)a a.e. T € (07 1)a
we deduce that
< M()é(do,ul,)\,/,é,f)-

Writing u = Q;QQg\u and Q u = Q;lQiu, we obtain the estimates concerning v and Q\u.
Setting, for z € [0, 1]

[[u]
LP(0,1;X)

S\ (x) = (I — €2Q)‘)_1 (egﬁQA + e(l_x)leQ*) € L(X),
we have
W (2) = QASx () o — QaSa (1 — 2) pu1 + QL5 () — Qv 5 (2) = Q) ' Q3w (),

the terms in w (z) = S (z) o — Sy (1 — ) p1 + In s (x) — Jy s () are (in absolute value)
those of u(z), so (53) runs when we replace u by w , this furnishes the estimate for u’'.
From Lemma 2.6 a) p. 103 in [13] we have

05,y = AP A < o0

L(X)

2
so writing Qu = QQy ' Qxu, Q*u = (QQ;\l) Q3u, we deduce the estimates of ||Qul|

and ||Q2“|| from those of HQ)\UHLP 0,1;X) and HQ)\UHLP 0,1;X)"

LP(0,1;X)

LP(0,1;X
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Remark 5.6. Under the assumptions of the previous theorem, we obtain moreover that

M EDYNINIYG
)l < 177 (1ol + e ] £ £, ) (55)
Indeed
u(0) = A;L [(I — 62Q>‘) do + QQAGQ)‘ (ug — I (1)) + QQAJ)Hf (0)} ,
SO
I < AT oy 17 = Py Mol + (AT o [293€2 sy e
(X) (X) (X) (X)
-1 Qx
254y (169 oy @A 01+ @05 O]
M —2¢0|A[/?
< gy (ol + 21 a4+ 1711 1) -
5.3.3 Proof to Theorem 2.3
Remark 5.7. Let (f,7) € Z. We consider the following problem
u'+ Au— M= f
W' (0) — Hu(0) = (A4 p) u(0) =7 (56)

u (1) =0;
then the two following assertions are equivalent:
1. (u,v) € D(Pam,u) and (Pam, — M) (u,v) = (f, 7).
2. u € W2P(0,1; X)NLP(0,1; D(A)) is a classical solution of (56) together with v = u(0).
So to study P4, g, it remains to solve (56).

We set o := min {pg, p1} and define for 3 € (0,7 — p2), 1y, € (19, +00) by

To
Ty i=m ———F—————
¥3 N
cos? (902-5%)

for rg > 0, see Theorem 2.1.
Proposition 5.8. Let ¢3 € (0,7 — ¢2).
1. If A€ Sy, 1 € Sy, with [A] = rg,, then (A, X+ 1) € Qug 010
2. Let p € Sp;. Then Py g, is a closed linear operator on Z with
Sea\B (0,753) C p(Paap) -
Moreover, let A € S,,\B (0,7y,) and (f,7) € Z; then
(u,0) = (Papu = M) (f,7),
satisfies, for z € [0, 1]
u(z) = Sy (x) A;,%\Jm (I — eQQA> T
+5x () [2AX,1A+uQA [JA,f (0) — eIy (1)] — s (0)}
—Sx(I =) Iy s (1) + Iy g () + g (2)
v(z) = u(0),

where Sy () = (I - eQQk)_l (er* - e(l_x)Q*eQA> € L(X).
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3. There exists Ma p,,, > 0 such that for A € S,,\B (0,7,,) and p € S,, we have

|Pasmn =207, < T2

Proof.

1. We have (A, A+ 1) € Spy X Sy C Sy X Sy, moreover |A| > 1y, > 1o and, due to [13],
Lemma 2.3, p. 98, we have

A+ pf?
B

> cos? (‘”'Hp?’) (AL + |,u\)2 > cos? (7“02+‘p3> XA =7
= D) |>\| = D) = T10-

2. It is a consequence of statement 1. and Theorem 2.1.

3. As in statement 1., we have, |\ + pu| > cos (%) X |\, so setting

we have
LA+ A +p o (A L4+ A+ p

T D N e D e D |
Let (f,7) € Z, then Theorem 2.2 and (55) imply that (u,v) = (P, — N)7L(f,7),

satisfies
MC,. MC,.
lull 2o 0,1,) < 7 n ,ﬁf’ (Il +11£lly)  and v = [lu(0)] < 5 n ’ﬁf’ I+ £y
that is MO
_ —1 ©3
|Pasn =207 (1), < S5 I

The proof of Theorem 2.3 is given by Statement 3 of the previous proposition.

6 Spectral problem (1)-(2): second case

In all this section we suppose that X, A, H satisfy (4)~(6) and (9)~(11).
Note that the results of the previous section obtained under assumption (4)~(6) can be

used here, in particular results of subsection 5.1, Lemma 5.4, Lemma 5.5 and also estimate
(54).

6.1 Spectral estimates

Let X € Sy, 1 € C. Recall that H, = H 4+ pl and Q) = —(—A + A)Y/2. We first furnish
estimates concerning operators (), H, which are easy consequences of our assumptions.

Again, in the following M denotes various constants, independent of A, 1, which can vary
from one line to another.

Lemma 6.1. Let A € S, u € C. Then H#le € L (X), moreover there exists a constant
M > 0 independent of A and u such that

1+ |pl

HH"leHc(x) ST (57)
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Proof. From (54), we deduce

lowes ) = la+neoxee,,,
< [aeepioar|,y, + [N eniear|
< @@l e 9@y + M@ o, 037
< M,

and, from (10)

M

! < N V! < ——.
I HQY o<l HQp el Q@Y™ e < NG

Moreover

03 < [y 0 0

M L+ [u| L+ |pl
< - <SM——.
(LHADT (14 |ApY2 (L4 |AD

Remark 6.2. From (57), assumption (10) can be written as

Chq

Je€(0,1/2], 3Chg >0, VA € Sy, - HHQ}IHL(X) SAr e

We now introduce the notation : for p > 0

A
gy = {()\,u) €Sy, XxC:|A| = p and |,u|1’/€ > p},

Al
|l /2

where we have set = 400 for ;= 0 and furnished results (see below) on

Ay = (Qx — Hu) + e (Qx + Hu) )
where A € S, € C.

Lemma 6.3. There exist pg > 0 and M > 0 such that for all (A, ) € Iy, :

(1+ 62%),1 (1= e*) H,Q3!

max {‘ H“QXIHE(X)’ } <12

L(X)
Oep <I - (I + eQQA)_1 (1 _ 62QA) HMQX1>

H [I— (.r+e2%)*1 (1- ) HMle]_l <2,

L(X)
< L
()7 (14 AV

HQ)‘A;LHc(X) <M

0cp(Ay,) and HA;\LHL

29
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and

0€p(@y—Hy)

(@r—H H 1_,_‘)\‘ (1+|A)Y2

H (62)
(Qx+ Hy) H

2 (Qx + Hy) H (<172

Proof. Let p > 0 and (A, p) € I1,, ,. Then
-1
[ (14e) (1= ) H,Qy" € £(X),

and from (57) together with Lemma 5.1

max{HHMQ)_\lHE(X) , H (I + eQQA)—l (I — eZQ*> HMQ;1

o b0
(X)

1+ |pl
S+ A)°

1 Wf)E
<v((5) + .
< A ( R
So there exists pg > 0 such that for all (\,pu) € I, 00 (58) and (59) hold. Now, let
(A, ) € gy po- We deduce that

L(X)

My = ([+9) Q= (1-e*9) H,
= (1+e9) 1= (1+e) " (1-29) mar| o

is boundedly invertible with
-1 -1 -1
AL =0y [I — (T+e2@) (1-e2) HMle] (1+e2)
1
Q)\A,\ 1

= [ () (1 a9 m;l]‘l (14007

SO

HI—i— 2@

< M - (22 (- )

M
(L

HA;LHL(X) L£(X) L(X)

and HQAA/\MH | < M. Moreover, from (38), Qx — Hy = (I H,Q5 )QA is boundedly

invertible w1th )

(@ —H) ' =03 (1- Hqul)

{ H @ -4, Hﬁ(X) HQ?H H “QA

S0
M

< N
Lo (L+ DY
<M,

HQA Qx—H ‘(I H,Qy ) 1

5 e -
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and

[@+m) @ -1, = @+ 200 @- 17,
< 142 HQA (@x— Hu)_lHL(X)
< M.
Finally
o @ @ < 1 s @
s M HewA L£(X)’

and due to (39), we can eventually increase pg, for (A, pu) € Il,, 5, which implies that
|A| = po, in order to have M HeQQA <1/2. ]

L(X)

The proof of the following Lemma will use (15), wich is equivalent to (12) from Re-
mark 2.10, to study, for a given (A, u) € Iy, 4, operator Q3 (Qx — H'u,)_l Q;l.

Lemma 6.4. Assume (5), (9), (10) and (12). Fix (A1, 1) € Iy p,- Then, there exists
M > 0 such that for any (A, p) € I, 4y, we have

1. (Qx — Hu)_l Q}Tl =(Qx — Hm)_l Q_1P>\7M, where Py, € £(X) with

||P>\,M”g(x) < M.

2. Q3(Qx—H,) ' Q' € L(X) with

|3 @ - m) e, <M (63)

3. There exists W), € £(X) such that
Ay = (@ = Hy) ' (T4 29wy, (64)

with
IWasll gy <M and [Q3A5LQ5Y|, o SN (65)
Proof. Let (A, p) € g po-
1. We have
(QA - Hu)_l Q;\l = (QM - Hm)_l (QM - Hm) (QA - Hu)_l le

= (QA1 - Hm)_l [Qx — H, + (= p1) I (Qx — Hu)_l Q;\l
+(Qx, — Hu) 7 (@Qr, — Q) (Qx — Hy) Q3!

= (@~ ) [Q3 (= ) (Qa — H) T QY]
+(Qa — Huy) 7 (@Qr — Q) (Qx — Hy)h QY

but, Qx, —@Q) = (Q — Q) —(Q — @Q),) and from Lemma 4.4, there exists T\ », € £(X)
such that Qx, = Qx + TMl

||T)\,/\1H£(X) <M (1 + |/\|> and QilTA,/\l = T/\7A1 Q*l7 (66)
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S0
(@ = Hy) ™' Qx" = (Qx = Hu) ' Q7' Pag
where Py , € £(X) is defined by

Pap = QO[T+ (m —m)Qa(@y— H) ' Q) + T, Qx(Qx — H)) ' QY]

Moreover, using (37), (54), (66) and (62)

HP/\,M

cxy S M :1+ (I = ) HQ* (@ _H*‘)_IHL(X) HQXIHL(X):|

+M [”TA,MHL(X) HQA (QA - H“)_ng()Q HQleﬁ(X)}

[ — 1+
M1+ | — n + )\’]

(L+PADY2 @+ Y2

I

<

1/e

but since (\, p) € My, py we have 14 |A| = 14 po |u|'/® = 1+ po|u|®, thus we obtain

HP)\,M”L(X) < M.

2. Since Q%\ is closed then, from (15) and the closed graph theorem, we obtain that
Q3 (Qx — Hu)_l Q' € L(X). Moreover we have

|Qd @ - ) ey |ca+an @ —m) 0,
<A@ ma e

+ @ - =)™
< M.

L(X) )
L(X)

e 193

The last inequality is obtained, from statement 1, which gives

—A@-H) O, =A@ —H) TR

L(X) L(X)

HfA (@x — Huy) ™! Q_1H£(X) 1Pyl ) < M,

N

and, from (62), (37), which furnishes

A H(QA B H“)_luz:(x) HQ;1H£(X) s M.

3. We set Ry, = (Qx + H,) (Qx — H,)™' € £(X) and write
Ay = (Qx = Hy) + €2 (Qa+ Hy) = (14 PRy ) (Q — Hy)
but Ay ., (@x — H,) are boundedly invertible, so I 4 e2@x R) ,, is boundedly invertible
with

(1+ eQQARA,”)*l =1 ORy, (1+ e%?xmﬂ)*1 :

—1
Now setting W), = Ry, (I + eQQARML) € L(X) we have
— -1 _
AL =(Qx—Hy)™ (I + GQQARA,M) =(Qx—H,)™" (I - €2Q*Ww) ,
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and, due to (62), we have

—1
Waslley < WBalogo | (1+ 9 R

L(X)
< ||R>\,M||£(X) < M
11— HQQQ*RA,qu(X)

Finally
HQiAX,I QXIHL(X) HQi (@ = H,) ™! (I B eQQAWA”J QKIHMX)
< HQi (@x—H,)™ QKlH,c()o
+ @@ - )™ Qlec(X) e co0 Wlec)
< M.

6.2 Proofs to Theorem 2.4 and Theorem 2.5

Let pg fixed as in Lemma 6.3.

6.2.1 Proof to Theorem 2.4

As in the proof to Theorem 2.1, we want to apply Proposition 3.7, with A, H, Q, A replaced
by A— X, H + pl,Qx, Ay . Assumptions (Hy) ~ (Hy) are easily deduced from (4)~(6),
(9) and Lemma 6.3. To obtain (Hjs), it is enough to prove (H{) given by (21). So, for
€ (D(Qr), X)), =(D(Q),X),,,, we just have to show that

n=0Qx(Qx—Hy) '6€(D(@Q), X)),
but, from Lemma 4.2, statement 5. we have Q\ = Q + A\ (Qx + Q)_l, thus

(@ —H)Qy'= Q- H) Q' + X (Qx+ Q)" Q) — nQy,

SO
E=(Qx—H)Q "= (Q-H) Q"+ XQx+Q) Q7' — uQy'n,

and
Q@-H)Qy'n=¢- 2@+ Q) Q3 n+uQym e (D(Q), X)y/p,

which means that Qy'n € (Q — H)™! ((D (Q) ’X)l/p,p> and, from (11), we get

QA eQ T ((D(Q), X))

and then 1 € (D (Q), X); -

Here the condition (Qx — H,) ' do € (D (A) ,X)QL »
p?

alent to A;Ldo € (D(A),X)1 > appears naturally, since we have not, as in Theorem 2.1,
b 2p7

AyL(X)CD(Q?).

which is, from Remark 3.8, equiv-
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6.2.2 Proof to Theorem 2.5

Assume (4)~(6) and (9), (10), (12). Let (A, ) € Hyg po- From Lemma 6.4, statement 2., we
have

VEE€ D(Qy), Qx(Qx—H,) '€€DQ)),

then (11) is satisfied, see Remark 3.1 statement 5, and we can apply Theorem 2.4.
Again we adapt the proof of Theorem 2.2 and write u = k1 + ko + k3 — ha + h3 + hyq with

ki (z) = Sx(z) Ay Q) [ Q¥ dy + 2Q3ePuy — 2Qe@ I ( )}
ko () =25, (x )A/\MQ)\J)\f( )

ks () = S (2) A5 do

ho (x) = Sx () a7 (0) + Sx (1 —x) L) f (1)

hs () =S\ (1 —x)uy

hy (@) = Ixg (@) + a5 ().

Estimate of Q3k1. Due to (65), we have for £ € X and z € [0,1]
|@35 (@) AL @3 |

’(I — €2Q’\>_1 (I — 62(1_1’)Q/\) €mQAQ?\A;LQ;1

—1
< (- o) (1 - ) L(X) O |BATLQ e e
< M),
then
| @3k @) < M (ldoll + lual + 111 o(o,,x))
and
@3k |, 1) < M (Mol + a4+ 1155 -

Estimate of Q3ko. We write, for z € (0, 1]
QBN (0) = Qe @Ay, [* e f(s)ds
1
+Q3em AL / 5 f(s)ds
= Q[ RN QUL f(5)ds

+emQ*Q§A*1Q*e$QAQA / I f(5)ds
1

—l—ezQ*Q?\A;,LQ;le“"Q*QA / =)0 f(5)ds

T

where F) (s) = eSQAQ,\A;}LeSQ*f(s). So

@i

< M / el E (5)ds
L?r(0,1;X) HQ)\ 0 )\( ) LP(0,1;X)

M QAL iy, @1 [ e s ) as

b)
LP(0,1;X)
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but, from Lemma 5.4, (38), (62), (63) and (65), we deduce

HQA /0. LTI, (s)ds

S MBI Lo, < M fll o 0,1,x)

LP(O,I;X)

@305 @0 [ @5 )0

<M HfHLP(O,l;X) )
therefore HQikQHLP(O,l;X) <M HfHLP(O,l;X) :
Estimate of Q?\kg. Due to (64) we write k3 = k‘Ng + k3 with

k3 (x) = Sy () (Qx — Hy) tdo and K3 (z) = Sy () (Qx — H,) ' DWWy, udp.

Due to (52), we have for € (0, 1]

@R @] = e (r-ee)” (1_62<1—m>@) O (Qx— Hy) o
< M| Qe (Qa—Hy) ™ do|-
From Theorem 2.1 in [13], since (Q\ — H,) " do € (D (A),X)ﬁ’p, we get
HQ%% LP(0,1;X) (H Q)‘ B dOH D(A),X) % + |/\| (Q’\ N dOH) ’
We have also, taking into account (38), (63), (39) and (65),
|03 @) = HQ% (1) 7 (1 - 20799) 5 (Qy — H,) H PRy dy
< M| PQR (Qx — Hu)” Q;@Aew% udo
< M| @3 (@x = )7t Q3| @@ | 11Waull ldo]
< MHdoH-
Finally
08 )] < (H Qe+ 0 B + udon) |
210

Estimates of Qihg,@ h3,Q2h4 In these terms, A does not appear, so the estimates
are the same as in Theorem 2.2.

6.2.3 Proof to Theorem 2.6

Assume that (4)~(6) and (9), (10), (12) hold. From Theorems 2.4 and Theorem 2.5, there
exists M > 0 such that for any pu € C

1. L m,y is a closed linear operator on Y.
2. Spo\B(0,pu) C p(La,Hy) Where p, = maX{PO,,Oo |#|1/€} S0
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3. VA € S, \B(0,p,), Vf €Y, Va €[0,1]

(Lasmu=ADTF) (@) = Si(@) [2A5,Qx [Jas (0) = €D Dy s (1)] = Iag (0)]
—Sx(I—x)I\ 5 (1) + Iy () + I (2),

where Sy (z) = (I - ezQ*)il (eﬂ”QA - e(lfx)Q*eQA) .

M
14+ A

The proof to Theorem 2.6 is given by Statement 4.

7 Results for Dirichlet boundary conditions

We can find, in [14] and [15], the study of the following problem

{ W(z) + Au(x) = f(z), =€ (0,1) (67)

uw(0) = ug, u(l) = uy.

A classical solution of this problem is a function u € W?2P(0,1; X) N LP(0,1; D(A)),
satisfying (67).

7.1 Proof to Theorem 2.7

The authors obtain the following result (see Theorem 4, p. 200 in [14] and Theorem 5 p. 173
(with A= L= M) in [15]).

Proposition 7.1 ([14],[15]). Let f € LP(0,1; X) with 1 < p < 400 and assume that (4)~(6)
are satisfied. Then the following assertions are equivalent:

1. Problem (67) admits a classical solution w.

2. ui,up € (D(A),X)

1
%J’

Moreover in this case u is unique and given by

u(z) = S@)u+S(1—x)u; —S(x)J(0) (68)
—-SA-x)I(1)+I(x)+J(z), z€(0,1).

Note that S(-),I(-),J (:) are precised in (23) and (25) with Q = —v/—A.
Now we are in a position to study, as in Sections 5 and 6, the corresponding spectral
problem

{ u’(z) + Au(z) — Mu(z) = f(z), =€ (0,1) (69)

u(0) = ug, u(l) = uy.

Applying the previous Proposition with A replaced by A — Al we obtain Theorem 2.7.
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7.2 Proof to Theorem 2.8

Let A € S,, and f € LP(0,1; X). Taking into account (48) and (68) with @, replacing @,
for z € [0, 1], we have

w(x) =Sy (@)ug +Sx(1—z)ur —S(x) Jns(0) =SA—a) s+ Ing(x)+ Irf ().
So we can write u = —ho + g3 + h3 + hyq with

ho () = Sy (z) Inf (0) + Sy (1 —x) I (1)
(

As in the proof to Theorem 2.2 we get

o

<M ||f||Lp(071;X) ’ HQih‘l M HfHLP(O,I;X) ’

<
L7(0,1;X) L?(0,1;X)

and also

HQ%%

1
LP(0,1;X) 2p°P

_ 1
<M <||U1H(D(A),X) + A7 HU1\|X> :

Moreover, Q?\gg is treated like Q%\hg, SO

HQigs

1—L
<M <|U0||(D(A),X) T A2 HUOHX> :

LP(0,1;X)
We finish as in the proof of Theorem 2.2.

7.3 Proof to Theorem 2.9

Assume (4) ~ (6). From Theorems 2.7 and Theorem 2.8, there exists M > 0 such that

1. L4 is a closed linear operator on Y and Sy, C p(La4).

2. VA € Sy,

(,CA — )\I)flf) () = =5\ (x) Inf (0) =Sy (1 —x) I s (1) + Iy (x) + It (z),

where Sy () = (I - eQQk)_l (e””QA - e(lfx)leQA) eL(X).

M

i —1
3.VAE Spy 1 [[(La—= ATy < TH A

The proof to Theorem 2.9 is given by Statement 4.

8 Applications

8.1 A model example for the first case

In view to illustrate the results obtained in this work, we will consider the concrete problem
of the heat equation in the square domain Q = (0,1) x (0,1) with a dynamical-Wentzell
condition in one of its lateral boundaries

37



0
Stay) = Agyultay), (t,y) € (0, F00) x €
ou ou 0%u
bt - = - r
5 (£ 0,9) B (10 y) + 52 (t,0,y), (t,0,y) € (0,+00) x I'g
(P)
u(t,l,y) = 0, (t,1,y) € (0,400) x I'y
u(t,z,0) = wu(t,z,1)=0, z € (0,1)
w©,2,y) = uo(z,y) (z,y) € (0,1) x (0,1),
where
o = {0} X (07 1)7 Iy = {1} X (07 1)7
’YOZ(Oal)X{O}a ’Yl:(o’l)x{l}
0* . . ou ou
Here — is the Laplace-Beltrami operator on I'y. Physically, —— and — represent the
Oy? ox ox

2
interaction between the domain ) and the lateral boundaries while 8—3 is the boundary
Y
diffusion.
Set & = LP(Q2) x LP(Ty); this Banach space is well defined and endowed with its natural

norm. Define operator P by

D(P) = {w = (u,v0) 1 u, Az yu € LP(Q),v9 € W2’p(Fo),U|FO = vy,

ou 822)0
(A%yu)\ro = (837)|F + Tyg and  Ujy,uy,ur, = O},
0

2
Pw = (Am,yu, (au) + 0 1)20> ,  for w = (u,v9) € D(P).
IT'o dy

The boundary conditions are defined in LP(I'g) and Pw € £. On the other hand it is not
difficult to see that this operator is closed in £. When we integrate the time variable ¢, the
following Cauchy problem

ow 0 _[Ou Ovy\ B
E - a(uav()) - <8t7 ot ) = Pw —P(U,Uo)
w(0) = (u(0,.),v0(0,.)) given,
writes 3
u
— =A
ot
o _ () o
ot \oz e 0y

Ujyourysury = 0

(u(0,.),v0(0,.)) given;

since (u,vo) € D(P) and % = Au, we obtain

ou 9% ou
To = \ox ), \ 92 o N
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and since ur, = vo, by using the tangential derivative, we obtain

621)0 . 82u .
Oy \oy? ’
‘1—‘0 T

0

summarizing up, we deduce the same equation as in Problem (P) :

ou

YA

ot~

() -2, (2
ot - ox ) |r, 0y? .

u(0,.) is given

0

Ujyguysury = 0.

The study of the evolution equation above is based on the study of the following spectral
equation

P(u,v9) — AMu,vg) = (h,dp) (70)
(u, ’U[)) € D(P), (h, do) S g,
and since u|r, = vo, (70) is equivalent to
Au—Au=nh
ou 0%u
((%> - + <8y2) ) — Aujr, = do (71)
0

Ulyouyiury = 0,

which is an elliptic partial differential equation with the same spectral parameter in the
equation and in the boundary condition on I'g. We will write (71) in an operational differ-
ential form. We consider the Banach space X = LP(0,1) and identify & with LP(0,1; X) by
writing as usual, for g € &, g (z,y) = (9(x)) (v), z,y € (0,1). We define operator A on X by

{ D(A) = {4 e W*P(0,1) : ¢ (0) = ¢ (1) = 0}
Ap(y) =" (y),

and operator H := —A. So, equation Au(z,y) — Au(z,y) = h(x,y), takes the following form
in space X

(72)

u”(z) + Au(z) — Mu(z) = h(z), z € (0,1),

while the boundary condition

ou 0%u
(ax) T + <3y2> — )\U|I‘0 — d0>
Lo

becomes u'(0) — Hu(0) — Au(0) = do; the condition u|,,,, = 0 (which means that u(0,y)
and u(1,y) vanish in y = 0 and y = 1) is implicitly included in the fact that u(0) := u(0,.)
and u(1) :=u(1,.) are in D(H).

Therefore (71) or equivalently (70), takes the following abstract form

u'(z) + Au(z) — Mu(x) = h(z), = € (0,1)
u'(0) — Hu(0) — Au(0) = do (73)
u(l) =0,
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where (h,dp) € € = LP(0,1; X) x LP(X), and we are in the situation of Subsection 5.3.3 with
w=0.
Let u be the classical solution of (73); then u € W2P(0,1; X) N LP(0,1; D(A)) and

(u,u(0)) € D (P);

so that (u,u (0)) = (P — X))~ (h,dy) .
Taking into account the fact that, here, we can take o9 = m — e (¢ > 0 as close to 0 as
we want), we can use Proposition 5.8 and Theorem 2.3, to obtain :

AM >0, YA € Sy, : ¥ (hodo) €, ||(P = A1) (h, do) (R, do) e

<7
e T 14\

and deduce that our operator P defined above generates an analytic semigroup in €.
This example can be extended to the following problem

Au—Adu=nh

8u> 0%vg
ag | — +byg—— — Mg = d,
0 (ng T 06823/2 0 0

u 1

— bi——= — vy =d
ay (3$>F1 + 01 oy? V1 1
Upyouy, = 0

8.2 Some concrete examples for the second case
8.2.1 Example 1

Here, we set 2 = (0,1) x (0,1). Our concrete spectral partial differential problem is

0%u 0%u
@(1’,:1/)“‘87%(%}3/)_)\U(l’,y):f(w,y), (.%',y)EQ
(P1) gl(tl,y):(), ) y € (0,1)
0= [T u.ds =0, ye 1)
u(z,0) = u(x,1) =0, xz € (0,1),

where we can take A € Sy, with g fixed in (7/2, 7).
Define operator A on X := LP(0,1), with 1 < p < +00, as in (72); then the square root
of the negative of this operator is well defined and

17 ) ~
Wy(0,1) € D((=A)2) < W(0,1) and  ||(=A)"2%| = [ /]| oo 1) + ¥ 1o(o,1)
see [3]. We know also that @ = —v/—A generates an analytic semigroup in X; on the other
hand Q) = —v—A+ A is well defined and generates an analytic semigroup in X for all

A€ Spq-
Now let us define operator H by

Hol) = | Lo, v e X, (74)

with an appropiate function ¢ having the following properties. Let ¢ € (1,+00) such that
1/q+ 1/p = 1. We then assume that
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0
6, ). a‘j (y,) € L9(0,1), for ac. y € (0,1)

¢ )
Oy r— 67(7;] (y,-) € LP(0,1; L4(0, 1)), for j =0,1
¢1:y+— ¢ (y,y) € LP(0,1).

We can build a simple example of a function ¢ satisfying (75), setting, for a fixed n € N\ {0}

¢ (y.&)=1—y)"v(©), &ye(0,1),

where ¢ € Wh4(0,1) N W?(0,1). We have

I = ([ ")

</01 K/Ol o) ([ Iw<§>|Pd€)1/prdy> )

1 1/p
([ 16 @ Maon @) 10l

< @l ze0,1;0000,1y) % 19l x 5

/0 "6 (4.6 p(©)de

N

N

so H € L(X).
Our concrete problem (P1) writes in the following abstract form

u’ () + Au(x) — M (z) = f(x), ae z€(0,1)
u (1) =0, «/(0) — Hu(0) = 0.

The following assumptions are satisfied:

1. X is a UMD space and operator A verifies
J o€ (0,m): Syy Cp(A) and 3C4 > 0:

VA€ Sp [|(A- AI)_1H£(X) < l%\lk\

VseR, (—A)* e L(X), 304 €(0,7):
< +00.

sup He_eAM (—A)ss
seR L

(X)
This last property is proved explicitely in [21].

2. Since H is bounded, from Remark 2.11 statement 1, we get D(Q) C D (H) and

1Cug >0, sup (1+07? | HQ ™ o)< Crg-
t€[0,400)

3. We verifiy that (Q — H) ™' (D (Q)) € D (Q?).
Let ¢» € D (Q) such that (Q — H) () € D (Q); then Q¢ — HY = g € D (Q), with

W, ?(0,1) C D(Q) c WhP(0,1).
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To obtain ¢ € D (Q?), it suffices to have Hy € Wol’p(O, 1) for v € D (Q) C WP(0,1).
We have

)
Hyp(y) = /0 6 (4, €) Y(E)dE;

then H(0) =0, and Hy(1) = 0 due to (75) and
(1) (5) = 6 0.0) 60) + [ Zf (4, €) (€ de.

In virtue of the assumptions verified by ¢, we then get Hy € Wol ?(0,1). Therefore
Y e D(Q?).

Now, we set Y = LP(0,1; X) = LP(Q) and considering A, H defined by (72) and (74), we
build, as in (13)
ﬁA,H,O : D([:A,H,O) cY — Y
u — u” + Au())).

Note that in this example, in general, operators ) and H do not commute. We can apply
Theorem 2.6 (with ;1 = 0), to obtain that £4 g is the infinitesimal generator of an analytic
semigroup. This result allows us to consider and solve the corresponding Cauchy problem
with respect to (P1).

8.2.2 Example 2

Here, we are considering a quasi-elliptic problem under an oblique derivative boundary con-
dition. Let Q = (0,1)? and consider the following spectral problem

0%u 0*u
w(x7y)_aiy4(w7y)_Au(xay>:f(xvy)a (x7y)€Q
u(l,y) =0, y € (0,1)
P2 ou ou
0? 0?
U(IL‘,O) = U(IL‘, 1) = 87;;(:7370) = Tyfg’(l}O) =0, z¢€ (Ov 1)

We will assume that ¢ € C2[0,1] and ¢(0) = ¢(1) = 0. Here the boundary condition on
I'={0} x (0,1)
ou Ou

+-(0,y) + c(y) 3y

o (0,y) =0,

can be written as

Vu(o)-a(c) =0in T, (76)

with a(o) a vector on I' equal to (1, ¢(y)) which is pointing inwardly of Q. It is known that
(76) is called oblique derivative boundary condition on I". We set, in space X = LP(0, 1), as

above
{ D(A) = {1 € WH(0,1) : 4 (0) = ¢ (1) = ¢ (0) = 4" (1) = 0}
AY(y) = =W (y);

so, as we have seen

(77)

{ D(v—=A) = {y e W?P(0,1) : ¢ (0) = 4 (1) = 0}
V=Ap(y) = =" (y),
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and clearly Q = —v/—A and Q = —V—A+ A, for all A € S, generate analytic semigroups
in X. We note also that /—Q = (—A)'/* is well defined and

W ?(0,1) € D((=A)MY) c W(0,1) and  ||(= )| % /]| o1y + 18 ooy

see [3]. Now, define operator H by setting

{ D(H) = W?(0,1)
[HY] (y) = —c(y)¥'(y)-

We then have D((—A)1/4) C D (H); therefore, see Remark 2.11, statement 1, with w = 1/4,
there exists C' > 0 such that, for ¢ > 0, we have

(78)

C

HQ ™ || o€ ————
| HQ;  llzex) L

Now, we will prove that (Q — H)—l (D(Q)) D (Q?). To this end, let ¢ € D (Q) such that
(Q—H) (%) € D(Q); then

" — e =g e D(Q)=W?>P0,1) N W,7(0,1);

so ¢ € W4P(0,1). We have ¢ € D(Q); then ¥ (0) = ¢ (1) = 0. But ¢ € D(Q) thus
9(0) =g(1) =0 and

V' (5) = () () +9(G) =0, =01,
that is 1" (0) = ¢" (1) = 0, therefore ¢ € D (Q?). Note that in this example Q — H is
boundedly invertible and from equation Qv — Hy = g, it follows that

{ Y (y) — ()Y (y) = 9(y)
P(0) = ¢(1) = 0.

Let 91 and 95 two linearly independent solutions to equation ¥”(y) — ¢(y)¢'(y) = 0, such
that ¢1(0) = 0 and 2(1) = 0. Then we have

" 0 gsyts = i) [ 2 aoas = @ )7 o] )

where the wronskian W is given by

W(s) = ¥1(s)¥(s) — P2(s)¥ (s)-

We have L o
i) [ gt~ i) | {2 a(e)ds,
and
s Lapo(s
=03t [ Jptateds vl [ (2o + o0,

If g€ D(Q) = W?P(0,1)N Wolp((), 1), it is clear that ¢ € W*P(0,1) and

#1(0) = 90) ~ H0) [ 2840515 =0~ (e ] [ T2 g(s)as =0,
0

(s)

similarly we obtain " (1) = 0.

43



Again, our concrete problem (P3) writes in the abstract form

u' () + Au(z) — Au(z) = f(z), forae. € (0,1)
u (1) =0, «/(0) — Hu(0) =0,

with A and H defined by (77), (78) and setting

['A,H,Oi D(£A7H70)CY — Y
u — a4+ A(u(.)).

We can apply Theorem 2.6 (with 1 = 0), to obtain that £4 g is the infinitesimal generator
of an analytic semigroup.

8.2.3 Example 3

In [20] the authors have considered and studied the following problem

0%u 0%u

ﬁ(xvyut) + aizﬂ(xvyut) = f(xay)t)a (xaya t) € R"r X R x (OvT)
U(O,y,O)Zfl(y), yER

ou

%(O’yvt)iDtyu(Ovy)t):fQ(y)t)v (y,t)G]RX(O,T),

where Dy, for v € (0,1), denotes the fractional time derivative (or Caputo Derivative)
defined, for instance, by

5 B 1 t 1 dg
Dyg(.,t) = =) /0 = E(’ T)dr,

for functions g of classe C! with respect to the second variable; for this derivative, see for
instance [10]. This derivative has been extended to functions in L}, (R) verifying some
integrability condition, see [22].

Analysis of the above problem is useful to study the free boundary problem for the
Laplace equation in the case of subdiffusion as illustrated by the fractional derivative, see
[24]. We recall that this subdiffusion expressed by this Caputo Derivative means that the
square displacement of the diffusing species has a behaviour as t¥ for some real number v.
When v € (0,1), we are in the presence of a subdiffusion.

Our objective is not to study this problem, but it helps us to consider a class of similar
problems illustrating our theory of the second case. So, setting Q7 = (0,1) x (0,1) x (0,7,
we will take inspiration from this example to consider the following spectral elliptic problem:

82u 2

W(xay7t) + g;gt(xa?%t) — Au <$7y7t) = f(.%,y,t), ((B,y,t) € QT
(P4) U(l,y,O) = fl (y)v Yy € (07 1)
gz (Ovyvt) - Déju(oayat) = f2 (yvt)7 (yat) € (07 1) X (OvT)7

for A € Sy, with ¢ € (7/2,7).
In view to write this problem in an abstract form, we will hide the variable (y,t) by
considering the following anisotropic Sobolev Banach space X = W*((0,1) x (0,T)), con-

sisting of all functions (y,t) — w(y,t) which are in LP((0,1) x (0,7")) such that we have

0
a—zf € LP((0,1) x (0,7)); it is endowed with the following natural norm

Lr((0,1)x(0,7))

B ow
lwllx = ||wHLp((0,1)x(0,T)) + ot
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Now, define operator A in X by

D(A) = {w €eX: gz}, ?)zlg € LP(R x (0,7)) and w(0,t) = w(1,t) =0 for t € (O,T)}
0*w
[Aw] (y7t) = aiyg(yvt)‘

We also define H by

[Hw] (y,t) = D{w(y,1).

This problem can be written in the following abstract form:

{ D(H) = WO (R x (0,T)) = X

u () + Au(z) — Au(z) = f(z), forae. z€(0,1)
u(l) = h
' (0) — Hu(0) = fa,

where we have used the usual writting u(x,y,t) = u(z)(y,t) and f(z,y,t) = f () (y,t). Now
we must verify the following statements.

1. X has the UMD property.

In fact, consider the application

T + WON(0,1) x (0,T)) — Z=[LP((0,1) x (0,7))]
ow
w — (wé%)

then T (Wg’l((o, 1) x (0, T))) is a closed subspace of Z and thus has a UMD property.
Since it is isometric to X , we deduce that X is a UMD space.

2. Operator A verifies
Spo Cp(A) and 3C4 > 0:

(A-an7 < Ca

VA € Sgo, £x) S 1+ A

and

VseR, (—A)* e L(X), 304 € (0,7):
< +00.

sup He‘eAISI (—A)s
seR

£(X)

For the first property we note that the spectral properties of operator A are based on
the equation

0%w

w(0,t) =w(l,t) =0 for ¢t € (0,T),

where h € W((0,1) x (0,T)). Then, for all X € S, we have

V(y,t) € (0,1) x (0,T), w(y,t) = /01 K /5y, s)h(s,t)ds,

where the kernel K (y, s) is well known. Using the Schur Lemma, for all ¢ € (0,1),

we obtain
/1 Pduy < |: C :|p/1|h( t)‘pd
w(y,t < s, S;
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then

' P dyd ¢ 1 1h P dsd
w(y,t t < // s, sdt,
/0 /0 lw(y, )" dy [1 |)\J o Jo |h(s, )|

C
lwll 2o ¢0,1yx (0,7)) < TN 12l o ((0,1)x (0,1)) -

that is

Since we have

1
W) € 0.0 % 0T), Tt = [ K sG55, 0ds
we deduce
jov < o | |
Ot llize(o,yxo1r)) L+ IOt llLe(0,1)x(0.1))
and then

C
< —— ||kl x -
Jullx < 77 I

The second property is proved explicitely in [21].

3. Since H is bounded then from Remark 2.11, statement 1, D(Q) C D (H) and

ICuqg >0, sup (1+0"2 | HQ ' || o)< Crg-
te[0,+00)

4. Now, we must verifiy that (Q — H)™' (D (Q)) € D (Q?). Tt is enough to verify that
DYA~! = A71DY on X. We have

1
Vgt € 0.1 x 0.7), [47w] (.) = [ Gly.s)us, )ds,
0
where the kernel G is well known. So, for any (y,t) € (0,1) x (0,7)
1
[DyA ] .0) = [ Glyss)DYw(s,t)ds = [A7 Dy wiy. ).
0
Again, as in the previous examples , we get that £4 g is the infinitesimal generator of
an analytic semigroup.
Remark 8.1. We can generalize the above examples by considering operator A defined in
an open bounded regular set w of R"~1,
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