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Abstract

In this work we introduce a generalized linear model regulating the spread of population dis-
played in a d-dimensional spatial region Ω of Rd constituted by two juxtaposed habitats having
a common interface Γ. This model is described by an operator L of fourth order combining the
Laplace and Biharmonic operators under some natural boundary and transmission conditions. We
then invert explicitly this operator in Lp-spaces using the H∞-calculus and the Dore-Venni sums
theory. This main result will lead us in a later work to study the nature of the semigroup generated
by L which is important for the study of the complete nonlinear generalized diffusion equation
associated to it.
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1 Introduction

The partial differential equations play a natural role in population dynamics, in particular in the
reaction-diffusion models which are derived from the well known Fick’s law.

An important problem in population ecology is the effect of environmental changes on the growth
and diffusion of the species in areas made up of various habitats. In this situation and in order to
understand how populations interact between the habitats, it is necessary to have spatially explicit
models incorporating individual behaviour at different boundaries and interfaces of the habitats.

If u(t, .) denotes the population density, the classical Fickian equations in each habitat for these
models are typically of the form

∂u

∂t
= l∆u+ F (u),

where F is the nonlinear growth interaction and l is the positive coefficient diffusion (which can be
variable).

The variety and the complexity of the habitats and the individuals are not well modeled by spatial
effects to be simply Fickian diffusion (as, for example, models of cell motion). An approach based
on a the Landau-Ginzburg free energy functional and on the variational derivative consider the more
generalized following diffusion equation for growth and dispersal in a population

∂u

∂t
= −k∆2u+ l∆u+ F (u),

where k is generally positive and l is a number which can be negative, see [4], p. 238. In this paper, we
only consider the case when k and l are positive, but our techniques can be extended to k, l ∈ R \ {0},
satisfying some conditions, this will be done in a forthcoming paper.
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Now consider the d-area Ω = Ω− ∪ Ω+ constituted by the two juxtaposed habitats{ Ω− := (a, γ)× ω

Ω+ := (γ, b)× ω,

with their interface
Γ = {γ} × ω,

where a, γ, b ∈ R with a < γ < b and ω being an open bounded regular set of Rd−1. Consider the
following linear stationary dispersal equations

(EQpde)
{
−k−∆2u− + l−∆u− = f− in Ω−
−k+∆2u+ + l+∆u+ = f+ in Ω+,

where
u =

{
u− in Ω−
u+ in Ω+

and f =
{

f− in Ω−
f+ in Ω+,

with f given in Lp(a, b;Lp(ω)) = Lp(Ω), and k±, l± are positive numbers. The spatial variables will
be denoted by (x, y), x ∈ (a, b) and y ∈ ω. The above equations will be considered under the following
boundary and transmission conditions

(BCpde)


(1)
{

u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω
∆u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω ∆u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω

(2)

 u−(a, y) = ϕ−1 (y), u+(b, y) = ϕ+
1 (y), y ∈ ω

∂u−
∂x

(a, y) = ϕ−2 (y), ∂u+
∂x

(b, y) = ϕ+
2 (y), y ∈ ω,

(ϕ±1 and ϕ±2 will be given in appropriated spaces) and

(TCpde)



u− = u+ on Γ
∂u−
∂x

= ∂u+
∂x

on Γ

k−∆u− = k+∆u+ on Γ
∂

∂x
(k−∆u− − l−u−) = ∂

∂x
(k+∆u+ − l+u+) on Γ.

Now, define the following homogeneous dispersal linear operator
D (L) =

{
u ∈ Lp(Ω) : ∆u±,∆2u± ∈ Lp(Ω±) and u± satisfies (BC0) and (TCpde)

}
Lu =

{
−k−∆2u− + l−∆u− in Ω−
−k+∆2u+ + l+∆u+ in Ω+,

where (BC0) corresponds to (BCpde) with ϕ+
1 = ϕ−1 = ϕ+

2 = ϕ−2 = 0.
Therefore, in this work, we will focus ourselves on proving essentially the invertibility of L; this

study will be very useful to analyze the following spectral equation

Lu− λu = f, λ ∈ C,

in order to characterize the nature of the semigroup generated by L. On the other hand the same
techniques used here will apply for this analysis. We know the importance of this property in the
study of the generalized diffusion complete equation quoted above.

Let us comment on the boundary and transmission conditions.
The first boundary conditions of (1) in (BCpde) simply mean that the individuals die when they

reach on the other parts of the boundaries (a, b) × ∂ω (which means that we have an inhospitable
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border); the second of (1) mean that there is no dispersal in the normal direction. We deduce that
the dispersal vanishes on (a, b)× ∂ω, that is ∆u− = 0 on (a, γ)× ∂ω and ∆u+ = 0 on (γ, b)× ∂ω.

In (2) of (BCpde), the population density and the flux are given, for instance on {a} × ω and on
{b} × ω. This signifies that the habitats are not segregated.

In (TCpde), the two first transmission conditions mean the continuity of the density and its flux at
the interface, while the two second express the continuity of the dispersal and its flux (in some sense)
at Γ.

We can consider more realistic transmission conditions with the noncontinuity of the density and
the flux but including the continuity of the generalized dispersal:

−k−∆2u− + l−∆u− = −k+∆2u+ + l+∆u+ on Γ.

This situation requires to work in spaces built on the continuous functions. We will consider this case
in a future work. Note that, when we consider different types of habitats, the response of individuals
at the interface is important for the overall movement behaviour.

In many works, a generalized diffusion model is considered. Let us quote a number of them.

In [4] and in [18], the authors have presented in one dimensional case a nonlinear model with
spatial structure characterized by a fourth order operator in only one habitat. They used essentially
a Landau-Ginzburg free energy functional.

We were essentially inspired by these works to deduce a linear d-dimensional model set in two
bounded juxtaposed cylindrical habitats which requires necessarily boundary and transmission condi-
tions.

We will then base ourselves on similar techniques to those used in the works of [7] and [8].

The paper is organized as follows. First, in section 2, we present the PDE transmission problem
(Ppde) and with the help of operator A0 defined below, we give its operational writing. We will then
study problem (P) with a general operator A instead of A0.

Then, in section 3, we recall what is a BIP operator, we precise our notations about interpolation
spaces, we set our hypotheses and their consequences. We explain how to solve our problem (P) by
introducing two auxiliary problems (P−) and (P+). We then present our main result in Theorem 3.4.
As a consequence of this theorem, we obtain the Corollary 3.6 which states existence and uniqueness
of the solution of problem (EQpde)− (BCpde)− (TCpde) quoted above.

In section 4, we give technical results which help us to prove our main result. In Proposition 4.2
and in Proposition 4.4 we solve problems (P−) and (P+) provided that the data are in some real
interpolation spaces. We establish (see Theorem 4.6) a useful technical result which allows us to prove
Theorem 3.4. Then, we show some technical lemmas which lead us to apply functional calculus.

Section 5 is devoted to the proof of Theorem 3.4. This section is composed of three parts: in the
first part, we use Theorem 4.6 to explicit the determinant of the transmission system. In the second
part, we inverse the determinant of the transmission system using functional calculus. Finally, in the
last part, we show that the general transmission problem has a unique classical solution by establishing
the regularity of this solution.
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2 Operational formulation

Consider now the problem

(Ppde)



k−∆2u− − l−∆u− = f− in Ω−
k+∆2u+ − l+∆u+ = f+ in Ω+

u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω
∆u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, ∆u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω
u−(a, y) = ϕ−1 (y), y ∈ ω, u+(b, y) = ϕ+

1 (y), y ∈ ω
∂u−
∂x

(a, y) = ϕ−2 (y), y ∈ ω, ∂u+
∂x

(b, y) = ϕ+
2 (y), y ∈ ω

u− = u+ on Γ
∂u−
∂x

= ∂u+
∂x

on Γ

k−∆u− = k+∆u+ on Γ
∂

∂x
(k−∆u− − l−u−) = ∂

∂x
(k+∆u+ − l+u+) on Γ.

Let us define A0, the Laplace operator in Rd−1, d ∈ N \ {0, 1}, as follows

{
D(A0) := {ψ ∈W 2,p(ω) : ψ = 0 on ∂ω}

∀ψ ∈ D(A0), A0ψ = ∆yψ.
(1)

Thus, using operator A0, problem (Ppde) becomes



u
(4)
− (x) + (2A0 −

l−
k−

I)u′′−(x) + (A2
0 −

l−
k−

A0)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u
(4)
+ (x) + (2A0 −

l+
k+

I)u′′+(x) + (A2
0 −

l+
k+

A0)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u−(a) = ϕ−1 , u+(b) = ϕ+
1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k+u
′′
+(γ) + k+A0u+(γ) = k−u

′′
−(γ) + k−A0u−(γ)

k+u
(3)
+ (γ) + k+A0u

′
+(γ)− l+u′+(γ) = k−u

(3)
− (γ) + k−A0u

′
−(γ)− l−u′−(γ),

where f− ∈ Lp(a, γ;Lp(ω)), f+ ∈ Lp(γ, b;Lp(ω)) and p ∈ (1,+∞), with u(x) := u(x, ·) and f(x) :=
f(x, ·).

Then, we will consider a generalization of this problem with (−A,D(−A)), instead of (−A0, D(−A0)),
a BIP operator of angle θ ∈ (0, π) on a UMD space X, see Section 3 below for the definitions of BIP
operator and UMD spaces, and f ∈ Lp(a, b;X).
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More precisely, we study the following transmission problem (P):

(P)



(EQ)


u

(4)
− (x) + (2A− l−

k−
I)u′′−(x) + (A2 − l−

k−
A)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u
(4)
+ (x) + (2A− l+

k+
I)u′′+(x) + (A2 − l+

k+
A)u+(x) = f+(x), for a.e. x ∈ (γ, b)

(BC)
{
u−(a) = ϕ−1 , u+(b) = ϕ+

1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

(TC)



u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k+u
(3)
+ (γ) + k+Au

′
+(γ)− l+u′+(γ) = k−u

(3)
− (γ) + k−Au

′
−(γ)− l−u′−(γ)

k+u
′′
+(γ) + k+Au+(γ) = k−u

′′
−(γ) + k−Au−(γ).

The transmission conditions (TC) will be divided into

(TC1)
{
u−(γ) = u+(γ)

u′−(γ) = u′+(γ),

and

(TC2)

 k+u
(3)
+ (γ) + k+Au

′
+(γ)− l+u′+(γ) = k−u

(3)
− (γ) + k−Au

′
−(γ)− l−u′−(γ)

k+u
′′
+(γ) + k+Au+(γ) = k−u

′′
−(γ) + k−Au−(γ).

Note that (TC2) is well defined in virtue of Lemma 3.2, see Section 3.2 below.
We will search a classical solution of problem (P), that is a solution u such that u− := u|(a,γ) ∈W 4,p(a, γ;X) ∩ Lp(a, γ;D(A2)), u′′− ∈ Lp(a, γ;D(A)),

u+ := u|(γ,b) ∈W 4,p(γ, b;X) ∩ Lp(γ, b;D(A2)), u′′+ ∈ Lp(γ, b;D(A)),
(2)

and which satisfies (EQ)− (BC)− (TC).

3 Assumptions, consequences and statement of results

3.1 The class BIP(X, θ)
In all the paper, (X, ‖ · ‖) is a complex Banach space. Recall, see [12], p.19, that a closed linear
operator T1 is called sectorial of angle α ∈ (0, π) if

i) σ(T1) ⊂ Sα,

ii) ∀ α′ ∈ (α, π), sup
{
‖λ(λ I − T1)−1‖L(X) : λ ∈ C \ Sα′

}
<∞,

where
Sα := {z ∈ C : z 6= 0 and |arg z| < α} . (3)

It is known that any injective sectorial operator T1 admits imaginary powers T is1 , s ∈ R, but, in
general, T is1 is not bounded, see [13], p. 342. Let θ ∈ [0, π). We denote by BIP(X, θ), see [19], p.430,
the class of sectorial injective operators T1 such that

i) D(T1) = R(T1) = X,

ii) ∀ s ∈ R, T is1 ∈ L(X),

iii) ∃ C ≥ 1, ∀ s ∈ R, ||T is1 ||L(X) ≤ Ce|s|θ.
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In this case, D(T1) ∩R(T1) = X, see [12], proof of Proposition 3.2.1, c), p. 71.
We will use the well-known Dore-Venni theorem, see [6] and its generalization in [19], which needs

to consider a UMD space X. Recall that a Banach space X is a UMD space if and only if for some
p ∈ (1,+∞) and thus for all p, the Hilbert transform is bounded from Lp(R, X) into itself.

3.2 Interpolation spaces

Here we recall some properties of real interpolation spaces in particular cases.
Let T2 : D(T2) ⊂ X −→ X be a linear operator such that

(0,+∞) ⊂ ρ(T2) and ∃ C > 0 : ∀ t > 0, ‖t(T2 − tI)−1‖L(X) 6 C. (4)

Then, for θ ∈ (0, 1) and q ∈ [1,+∞], we can define the real interpolation space

(D(T2), X)θ,q :=
{
ψ ∈ X : t 7−→ t1−θ‖T2(T2 − tI)−1ψ‖X ∈ Lq∗(0,+∞)

}
,

see [11], p. 665, Teorema 3.
In [22], p. 78, this space is denoted by (X,D(T2))1−θ,q. We set, for any k ∈ N \ {0}

(D(T2), X)k+θ,q :=
{
ψ ∈ D(T k2 ) : T k2 ψ ∈ (D(T2), X)θ,q

}
,

(X,D(T2))k+θ,q :=
{
ψ ∈ D(T k2 ) : T k2 ψ ∈ (X,D(T2))θ,q

}
.

The general situation of the real interpolation space (X0, X1)θ,q with X0, X1 two Banach spaces such
that X0 ↪→ X1, is described in [15].

Note that for an operator T2 satisfying (4), T k2 is closed for any k ∈ N \ {0} since ρ(T2) 6= ∅;
consequently we can consider (D(T k2 ), X)θ,q = (X,D(T k2 ))1−θ,q.

We have the two following lemmas.

Lemma 3.1. Let θ, θ′ ∈ (0, 1), k, n,m ∈ N \ {0}, p ∈ [1,+∞] and T2 be a linear operator satisfying
(4).

i) If kθ
n

/∈ N, then (X,D(T k2 ))θ,p = (X,D(Tn2 )) kθ
n
,p.

ii) If n 6 k 6 m, then
(D(T k2 ), D(Tn2 ))θ,p = (D(Tm2 ), X)τ,p,

where τ satisfies k(1− θ) + nθ = m(1− τ).

iii) If kθ′ < 1, then (D(T k2 ), X)θ′,p ⊂ D(T k−1
2 ).

For statement i), see [16], (2.1.13), p. 43. For ii), see [11], p. 676, Teorema 6. For iii), we apply
ii) with n = k − 1, m = k and θ = kθ′ ∈ (0, 1), then

(D(T k2 ), D(T k−1
2 ))kθ′,p = (D(T k2 ), X)θ′,p,

which gives (D(T k2 ), X)θ′,p ⊂ D(T k−1
2 ). This inclusion can also be found by writing

(D(T k2 ), X)θ′,p = (X,D(T k2 ))1−θ′,p = (X,D(T2))k−kθ′,p
= (X,D(T2))(k−1)+(1−kθ′),p = (D(T2), X)(k−1)+kθ′,p ⊂ D(T k−1

2 ).

Lemma 3.2. Let T2 be a linear operator satisfying (4). Let u such that

u ∈Wn,p(a1, b1;X) ∩ Lp(a1, b1;D(T k2 )),

where a1, b1 ∈ R with a1 < b1, n, k ∈ N \ {0} and p ∈ (1,+∞). Then for any j ∈ N satisfying the
Poulsen condition 0 < 1

p + j < n and s ∈ {a1, b1}, we have

u(j)(s) ∈ (D(T k2 ), X) j
n

+ 1
np
,p.

This result is proved in [11], p. 678, Teorema 2’.
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3.3 Hypotheses

In all the sequel, k+, k−, l+, l− ∈ R+ \ {0}, A denotes a closed linear operator in X and we set

r+ = l+
k+

and r− = l−
k−
.

We assume the following hypotheses:
(H1) X is a UMD space,

(H2) 0 ∈ ρ(A),

(H3) −A ∈ BIP(X, θA) for some θA ∈ (0, π),

(H4) σ(A) ⊂ (−∞, 0) and ∀ θ ∈ (0, π), sup
λ∈Sθ
‖λ(λ I −A)−1‖L(X) < +∞,

Note that (H4) means that −A is a sectorial operator of any angle θ ∈ (0, π). Let us give some
consequences of our assumptions.

3.4 Consequences

1. Note that A0 satisfies all the previous hypotheses with X = Lq(ω), q ∈ (1,+∞).

2. To solve each equation of (EQ) in the scalar case (with −A > 0), it is necessary to introduce
the roots ±

√
−A+ r±, ±

√
−A of the characteristic equations

x4 + (2A− r±)x2 + (A2 − r±A) = 0,

this is why, in our operational case, we consider the operators

L− := −
√
−A+ r− I, L+ := −

√
−A+ r+ I and M := −

√
−A. (5)

Due to (H3), −A, −A+ r− I and −A+ r+ I are sectorial operators, so the existence of L−, L+
and M is ensured, see for instance [12], e), p.25.

3. Applying Proposition 3.1.9, p. 65, in [12], we have D(L−) = D(L+) = D(M). Thus, for
n,m ∈ N and m 6 n

D(Ln±) = D(Mn) = D(Lm±Mn−m) = D(MmLn−m± ).

4. Due to (H3), −A+ r− I ∈ BIP(X, θA) and −A+ r+ I ∈ BIP(X, θA), see [19], Theorem 3, p. 437,
from which we deduce that

−L−,−L+,−M ∈ BIP(X, θA/2),

see [12], Proposition 3.2.1, e), p. 71. Since 0 < θA/2 < π/2, L−, L+ and M generate bounded
analytic semigroups (exL−)x>0, (exL+)x>0 and (exM )x>0, see [19], Theorem 2, p. 437. Moreover,
from [19], Theorem 4, p. 441, we get

−(L− +M),−(L+ +M) ∈ BIP(X, θA/2 + ε),

for any ε ∈ (0, π/2 − θA/2). So from [19], Theorem 2, p. 437, L− + M and L+ + M generate
bounded analytic semigroups (ex(L−+M))x>0 and (ex(L++M))x>0.

5. From (H2) and (H3), we deduce that 0 ∈ ρ(M) ∩ ρ(L−) ∩ ρ(L+). Thus, assumptions (H1),
(H2) and (H3) lead us to apply the Dore-Venni theorem, see [6], to obtain 0 ∈ ρ(L+ +M) and
0 ∈ ρ(L− +M).

6. It follows from (5) that

∀ ψ ∈ D(M2), (L2
+ −M2)ψ = r+ ψ and (L2

− −M2)ψ = r− ψ. (6)

and also

∀ ψ ∈ D(M), (L+ −M)ψ = r+(L+ +M)−1ψ and (L− −M)ψ = r−(L− +M)−1ψ. (7)
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3.5 The main results

To solve problem (P), we introduce two problems:

(P−)


u

(4)
− (x) + (2A− r− I)u′′−(x) + (A2 − r−A)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = ϕ−1 , u−(γ) = ψ1

u′−(a) = ϕ−2 , u′−(γ) = ψ2,

and

(P+)


u

(4)
+ (x) + (2A− r+ I)u′′+(x) + (A2 − r+A)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u+(γ) = ψ1, u+(b) = ϕ+
1

u′+(γ) = ψ2, u′+(b) = ϕ+
2 .

Remark 3.3. u is a classical solution of (P) if and only if there exist ψ1, ψ2 ∈ X such that

(i) u− is a classical solution of (P−),

(ii) u+ is a classical solution of (P+),

(iii) u− and u+ satisfy (TC2).

So our goal is to prove that there exists a unique couple (ψ1, ψ2) which satisfies (i), (ii) and (iii).
This will lead us to obtain our main result.

Theorem 3.4. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X). Assume that (H1), (H2), (H3), (H4) hold.
Then, there exists a unique classical solution u, see definition (2), of the transmission problem (P) if
and only if

ϕ+
1 , ϕ

−
1 ∈ (D(A), X)1+ 1

2p ,p
and ϕ+

2 , ϕ
−
2 ∈ (D(A), X)1+ 1

2 + 1
2p ,p

. (8)

Remark 3.5.

1. The proof of Theorem 3.4 uses operators L−, L+,M and also interpolation spaces (D(M), X)3−j+ 1
p
,p,

j = 0, 1, 2, 3. But from Lemma 3.1, we get
(D(M), X)3+ 1

p
,p = (D(A), X)1+ 1

2p ,p
, (D(M), X)2+ 1

p
,p = (D(A), X)1+ 1

2 + 1
2p ,p

(D(M), X)1+ 1
p
,p = (D(A), X) 1

2p ,p
, (D(M), X) 1

p
,p = (D(A), X) 1

2 + 1
2p ,p

.
(9)

2. We can generalize this Theorem by considering a transmission problem between n habitats, with
n ∈ N \ {0}. It suffices to use Theorem 3.4 on the two first habitats and then apply it on the
transmission problem between the second and the third habitat to solve the problem with n = 3.
By recurrence, we obtain the result.

As consequence of Theorem 3.4, we deduce some results for problem (Ppde) under some necessary
boundary conditions. Let us consider the case A = A0 (other cases can be treated).

Corollary 3.6. Assume that ω is a bounded open set of Rd−1 where d ≥ 2 with C2-boundary. Let
f+ ∈ Lp(Ω+) and f− ∈ Lp(Ω−) with p ∈ (1,+∞) and p > d; let k+, k−, l+, l− ∈ R+ \ {0}. Then, there
exists a unique solution u of (Ppde), such that

u− ∈W 4,p(Ω−), u+ ∈W 4,p(Ω+),

if and only if

ϕ±1 , ϕ
±
2 ∈W

2,p(ω) ∩W 1,p
0 (ω), ∆ϕ±1 ,∈W

2− 1
p
,p(ω) ∩W 1,p

0 (ω) and ∆ϕ±2 ∈W
1− 1

p
,p(ω) ∩W 1,p

0 (ω).

8



Proof. Let (x, y) ∈ (a, b)×ω. Set X := Lp(ω). Using A0 the linear operator defined by (1), we obtain
that problem (Ppde) becomes problem (P). From [21], Proposition 3, p. 207, X satisfies (H1) and from
[9], Theorem 9.15 and Lemma 9.17, p. 241-242, A0 satisfies (H2). Moreover, (H3) is satisfied from
[20], Theorem C, p. 166-167. Moreover, since A0 is the Laplace operator, from [12], Chapter 8, section
3, p. 232, (H4) is satisfied. Finally, all the assumptions of Theorem 3.4 are satisfied. It follows that,
there exists a unique classical solution of problem (P) if and only if (8) holds.

Now, it remains to show that if ϕ1, ϕ2, ϕ3, ϕ4 satisfy (8), then the classical solution u± satisfies
u± ∈ W 4,p(Ω±). To this end, we will make explicit the interpolation spaces that appear in (8). We
have

(D(A0), X) 1
2p ,p

=
(
W 2,p(ω) ∩W 1,p

0 (ω), Lp(ω)
)

1
2p ,p

,

and from [11], p. 683, proposizione 3 and p. 681, 1.10, and [22], p. 317, Theorem 1, since 2 − 1
p > 1

is never integer, we have (
W 2,p(ω), Lp(ω)

)
1

2p ,p
= W

2− 1
p
,p(ω). (10)

Set ν1 := 2− 1
p
− d− 1

p
= 2− d

p
. Since p > d

2 , we have ν1 > 0. From the Sobolev embedding theorem,
see [22], section 4.6.1, p. 327-328, we have:

W
2− 1

p
,p(ω) ↪→ C(ω).

Thus, the traces of the elements of the space described in (10) are well defined. From [10], Proposition
5.9, p. 334, and [22], section 4.3.3, Theorem, p. 321, we deduce that

(D(A0), X) 1
2p ,p

=
{
ψ ∈W 2− 1

p
,p(ω) : ψ = 0 on ∂ω

}
,

and

(D(A0), X)1+ 1
2p ,p

=
{
ψ ∈ D(A0) : A0ψ ∈W 2− 1

p
,p(ω) and ∆ψ = 0 on ∂ω

}
=

{
ψ ∈W 2,p(ω) : ∆ψ ∈W 2− 1

p
,p(ω) and ψ = ∆ψ = 0 on ∂ω

}
.

In the same way, we obtain

(D(A0), X) 1
2 + 1

2p ,p
=
(
W 2,p(ω) ∩W 1,p

0 (ω), Lp(ω)
)

1
2 + 1

2p ,p
. (11)

Then, since 1− 1
p is never an integer, from [11], Teorema 7, p. 681, we have

(
W 2,p(ω), Lp(ω)

)
1
2 + 1

2p ,p
= B

2(1− 1
2−

1
2p )

p,p (ω) = B
1− 1

p
p,p (ω) = W

1− 1
p
,p(ω).

Set ν2 := 1− 1
p
− d− 1

p
= 1− d

p
. Since p > d, we have ν2 > 0. From the Sobolev embedding theorem,

see [22], section 4.6.1, p. 327-328, we have:

W
1− 1

p
,p(ω) ↪→ C(ω).

Thus, the functions described in (11) are defined for any y in ω. From [10], Proposition 5.9, p. 334,
and [22], section 4.3.3, Theorem, p. 321, we deduce that

(D(A0), X) 1
2 + 1

2p ,p
=
{
ψ ∈W 1− 1

p
,p(ω) : ψ = 0 on ∂ω

}
,
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and

(D(A0), X)1+ 1
2 + 1

2p ,p
=

{
ψ ∈ D(A0) : A0ψ ∈ (D(A0), X) 1

2 + 1
2p ,p

}
=

{
ψ ∈W 2,p(ω) : ∆ψ ∈W 1− 1

p
,p(ω) and ψ = ∆ψ = 0 on ∂ω

}
.

We can apply on u(x, ·), x ∈ (a, b), in virtue of the Sobolev extension theorem on Rd−1, an extension
operator which maps continuously Lp(ω) into Lp(Rd−1) and W 2,p(ω) into W 2,p(Rd−1). Then, from
the Mikhlin’s Theorem, see [17], we deduce that

u− ∈W 2,p((a, γ)× ω) = W 2,p(Ω−) and u+ ∈W 2,p((γ, b)× ω) = W 2,p(Ω+).

By reiterating the same arguments to the other regularities, we obtain that u− ∈ W 4,p(Ω−) and
u+ ∈W 4,p(Ω+).

Taking into account the result of Theorem 3.4, we can also obtain anisotropic result by considering
f− ∈ Lp(a, γ;Lq(ω)) and f+ ∈ Lp(γ, b;Lq(ω)) with p, q ∈ (1,+∞).

4 Preliminary results

In all the sequel, we set
c = γ − a > 0 and d = b− γ > 0.

Applying Remark 3.3, we will solve problem (P) by studying first problems (P−) and (P+). To this
end, we need the following invertibility result obtained in [14].

Lemma 4.1. The operators U+, U−, V+, V− ∈ L(X) defined by

U+ := I − ed(L++M) − r+(L+ +M)2
(
edM − edL+

)
U− := I − ec(L−+M) − r−(L− +M)2

(
ecM − ecL−

)
V+ := I − ed(L++M) + r+(L+ +M)2

(
edM − edL+

)
V− := I − ec(L−+M) + r−(L− +M)2

(
ecM − ecL−

)
,

(12)

are invertible with bounded inverse.

All these exponentials are well defined, see statement 4 of section 3.4. For a detailed proof, see
[14], Proposition 5.4 with k = r− or k = r+.

4.1 Problem (P−)

Proposition 4.2. Let f− ∈ Lp(a, γ;X). Assume that (H1), (H2), (H3), (H4) hold. There exists a
unique classical solution u− of problem (P−) if and only if

ϕ−1 , ψ1 ∈ (D(A), X)1+ 1
2p ,p

and ϕ−2 , ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
. (13)

Moreover

u−(x) =
(
e(x−a)M − e(γ−x)M

)
α−1 +

(
e(x−a)L− − e(γ−x)L−

)
α−2

+
(
e(x−a)M + e(γ−x)M

)
α−3 +

(
e(x−a)L− + e(γ−x)L−

)
α−4 + F−(x),

(14)
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where 

α−1 := − 1
2r−

(L− +M)U−1
−

[
L−(I + ecL−)ψ1 + (I − ecL−)ψ2 + ϕ̃−1

]
α−2 := 1

2r−
(L− +M)U−1

−

[
M(I + ecM )ψ1 + (I − ecM )ψ2 + ϕ̃−2

]
α−3 := 1

2r−
(L− +M)V −1

−

[
L−(I − ecL−)ψ1 + (I + ecL−)ψ2 + ϕ̃−3

]
α−4 := − 1

2r−
(L− +M)V −1

−

[
M(I − ecM )ψ1 + (I + ecM )ψ2 + ϕ̃−4

]
,

(15)



ϕ̃1
− := −L−

(
I + ecL−

)
ϕ−1 −

(
I − ecL−

) (
F ′−(a) + F ′−(γ)− ϕ−2

)
ϕ̃2
− := −M

(
I + ecM

)
ϕ−1 −

(
I − ecM

) (
F ′−(a) + F ′−(γ)− ϕ−2

)
ϕ̃3
− := L−

(
I − ecL−

)
ϕ−1 −

(
I + ecL−

) (
F ′−(γ)− F ′−(a) + ϕ−2

)
ϕ̃4
− := M

(
I − ecM

)
ϕ−1 −

(
I + ecM

) (
F ′−(γ)− F ′−(a) + ϕ−2

)
,

(16)

and F− is the unique classical solution of problem u
(4)
− (x) + (2A− r− I)u′′−(x) + (A2 − r−A)u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = u−(γ) = u′′−(a) = u′′−(γ) = 0.
(17)

Proof. From [14], Theorem 2.5, statement 2, there exists a unique classical solution u− of (P−) if and
only if (13) holds. To obtain the representation formula (14)-(15)-(16) of u−, we have adapted the
representation formula (5.3)-(5.19)-(5.20) given in [14], where u, L, f , b, F0,f , k, ϕ1, ϕ2, ϕ3, ϕ4 are
respectively replaced by u−, L−, f−, γ, F−, r−, ϕ−1 , ψ1, ϕ−2 , ψ2.

Remark 4.3. In the previous proposition, due to (13), (15) and (16), we have

α−i ∈ D(M), for i = 1, 2, 3, 4.

Moreover, since F− is a classical solution of (17), by Lemma 3.2, we deduce that, for j = 0, 1, 2, 3 and
s = a or γ

F
(j)
− (s) ∈ (D(M), X)3−j+ 1

p
,p.

4.2 Problem (P+)
Proposition 4.4. Let f+ ∈ Lp(γ, b;X). Assume that (H1), (H2), (H3), (H4) hold. There exists a
unique classical solution u+ of (P+) if and only if

ϕ+
1 , ψ1 ∈ (D(A), X)1+ 1

2p ,p
and ϕ+

2 , ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
. (18)

u+(x) =
(
e(x−γ)M − e(b−x)M

)
α+

1 +
(
e(x−γ)L+ − e(b−x)L+

)
α+

2

+
(
e(x−γ)M + e(b−x)M

)
α+

3 +
(
e(x−γ)L+ + e(b−x)L+

)
α+

4 + F+(x),
(19)

where 

α+
1 = 1

2r+
(L+ +M)U−1

+

[
L+(I + edL+)ψ1 − (I − edL+)ψ2 + ϕ̃+

1

]
α+

2 = − 1
2r+

(L+ +M)U−1
+

[
M(I + edM )ψ1 − (I − edM )ψ2 + ϕ̃+

2

]
α+

3 = 1
2r+

(L+ +M)V −1
+

[
L+(I − edL+)ψ1 − (I + edL+)ψ2 + ϕ̃+

3

]
α+

4 = − 1
2r+

(L+ +M)V −1
+

[
M(I − edM )ψ1 − (I + edM )ψ2 + ϕ̃+

4

]
,

(20)
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

ϕ̃1
+ = −L+

(
I + edL+

)
ϕ+

1 +
(
I − edL+

) (
F ′+(b) + F ′+(γ)− ϕ+

2

)
ϕ̃2

+ = −M
(
I + edM

)
ϕ+

1 +
(
I − edM

) (
F ′+(b) + F ′+(γ)− ϕ+

2

)
ϕ̃3

+ = L+
(
I − edL+

)
ϕ+

1 −
(
I + edL+

) (
F ′+(b)− F ′+(γ)− ϕ+

2

)
ϕ̃4

+ = M
(
I − edM

)
ϕ+

1 −
(
I + edM

) (
F ′+(b)− F ′+(γ)− ϕ+

2

)
,

(21)

and F+ is the unique classical solution of problem u
(4)
+ (x) + (2A− r+ I)u′′+(x) + (A2 − r+A)u+(x) = f+(x), for a.e. x ∈ (γ, b)

u+(γ) = u+(b) = u′′+(γ) = u′′+(b) = 0.
(22)

Proof. From [14], Theorem 2.5, statement 2, there exists a unique classical solution u+ of (P+) if and
only if (18) holds. To obtain the representation formula (19)-(20)-(21) of u+, we have adapted the
representation formula (5.3)-(5.19)-(5.20) given in [14], where u, L, f , a, F0,f , k, ϕ1, ϕ2, ϕ3, ϕ4 are
respectively replaced by u+, L+, f+, γ, F+, r+, ψ1, ϕ+

1 , ψ2, ϕ+
2 .

Remark 4.5. In the previous proposition, due to (18), (20) and (21), we have

α+
i ∈ D(M), for i = 1, 2, 3, 4.

Moreover, since F+ is a classical solution of (22), by Lemma 3.2, we deduce that, for j = 0, 1, 2, 3 and
s = γ or b

F
(j)
+ (s) ∈ (D(M), X)3−j+ 1

p
,p.

4.3 The transmission system

This section is devoted to the proof of Theorem 4.6 stated below, which gives the link between problem
(P) and the following system

(
P+

1 + P−1

)
ψ1 +

(
P−2 − P

+
2

)
ψ2 = S1

M
(
P−2 − P

+
2

)
ψ1 +

(
P+

3 + P−3

)
ψ2 = S2.

(23)

The coefficients are given by
P+

1 = k+(L+ +M)L+
(
U−1

+ (I + edM )(I + edL+) + V −1
+ (I − edM )(I − edL+)

)
P+

2 = k+(L+ +M)
(
U−1

+ (I + edM )(I − edL+) + V −1
+ (I − edM )(I + edL+)

)
P+

3 = k+(L+ +M)
(
U−1

+ (I − edM )(I − edL+) + V −1
+ (I + edM )(I + edL+)

)
,

(24)

and similarly
P−1 = k−(L− +M)L−

(
U−1
− (I + ecM )(I + ecL−) + V −1

− (I − ecM )(I − ecL−)
)

P−2 = k−(L− +M)
(
U−1
− (I + ecM )(I − ecL−) + V −1

− (I − ecM )(I + ecL−)
)

P−3 = k−(L− +M)
(
U−1
− (I − ecM )(I − ecL−) + V −1

− (I + ecM )(I + ecL−)
)
.

(25)

The second members are

S1 = −k+(L+ +M)
(
U−1

+ (I + edM )ϕ̃1
+ + V −1

+ (I − edM )ϕ̃3
+
)

−k−(L− +M)
(
U−1
− (I + ecM )ϕ̃1

− + V −1
− (I − ecM )ϕ̃3

−
)
− 2M−1R1,

(26)
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with R1 given by

R1 = −k+F
′′′
+ (γ) + k+M

2F ′+(γ) + l+F
′
+(γ) + k−F

′′′
− (γ)− k−M2F ′−(γ)− l−F ′−(γ), (27)

and
S2 = k+(L+ +M)

(
U−1

+ (I − edL+)ϕ̃2
+ + V −1

+ (I + edL+)ϕ̃4
+
)

−k−(L− +M)
(
U−1
− (I − ecL−)ϕ̃2

− + V −1
− (I + ecL−)ϕ̃4

−
)
.

(28)

Theorem 4.6. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X). Assume that (H1), (H2), (H3), (H4)
hold. Then, the transmission problem (P ) has a unique classical solution if and only if the data
ϕ+

1 , ϕ
−
1 , ϕ

+
2 , ϕ

−
2 satisfy (8) and system (23) has a unique solution (ψ1, ψ2) such that

(ψ1, ψ2) ∈ (D(A), X)1+ 1
2p ,p
× (D(A), X)1+ 1

2 + 1
2p ,p

. (29)

Proof. First, we assume that (P) admits a unique classical solution u. Setting

ψ1 = u−(γ) = u+(γ) and ψ2 = u′−(γ) = u′+(γ),

we get that u− (respectively u+) is the classical solution of (P−) (respectively (P+)). So, applying
Proposition 4.2 (respectively Proposition 4.4), we obtain (8) and also (29). It remains to prove that
(ψ1, ψ2) satisfies (23). To this end we use (TC2) satisfied by u, that is k+

(
u

(3)
+ (γ)−M2u′+(γ)

)
− l+u′+(γ) − k−

(
u

(3)
− (γ)−M2u′−(γ)

)
+ l−u

′
−(γ) = 0

k+
(
u′′+(γ)−M2u+(γ)

)
− k−

(
u′′−(γ)−M2u−(γ)

)
= 0.

To make explicit this system, we use the expression of u+ given in (19). It follows, for x ∈ (γ, b)

u+(x) =
(
e(x−γ)M − e(b−x)M

)
α+

1 +
(
e(x−γ)L+ − e(b−x)L+

)
α+

2

+
(
e(x−γ)M + e(b−x)M

)
α+

3 +
(
e(x−γ)L+ + e(b−x)L+

)
α+

4 + F+(x),

u′+(x) = M
(
e(x−γ)M + e(b−x)M

)
α+

1 + L+
(
e(x−γ)L+ + e(b−x)L+

)
α+

2

+ M
(
e(x−γ)M − e(b−x)M

)
α+

3 + L+
(
e(x−γ)L+ − e(b−x)L+

)
α+

4 + F ′+(x),

u′′+(x) = M2
(
e(x−γ)M − e(b−x)M

)
α+

1 + L2
+

(
e(x−γ)L+ − e(b−x)L+

)
α+

2

+ M2
(
e(x−γ)M + e(b−x)M

)
α+

3 + L2
+

(
e(x−γ)L+ + e(b−x)L+

)
α+

4 + F ′′+(x),

u
(3)
+ (x) = M3

(
e(x−γ)M + e(b−x)M

)
α+

1 + L3
+

(
e(x−γ)L+ + e(b−x)L+

)
α+

2

+ M3
(
e(x−γ)M − e(b−x)M

)
α+

3 + L3
+

(
e(x−γ)L+ − e(b−x)L+

)
α+

4 + F ′′′+ (x).

Then, in virtue of Lemma 3.2, we have

M−2
(
u

(3)
+ (γ)−M2u′+(γ)

)
= L+(L2

+ −M2)M−2
(
I + edL+

)
α+

2

+L+(L2
+ −M2)M−2

(
I − edL+

)
α+

4

+M−2F ′′′+ (γ)− F ′+(γ).

Furthermore, from (6), we obtain

M−2
(
u

(3)
+ (γ)−M2u′+(γ)

)
= l+

k+
L+M

−2
(
I + edL+

)
α+

2

+ l+
k+
L+M

−2
(
I − edL+

)
α+

4 +M−2F ′′′+ (γ)− F ′+(γ),
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hence

u
(3)
+ (γ)−M2u′+(γ) = l+

k+
L+

(
I + edL+

)
α+

2 + l+
k+
L+

(
I − edL+

)
α+

4 + F ′′′+ (γ)−M2F ′+(γ),

it follows that

k+
(
u

(3)
+ (γ)−M2u′+(γ)

)
− l+u′+(γ) = −l+M

(
I + edM

)
α+

1 − l+M
(
I − edM

)
α+

3

+k+F
′′′
+ (γ)− k+M

2F ′+(γ)− l+F ′+(γ).

Note that, from Remark 4.5 and Lemma 3.2, all the terms in the previous equalities are justified. By
the same arguments and using again (6) and also (22), we have

M−1 (u′′+(γ)−M2u+(γ)
)

= (L2
+ −M2)M−1

(
I − edL+

)
α+

2 + (L2
+ −M2)M−1

(
I + edL+

)
α+

4

= l+
k+
M−1

(
I − edL+

)
α+

2 + l+
k+
M−1

(
I + edL+

)
α+

4 .

Then, we obtain

k+
(
u′′+(γ)−M2u+(γ)

)
= l+

(
I − edL+

)
α+

2 + l+
(
I + edL+

)
α+

4 . (30)

As previously, for u−, we use (14) and get, for x ∈ (a, γ)

u−(x) =
(
e(x−a)M − e(γ−x)M

)
α−1 +

(
e(x−a)L− − e(γ−x)L−

)
α−2

+
(
e(x−a)M + e(γ−x)M

)
α−3 +

(
e(x−a)L− + e(γ−x)L−

)
α−4 + F−(x),

u′−(x) = M
(
e(x−a)M + e(γ−x)M

)
α−1 + L−

(
e(x−a)L− + e(γ−x)L−

)
α−2

+ M
(
e(x−a)M − e(γ−x)M

)
α−3 + L−

(
e(x−a)L− − e(γ−x)L−

)
α−4 + F ′−(x),

u′′−(x) = M2
(
e(x−a)M − e(γ−x)M

)
α−1 + L2

−

(
e(x−a)L− − e(γ−x)L−

)
α−2

+ M2
(
e(x−a)M + e(γ−x)M

)
α−3 + L2

−

(
e(x−a)L− + e(γ−x)L−

)
α−4 + F ′′−(x),

u
(3)
− (x) = M3

(
e(x−a)M + e(γ−x)M

)
α−1 + L3

−

(
e(x−a)L− + e(γ−x)L−

)
α−2

+ M3
(
e(x−a)M − e(γ−x)M

)
α−3 + L3

−

(
e(x−a)L− − e(γ−x)L−

)
α−4 + F ′′′− (x).

Then, in virtue of Lemma 3.2, we have

u
(3)
− (γ)−M2u′−(γ) = L−(L2

− −M2)
(
ecL− + I

)
α−2 + L−(L2 −M2)

(
ecL− − I

)
α−4

+F ′′′− (γ)−M2F ′−(γ),

hence, due to (6), we have

M−2
(
u

(3)
− (γ)−M2u′−(γ)

)
= L−(L2

− −M2)M−2
(
ecL− + I

)
α−2 +M−2F ′′′− (γ)

+L−(L2 −M2)M−2
(
ecL− − I

)
α−4 − F

′
−(γ)

= L−
l−
k−
M−2

(
ecL− + I

)
α−2 +M−2F ′′′− (γ)

+L−
l−
k−
M−2

(
ecL− − I

)
α−4 − F

′
−(γ).

14



Then, we obtain

k−
(
u

(3)
− (γ)−M2u′−(γ)

)
− l−u′−(γ) = l−L−

(
ecL− + I

)
α−2 + l−L−

(
ecL− − I

)
α−4

−l−M
(
ecM + I

)
α−1 − l−L−

(
ecL− + I

)
α−2

−l−M
(
ecM − I

)
α−3 − l−L−

(
ecL− − I

)
α−4

+k−F ′′′− (γ)− k−M2F ′−(γ)− l−F ′−(γ)

= −l−M
(
ecM + I

)
α−1 − l−M

(
ecM − I

)
α−3

+k−F ′′′− (γ)− k−M2F ′−(γ)− l−F ′−(γ).

Furthermore, from (6), we have

M−1 (u′′−(γ)−M2u−(γ)
)

= (L2
− −M2)M−1

(
ecL− − I

)
α−2 + (L2

− −M2)M−1
(
I + ecL−

)
α−4

= l−
k−
M−1

(
ecL− − I

)
α−2 + l−

k−
M−1

(
I + ecL−

)
α−4 .

Then, we deduce the following equality:

k−
(
u′′−(γ)−M2u−(γ)

)
= l−

(
ecL− − I

)
α−2 + l−

(
I + ecL−

)
α−4 . (31)

Note that, from Remark 4.3 and Lemma 3.2, all the terms in the previous equalities are justified. It
follows, from (30) and (31), that system (TC2) becomes
−l+M

(
I + edM

)
α+

1 − l+M
(
I − edM

)
α+

3 = −l−M
(
I + ecM

)
α−1 + l−M

(
I − ecM

)
α−3 + R1

l+
(
I − edL+

)
α+

2 + l+
(
I + edL+

)
α+

4 = −l−
(
I − ecL−

)
α−2 + l−

(
I + ecL−

)
α−4 ,

where, R1 is given by (27). Thus
−l+

(
(α+

1 + α+
3 )− edM (α+

3 − α
+
1 )
)

= l−
(
(α−3 − α

−
1 )− ecM (α−1 + α−3 )

)
+M−1R1

l+
(
(α+

2 + α+
4 ) + edL+(α+

4 − α
+
2 )
)

= l−
(
(α−4 − α

−
2 ) + ecL−(α−2 + α−4 )

)
,

(32)

But, from (20), (21), (15) and (16), we have

α+
1 + α+

3 = 1
2r+

(L+ +M)U−1
+

(
L+(I + edL+)ψ1 − (I − edL+)ψ2 + ϕ̃1

+
)

+ 1
2r+

(L+ +M)V −1
+

(
L+(I − edL+)ψ1 − (I + edL+)ψ2 + ϕ̃3

+
)
,

α+
3 − α

+
1 = − 1

2r+
(L+ +M)U−1

+

(
L+(I + edL+)ψ1 − (I − edL+)ψ2 + ϕ̃1

+
)

+ 1
2r+

(L+ +M)V −1
+

(
L+(I − edL+)ψ1 − (I + edL+)ψ2 + ϕ̃3

+
)
,

and
α−1 + α−3 = − 1

2r−
(L− +M)U−1

−

(
L−(I + ecL−)ψ1 + (I − ecL−)ψ2 + ϕ̃1

−
)

+ 1
2r−

(L− +M)V −1
−

(
L−(I − ecL−)ψ1 + (I + ecL−)ψ2 + ϕ̃3

−
)
,

α−3 − α
−
1 = 1

2r−
(L− +M)U−1

−

(
L−(I + ecL−)ψ1 + (I − ecL−)ψ2 + ϕ̃1

−
)

+ 1
2r−

(L− +M)V −1
−

(
L−(I − ecL−)ψ1 + (I + ecL−)ψ2 + ϕ̃3

−
)
.
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So, using (24) and (25), the first line of system (32) writes(
P+

1 + P−1

)
ψ1 +

(
P−2 − P

+
2

)
ψ2 = S1, (33)

where S1 is given by (26). By the same way, we have

α+
2 + α+

4 = − 1
2r+

(L+ +M)U−1
+

(
M(I + edM )ψ1 − (I − edM )ψ2 + ϕ̃2

+
)

− 1
2r+

(L+ +M)V −1
+

(
M(I − edM )ψ1 − (I + edM )ψ2 + ϕ̃4

+
)
,

α+
4 − α

+
2 = 1

2r+
(L+ +M)U−1

+

(
M(I + edM )ψ1 − (I − edM )ψ2 + ϕ̃2

+
)

− 1
2r+

(L+ +M)V −1
+

(
M(I − edM )ψ1 − (I + edM )ψ2 + ϕ̃4

+
)
,

α−2 + α−4 = 1
2r−

(L− +M)U−1
−

(
M(I + ecM )ψ1 + (I − ecM )ψ2 + ϕ̃2

−
)

− 1
2r−

(L− +M)V −1
−

(
M(I − ecM )ψ1 + (I + ecM )ψ2 + ϕ̃4

−
)
,

α−4 − α
−
2 = − 1

2r−
(L− +M)U−1

−

(
M(I + ecM )ψ1 + (I − ecM )ψ2 + ϕ̃2

−
)

− 1
2r−

(L− +M)V −1
−

(
M(I − ecM )ψ1 + (I + ecM )ψ2 + ϕ̃4

−
)
.

So, using (24) and (25), the second line of system (32) writes

M
(
P−2 − P

+
2

)
ψ1 +

(
P+

3 + P−3

)
ψ2 = S2, (34)

where S2 is given by (28). Then, due to (33) and (34), (ψ1, ψ2) is the expected solution of (23).
Conversely, if (8) holds and system (23) has a unique solution (ψ1, ψ2) which satisfies (29), then

considering u− (respectively u+) the unique classical solution of (P−) (respectively (P+)), we get that
u is the unique classical solution of (P).

4.4 Functional calculus

Due to Theorem 4.6, to prove Theorem 3.4, it remains to solve system (23). This will be done by
using functional calculus to rewrite the operators defined in (12), (24) and (25) and to inverse the
determinant operator of system (23).

To this end, we first recall some classical notations. For θ ∈ (0, π), we denote by H(Sθ) the space
of holomorphic functions on Sθ (defined by (3)) with values in C. Moreover, we consider the following
subspace of H(Sθ):

E∞(Sθ) :=
{
f ∈ H(Sθ) : f = O(|z|−s) (|z| → +∞) for some s > 0

}
.

In other words, E∞(Sθ) is the space of polynomial decreasing holomorphic functions at +∞. Let T
be an invertible sectorial operator of angle θT ∈ (0, π). If f ∈ E∞(Sθ), with θ ∈ (θT , π), then we can
define, by functional calculus, f(T ) ∈ L(X), see [12], p. 45.

Then, we recall a result from [14], section 5.2, Lemma 5.3.

Lemma 4.7. Let P be an invertible sectorial operator in X with angle θ, for all θ ∈ (0, π). Let
G ∈ H(Sθ), for some θ ∈ (0, π), such that

(i) 1−G ∈ E∞(Sθ),
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(ii) G(x) 6= 0 for any x ∈ R+ \ {0}.

Then, G(P ) ∈ L(X), is invertible with bounded inverse.

Now, in order to apply the previous lemma to inverse the determinant of system (23), we introduce
some holomorphic functions and study them on the positive real axis.

Let r, δ > 0 and z ∈ C \ R−. We set


uδ,r(z) = 1− e−δ(

√
z+r+

√
z) − 1

r
(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)

vδ,r(z) = 1− e−δ(
√
z+r+

√
z) + 1

r
(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)
,

and when uδ,r(z) 6= 0, vδ,r(z) 6= 0



fδ,r,1(z) =
(√

z + r +
√
z
)√

z + r u−1
δ,r (z)

(
1 + e−δ

√
z
) (

1 + e−δ
√
z+r
)

+
(√

z + r +
√
z
)√

z + r v−1
d,r(z)

(
1− e−δ

√
z
) (

1− e−δ
√
z+r
)

fδ,r,2(z) = −
(√

z + r +
√
z
)
u−1
δ,r (z)

(
1 + e−δ

√
z
) (

1− e−δ
√
z+r
)

−
(√

z + r +
√
z
)
v−1
δ,r (z)

(
1− e−δ

√
z
) (

1 + e−δ
√
z+r
)

fδ,r,3(z) = −
(√

z + r +
√
z
)
u−1
δ,r (z)

(
1− e−δ

√
z
) (

1− e−δ
√
z+r
)

−
(√

z + r +
√
z
)
v−1
δ,r (z)

(
1 + e−δ

√
z
) (

1 + e−δ
√
z+r
)
.

(35)

Remark 4.8. Let r, δ, x > 0. From [14], Lemma 5.2, section 5.2, p. 369, we have uδ,r(x) > 0 and
vδ,r(x) > 0. Then, we obtain

fδ,r,1(x) > 0 and fδ,r,2(x), fδ,r,3(x) < 0.

Moreover, for z ∈ C \ R−, we define

gδ,r(z) = −
√
z + r

(
(1− e−2δ(

√
z+r+

√
z))2 − 1

r2 (
√
z + r +

√
z)4

(
e−2δ

√
z − e−2δ

√
z+r
)2
)

+
√
z

(
(1− e−δ(

√
z+r+

√
z))2 + 1

r
(
√
z + r +

√
z)2

(
e−δ
√
z − e−δ

√
z+r
)2
)2
,

and also, when uδ,r(z) 6= 0, vδ,r(z) 6= 0

hδ,r(z) = 4(
√
z + r +

√
z)2u−2

δ,r (z)v−2
δ,r (z)gδ,r(z).

Lemma 4.9. Let r, δ, x > 0. We have

gδ,r(x) < 0 and hδ,r(x) < 0.

Proof. Set
s =
√
x and t =

√
x+ r.
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Then, we have

gδ,r(x) = −t
(

(1− e−2δ(s+t))2 − 1
r2 (s+ t)4

(
e−2δs − e−2δt

)2
)

+s
(

(1− e−δ(s+t))2 + 1
r

(s+ t)2
(
e−δs − e−δt

)2
)2

= −t
(

(1− e−δ(s+t))2(1 + e−δ(s+t))2 − 1
r2 (s+ t)4

(
e−δs − e−δt

)2 (
e−δs + e−δt

)2
)

+s
(

(1− e−δ(s+t))4 + 21
r

(s+ t)2(1− e−δ(s+t))2
(
e−δs − e−δt

)2
)

+s 1
r2 (s+ t)4

(
e−δs − e−δt

)4

= s(s+ t)4

r2

(
e−δs − e−δt

)4
+ t(s+ t)4

r2

(
e−δs − e−δt

)2 (
e−δs + e−δt

)2

+s(1− e−δ(s+t))4 − t(1− e−δ(s+t))2(1 + e−δ(s+t))2

+2s(s+ t)2

r
(1− e−δ(s+t))2

(
e−δs − e−δt

)2

= (s+ t)4

r2

(
e−δs − e−δt

)2
(
s
(
e−δs − e−δt

)2
+ t

(
e−δs + e−δt

)2
)

+(1− e−δ(s+t))2
(
s(1− e−δ(s+t))2 − t(1 + e−δ(s+t))2

)
+2s(s+ t)2

r
(1− e−δ(s+t))2

(
e−δs − e−δt

)2

= (s+ t)4

r2

(
e−δs − e−δt

)2 (
(s+ t)

(
e−2δs + e−2δt

)
+ 2(t− s)e−δ(s+t)

)
+(1− e−δ(s+t))2

(
(s− t)(1 + e−2δ(s+t))− 2(s+ t)e−δ(s+t)

)
+2s(s+ t)2

r
(1− e−δ(s+t))2

(
e−δs − e−δt

)2
.

Furthermore, since s =
√
x and t =

√
x+ r, we have r = t2 − s2 = (t+ s)(t− s). It follows

(s+ t)2

r
= (s+ t)

(t− s) and (s+ t)4

r2 = (s+ t)2

(t− s)2 .

Then, we have

gδ,r(x) = (s+ t)2

(t− s)2

(
e−δs − e−δt

)2 (
(s+ t)

(
e−2δs + e−2δt

)
+ 2(t− s)e−δ(s+t)

)
−(1− e−δ(s+t))2

(
(t− s)(1 + e−2δ(s+t)) + 2(s+ t)e−δ(s+t)

)
+2s(s+ t)

(t− s) (1− e−δ(s+t))2
(
e−δs − e−δt

)2
.

Moreover, from [14], Lemma 5.2, we have

1− e−δ(s+t) − 1
r

(s+ t)2
(
e−δs − e−δt

)
> 0,

hence (
1− e−δ(s+t)

)2
>

(s+ t)2

(t− s)2

(
e−δs − e−δt

)2
. (36)

18



Then, from (36), we obtain

gδ,r(x) <
(s+ t)2

(t− s)2

(
e−δs − e−δt

)2 (
(s+ t)

(
e−2δs + e−2δt

)
+ 2(t− s)e−δ(s+t)

)
−(s+ t)2

(t− s)2

(
e−δs − e−δt

)2 (
(t− s)(1 + e−2δ(s+t)) + 2(s+ t)e−δ(s+t)

)
+2s(s+ t)

(t− s) (1− e−δ(s+t))2
(
e−δs − e−δt

)2

< (s+ t)
(
e−δs − e−δt

)2
g̃δ,r(x),

where

g̃δ,r(x) = (s+ t)
(t− s)2

(
(s+ t)

(
e−2δs + e−2δt

)
+ 2(t− s)e−δ(s+t)

)
− (s+ t)

(t− s)2

(
(t− s)(1 + e−2δ(s+t)) + 2(s+ t)e−δ(s+t)

)
+2 s

(t− s)(1− e−δ(s+t))2

= (s+ t)2

(t− s)2

(
e−2δs + e−2δt

)
− 2(s+ t)2

(t− s)2 e
−δ(s+t)

−(s+ t)
(t− s)(1 + e−2δ(s+t)) + 2(s+ t)

(t− s)e
−δ(s+t) + 2 s

(t− s)(1− e−δ(s+t))2

= (s+ t)2

(t− s)2

(
e−2δs − 2e−δ(s+t) + e−2δt

)
− (s+ t)

(t− s)
(
1− 2e−δ(s+t) + e−2δ(s+t)

)
+2 s

(t− s)
(
1− e−δ(s+t)

)2

= (s+ t)2

(t− s)2

(
e−δs − e−δt

)2
− (s+ t)

(t− s)
(
1− e−δ(s+t)

)2
+ 2 s

(t− s)
(
1− e−δ(s+t)

)2

= (s+ t)2

(t− s)2

(
e−δs − e−δt

)2
−
(
1− e−δ(s+t)

)2
.

Then, from (36), we obtain that g̃δ,r(x) < 0. Finally, we have

gδ,r(x) < (s+ t)
(
e−δs − e−δt

)2
g̃δ,r(x) < 0,

from which we deduce that hδ,r(x) < 0.

5 Proof of the main result

If (P) has a unique classical solution, from Theorem 4.6, (8) is satisfied.
Conversely, if (8) holds, due to Theorem 4.6, it suffices to prove that system (23) has a unique solution
such that (29) holds. The proof is divided in three parts. First, we will make explicit the determinant
of system (23). Then, we will show the uniqueness of the solution, to this end, we will inverse the
determinant with the help of functional calculus. Finally, we will prove that ψ1 and ψ2 have the
expected regularity.
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5.1 Calculus of the determinant

Now we have to make explicit the determinant. Recall system (23)
(
P+

1 + P−1

)
ψ1 +

(
P−2 − P

+
2

)
ψ2 = S1

M
(
P−2 − P

+
2

)
ψ1 +

(
P+

3 + P−3

)
ψ2 = S2.

We write the previous system as a matrix equation ΛΨ = S, where

Λ =
(

P+
1 + P−1 P−2 − P

+
2

M
(
P−2 − P

+
2

)
P+

3 + P−3

)
, Ψ =

(
ψ1
ψ2

)
and S =

(
S1
S2

)
.

To solve system (23), we will study the determinant

det(Λ) :=
(
P+

1 + P−1

) (
P+

3 + P−3

)
−M

(
P−2 − P

+
2

)2
,

of the matrix Λ. We develop it to obtain

det(Λ) = D+
1 +D−1 +D2, (37)

where

D+
1 = P+

1 P
+
3 −M

(
P+

2

)2
, D−1 = P−1 P

−
3 −M

(
P−2

)2
and D2 = P+

1 P
−
3 + P−1 P

+
3 + 2MP+

2 P
−
2 .

Using section 3.4, we obtain

D(det(Λ)) = D(D+
1 +D−1 +D2) = D(M3),

which justify the equality in (37). In the sequel, we precise the terms D+
1 and D−1 .

Lemma 5.1. We have

1. D+
1 = 4k2

+(L+ +M)2U−2
+ V −2

+ D+, with

D+ = L+

((
I − e2d(L++M)

)2
− 1
r2

+
(L+ +M)4

(
e2dM − e2dL+

)2
)

−M
((
I − ed(L++M)

)2
+ 1
r2

+
(L+ +M)2

(
edM − edL+

)2
)2

.

2. D−1 = 4k2
−(L− +M)2U−2

− V −2
− D−, with

D− = L−

((
I − e2c(L−+M)

)2
− 1
r2
−

(L− +M)4
(
e2cM − e2cL−

)2
)

−M
((
I − ec(L−+M)

)2
+ 1
r2
−

(L− +M)2
(
ecM − ecL−

)2
)2

.

Proof. 1. We have
P+

1 P
+
3 = 4k2

+(L+ +M)2L+U
−2
+ V −2

+ D′+,
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where

4D′+ =
(
U2

+ + V 2
+

) (
I − e2dM

) (
I − e2dL+

)
+2U+V+

[(
I − ed(L++M)

)2
+
(
edM − edL+

)2
]

=
(
U2

+ + V 2
+

) [(
I + ed(L++M)

)2
−
(
edM + edL+

)2
]

+2U+V+

[(
I + ed(L++M)

)2
+
(
edM + edL+

)2
]

= (U+ + V+)2
(
I + ed(L++M)

)2
− (U+ − V+)

(
edM + edL+

)2
.

Moreover

U+ + V+ = 2
(
I − ed(L++M)

)
and U+ − V+ = − 2

r+
(L+ +M)2

(
edM − edL+

)
. (38)

Then

D′+ =
(
I − ed(L++M)

)2 (
I + ed(L++M)

)2
− 1
r2

+
(L+ +M)4

(
edM − edL+

)2 (
edM + edL+

)2
.

Furthermore, we have (
P+

2

)2
= 4k2

+(L+ +M)2MU−2
+ V −2

+ D′′+,

where

4D′′+ =
[
V+
(
I + edM

) (
I − edL+

)
+ U+

(
I − edM

) (
I + edL+

)]2
= V 2

+

(
I + edM

)2 (
I − edL+

)2
+ U2

+

(
I − edM

)2 (
I + edL+

)2

+2U+V+
(
I − e2dM

) (
I − e2dL+

)
= V 2

+

[(
I − ed(L++M)

)
+
(
edM − edL+

)]2
+U2

+

[(
I − ed(L++M)

)
−
(
edM − edL+

)]2
+2U+V+

[(
I + ed(L++M)

)2
−
(
edM + edL+

)2
]

= V 2
+

[(
I − ed(L++M)

)2
+ 2

(
I − ed(L++M)

) (
edM − edL+

)
+
(
edM − edL+

)2
]

+U2
+

[(
I − ed(L++M)

)2
− 2

(
I − ed(L++M)

) (
edM − edL+

)
+
(
edM − edL+

)2
]

+2U+V+

[(
I + ed(L++M)

)2
−
(
edM + edL+

)2
]
.
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Hence
4D′′+ =

(
U2

+ + V 2
+

) [(
I − ed(L++M)

)2
+
(
edM − edL+

)2
]

−2
(
U2

+ − V 2
+

) (
I − ed(L++M)

) (
edM − edL+

)
+2U+V+

[(
I + ed(L++M)

)2
−
(
edM + edL+

)2
]

=
(
U2

+ + V 2
+

) [(
I − ed(L++M)

)2
+
(
edM − edL+

)2
]

−2
(
U2

+ − V 2
+

) (
I − ed(L++M)

) (
edM − edL+

)
+2U+V+

[(
I − ed(L++M)

)2
−
(
edM − edL+

)2
]

= (U+ + V+)2
(
I − ed(L++M)

)2
+ (U+ − V+)2

(
edM − edL+

)2

−2
(
U2

+ − V 2
+

) (
I − ed(L++M)

) (
edM − edL+

)
.

Using again (38), we obtain

D′′+ =
(
I − ed(L++M)

)4
+ 1
r2

+
(L+ +M)4

(
edM − edL+

)4

+ 2
r+

(L+ +M)2
(
I − ed(L++M)

)2 (
edM − edL+

)2

=
((
I − ed(L++M)

)2
+ 1
r+

(L+ +M)2
(
edM − edL+

)2
)2
.

Finally, since we have
D+

1 = P+
1 P

+
3 −M

(
P+

2

)2
,

we obtain
D+

1 = 4k2
+(L+ +M)2U−2

+ V −2
+ D+,

where D+ = L+D
′
+ −MD′′+.

2. The result is similarly obtained by replacing respectively d, k+ and r+ by c, k− and r− in the
proof above.

5.2 Inversion of the determinant

In this section, we prove that the determinant of system (23) is invertible with bounded inverse by
using functional calculus. From the writing of D+

1 , D−1 , given in Lemma 5.1 and the definition of D2,
we obtain:

D+
1 = g+

1 (−A), D−1 = g−1 (−A) and D2 = g2(−A),
where we have set, for z ∈ C \ R−

g+
1 (z) = 4k2

+(
√
z + r+ +

√
z)2u−2

d,r+
(z)v−2

d,r+
(z)gd,r+(z)

g−1 (z) = 4k2
−(
√
z + r− +

√
z)2u−2

c,r−(z)v−2
c,r−(z)gc,r−(z)

g2(z) = k+f
+
1 (z)k−f−3 (z) + k−f

−
1 (z)k+f

+
3 (z)− 2

√
z k+f

+
2 (z)k−f−2 (z),

(uδ,r, vδ,r, gδ,r, f+
i and f−i have been defined in section 4.4). So

det(Λ) = D+
1 +D−1 +D2 = f(−A), (39)
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with f = g+
1 + g−1 + g2. Note that f ∈ H(Sθ), for some θ ∈ (0, π), moreover from Remark 4.8 and

Lemma 4.9, for x > 0, we have

f(x) = g+
1 (x) + g−1 (x) + g2(x) < 0. (40)

Let C1, C2 be linear operators in X. We will write C1 ∼ C2 to mean that C1 = C2 + Σ, where Σ is
a finite sum of terms of type kLl+Lm−MneαL+eβL−eδM , where k ∈ R; l,m, n ∈ N; α, β, δ ∈ R+ with
α+ β + δ 6= 0. Note that Σ is a regular term in the sense:

Σ ∈ L(X) with Σ(X) ⊂ D(M∞) :=
⋂
k>0

D(Mk).

Since U± ∼ I, V± ∼ I, then setting W = U−U+V−V+ ∼ I, we get that
WP+

1 ∼ 2k+(L+ +M)L+, WP−1 ∼ 2k−(L− +M)L−
WP+

2 ∼ 2k+(L+ +M), WP−2 ∼ 2k−(L− +M)

WP+
3 ∼ 2k+(L+ +M), WP−3 ∼ 2k−(L− +M).

Then
W 2 det(Λ) =

(
WP+

1 WP+
3 −M

(
WP+

2

)2
)

+
(
WP−1 WP−3 −M

(
WP−2

)2
)

+
(
WP+

1 WP−3 +WP−1 WP+
3 + 2MWP−2 WP+

2

)
∼ 4k2

+(L+ +M)2(L+ −M) + 4k2
−(L− +M)2(L− −M)

+4k+k−(L+ +M)(L− +M)(L+ + L− + 2M).

Now, due to (7), we have

W 2 det(Λ) ∼ 4k2
+r+(L+ +M) + 4k2

−r−(L− +M)

+4k+k−(L+ +M)(L− +M)(L+ + L− + 2M).

We set

B = 4(L+ +M)
(
k2

+r+ + k2
−r−(L− +M)(L+ +M)−1 + k+k−(L− +M)(L+ + L− + 2M)

)
.

Then, we obtain

det(Λ) = W−2

B +
∑
j∈J

kjL
lj
+L

mj
− MnjeαjL+eβjL−eδjM

 , (41)

where J is a finite set and for any j ∈ J :

kj ∈ R; lj ,mj , nj ∈ N, αj , βj , δj ∈ R+ with αj + βj + δj 6= 0.

Lemma 5.2. Operator B which is defined above is invertible with bounded inverse.

Proof. From (H3) we have −L+,−L−,−M ∈ BIP (X, θ/2) then, from [19], Theorem 5, p.443, there
exists θ′ ∈ [θ/2, π/2), such that

−(L− +M),−(L+ +M),−(L+ +M + L− +M) ∈ BIP (X, θ′).

It follows from [19], property (2.7), p. 433, that −(L+ +M)−1 ∈ BIP (X, θ′) and since 0 ∈ ρ(L− +M),
from [19], corollary 3, p. 444, we deduce

k2
−r−
k2

+r+
(L− +M)(L+ +M)−1 ∈ BIP (X, 2θ′).
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Moreover, from [19], Theorem 3, p. 437, we have

B1 := k2
+r+ + k2

−r−(L− +M)(L+ +M)−1 ∈ BIP (X, 2θ′),

and 0 ∈ ρ(B1). Finally, from [19], corollary 3, p. 444, we obtain

B2 := k+k−(L− +M)(L+ + L− + 2M) ∈ BIP (X, 2θ′).

Then, B1 +B2 ∈ BIP (X, θ′′), for some θ′′ ∈ [2θ′, π). Moreover, since 0 ∈ ρ(B1), we deduce from [19],
remark at the end of p. 445, that 0 ∈ ρ(B1 + B2). Since 4(L+ + M) is invertible, we deduce that
B = 4(L+ +M)(B1 +B2) is invertible with bounded inverse.

From (41) and Lemma 5.2, we deduce that

det(Λ) = W−2BF, (42)

with
F = I +

∑
j∈J

kjB
−1L

lj
+L

mj
− MnjeαjL+eβjL−eδjM . (43)

For z ∈ C \ R−, we set

b̃(z) = k2
+r+ + k2

−r−

√
z + r− +

√
z√

z + r+ +
√
z

+ k+k−(
√
z + r− +

√
z)(
√
z + r+ +

√
z + r− + 2

√
z),

(note that, for x > 0, b̃(x) > 0) and

f̃(z) = 1 +
∑
j∈J

kj b̃(z)−1 (−√z + r+
)lj (−√z + r−

)mj (−√z)nj e−αj√z+r+e−βj
√
z+r−e−δj

√
z.

Then, B = 4(L+ +M)b̃(−A) and F = f̃(−A) and from (39) and (42), we have

f(−A) = det(Λ) = W−2Bf̃(−A).

By construction, the link between f and f̃ is

f(z) = −4u−2
d,r+

(z)v−2
d,r+

(z)u−2
c,r−(z)v−2

c,r−(z)(
√
z + r+ +

√
z)b̃(z)f̃(z). (44)

Proposition 5.3. Operator F ∈ L(X) defined above is invertible with bounded inverse.

Proof. Note that f, f̃ ∈ H(Sθ), for a given θ ∈ (0, π). Moreover, since for z ∈ C \ R−, we have

bj(z) = kj b̃
−1(z)

(
−
√
z + r+

)lj (−√z + r−
)mj (−√z)nj , for all j ∈ J,

are polynomial functions, we obtain 1− f̃ ∈ E∞(Sθ).
From (40), we know that f do not vanish on R+ \ {0} and since ud,r+ , uc,r− , vd,r+ , vc,r− , b̃ > 0 on

R+ \ {0}, we deduce, from (44), that f̃ do not vanish on R+ \ {0}. Then, applying Lemma 4.7 with
G = f̃ and P = −A, we deduce that F = f̃(−A) is invertible with bounded inverse.

Finally, we obtain the following result

Proposition 5.4. Operator det(Λ) is invertible with bounded inverse.

Proof. From (42), Lemma 5.2 and Proposition 5.3, we have det(Λ) = W−2BF , which is invertible
with bounded inverse.
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5.3 Regularity

From Theorem 4.6, it remains to show that system (23) has a unique solution (ψ1, ψ2) satisfying (29).
The uniqueness of the solution (ψ1, ψ2) is furnished by Proposition 5.4 and we get

ψ1 =
(
P+

3 + P−3

)
[det(Λ)]−1 S1 −

(
P−2 − P

+
2

)
[det(Λ)]−1 S2

ψ2 = −M
(
P−2 − P

+
2

)
[det(Λ)]−1 S1 +

(
P+

1 + P−1

)
[det(Λ)]−1 S2.

(45)

To obtain (29), we have first to study [det(Λ)]−1.

Lemma 5.5. There exists R ∈ L(X) such that

R(X) ⊂ D(M), [det(Λ)]−1 = N−1 +N−1R,

where N = 4k+k−(L− +M)(L+ +M)(L+ + L− + 2M).

Proof. From (42), we have

det(Λ) = W−2BF

= NU−2
− U−2

+ V −2
− V −2

+ BN−1F.

Using (12), (43) and Lemma 5.1 in [14], we get that

F ∼ I, U−1
+ ∼ I, U−1

− ∼ I, V −1
+ ∼ I and V −1

− ∼ I.

So, we have
det(Λ) = NBN−1 (I + Σ1) ,

where Σ1 ∈ L(X) and Σ1(X) ⊂ D(M∞). But

BN−1 =
(

4k2
+r+

(
I +

k2
−r−
k2

+r+
(L− +M)(L+ +M)

)
M−3

)
N−1

+4k+k−(L− +M)(L+ +M)(L+ + L− + 2M)N−1

= I + Σ2,

with Σ2 ∈ L(X) and Σ2(X) ⊂ D(M). Finally

det(Λ) = N (I + Σ3) ,

where Σ3 ∈ L(X) and Σ3(X) ⊂ D(M). Thus, from Lemma 5.1 in [14], we have

[det(Λ)]−1 = N−1 (I + Σ3)−1

= N−1 (I +R) ,

with R ∈ L(X) and R(X) ⊂ Σ3(X) ⊂ D(M).

From (26) and (28), we deduce that
S1 = −k+(L+ +M)

(
ϕ̃1

+ + ϕ̃3
+
)
− k−(L− +M)

(
ϕ̃1
− + ϕ̃3

−)+ R̃1

S2 = k+(L+ +M)
(
ϕ̃2

+ + ϕ̃4
+
)
− k−(L− +M)

(
ϕ̃2
− + ϕ̃4

−)+ R̃2,

where R̃1 ∈ D(M) and R̃2 ∈ D(M∞). Using (21), (16), (8), (9), Remark 4.5 and Remark 4.3, we
obtain that

ϕ̃+
1 , ϕ̃

−
1 , ϕ̃

+
2 , ϕ̃

−
2 , ϕ̃

+
3 , ϕ̃

−
3 , ϕ̃

+
4 , ϕ̃

−
4 ∈ (D(M), X)2+ 1

p
,p. (46)
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It follows that S1, S2 ∈ (D(M), X)1+ 1
p
,p and thus


[det(Λ)]−1 S1 = N−1 (I +R)S1 ∈ (D(M), X)4+ 1

p
,p

[det(Λ)]−1 S2 = N−1 (I +R)S2 ∈ (D(M), X)4+ 1
p
,p.

(47)

Moreover, from (45), we have

ψ1 = 2 (k+(L+ +M) + k−(L− +M)) [det(Λ)]−1 S1

+2 (k+(L+ +M)− k−(L− +M)) [det(Λ)]−1 S2 + S̃1

ψ2 = 2 (k+(L+ +M)− k−(L− +M)) [det(Λ)]−1 S1

+2 (k+(L+ +M)L+ + k−(L− +M)L−) [det(Λ)]−1 S2 + S̃2,

(48)

where S̃1, S̃2 ∈ D(M∞). Finally, (47), (48) and (9) gives

ψ1 ∈ (D(M), X)3+ 1
p
,p = (D(A), X)1+ 1

2p ,p
and ψ2 ∈ (D(M), X)2+ 1

p
,p = (D(A), X)1+ 1

2 + 1
2p ,p

.

Acknowledgement

We would like to thank the referee for his useful remarks.

References

[1] W. Arendt, C.J.K. Batty, M. Hieber & F. Neubrander, Vector-valued Laplace trans-
forms and Cauchy problems, second Edition, Monographs in Mathematics, 96, Birkhauser,
2011.

[2] J. Bourgain, “Some remarks on Banach spaces in which martingale difference sequences are
unconditional”, Ark. Mat., vol. 21,1983, pp. 163-168.

[3] D.L. Burkholder, “A geometrical characterisation of Banach spaces in which martingale
difference sequences are unconditional”, Ann. Probab., vol. 9, 1981, pp. 997-1011.

[4] D.S. Cohen & J.D. Murray, “A generalized diffusion model for growth and dispersal in
population”, Journal of Mathematical Biology, 12, Springer-Verlag, 1981, pp. 237-249.

[5] G. Da Prato & P. Grisvard, “Somme d’opérateurs linéaires et équations différentielles
opérationnelles”, J. Math. Pures et Appl., 54, 1975, pp. 305-387.

[6] G. Dore & A. Venni, “On the closedness of the sum of two closed operators”, Math. Z.,
196, 1987, pp. 189-201.

[7] A. Favini, R. Labbas, S. Maingot, K. Lemrabet & H. Sidibé, “Resolution and Opti-
mal Regularity for a Biharmonic Equation with Impedance Boundary Conditions and Some
Generalizations”, Discrete and Continuous Dynamical Systems, Volume 33, Number 11-12,
November & December 2013, p. 4991-5014.

[8] K. Limam, R. Labbas, K. Lemrabet, A. Medeghri & M. Meisner, “On Some Trans-
mission Problems Set in a Biological Cell, Analysis and Resolution”, Journal of Differential
Equations, Volume 259, issue 7, 2015, p. 2695-2731.

[9] D. Gilbarg & N. Trudinger, Elliptic partial differential equations of second order, Classics
in Mathematics, Springer-Verlag, Berlin, 2001.

26



[10] P. Grisvard, “Équations différentielles abstraites”, Extrait des Annales scientifiques de
l’École Normale Supérieure, 4ème série, t. 2, fasc. 3, 1969, pp. 311-395.

[11] P. Grisvard, “Spazi di tracce e applicazioni”, Rendiconti di Matematica, (4) Vol.5, Serie VI,
1972, pp. 657-729.

[12] M. Haase, The functional calculus for sectorial Operators, Birkhauser, 2006.

[13] H. Komatsu, “Fractional powers of operators”, Pacific Journal of Mathematics, Vol. 19, No.
2, 1966, pp. 285-346.

[14] R. Labbas, S. Maingot, D. Manceau & A. Thorel, “On the regularity of a generalized
diffusion problem arising in population dynamics set in a cylindrical domain”, Journal of
Mathematical Analysis and Applications, 450, 2017, pp. 351-376.

[15] J.-L. Lions & J. Peetre, “Sur une classe d’espaces d’interpolation”, Publications mathé-
matiques de l’I.H.É.S., tome 19, 1964, pp. 5-68.

[16] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhauser,
Basel, Boston, Berlin, 1995.

[17] S.G. Mikhlin, “On the multipliers of Fourier integrals”, Dokl. Akad. Nauk SSSR, N.S., 109,
1956, pp. 701-703.

[18] F.L. Ochoa, “A generalized reaction-diffusion model for spatial structures formed by motile
cells”, BioSystems, 17, 1984, pp. 35-50.

[19] J. Prüss & H. Sohr, “On operators with bounded imaginary powers in Banach spaces”,
Mathematische Zeitschrift, Springer-Verlag, Math. Z., 203, 1990, pp. 429-452.

[20] J. Prüss & H. Sohr, “Imaginary powers of elliptic second order differential operators in
Lp-spaces”, Hiroshima Math. J., 23, no. 1, 1993, pp. 161-192.

[21] J.L. Rubio de Francia, Martingale and integral transforms of Banach space valued func-
tions, in: J. Bastero, M. San Miguel (Eds.), Probability and Banach Spaces, Zaragoza, 1985,
in: Lecture Notes in Math., vol. 1221, Springer-Verlag, Berlin, 1986, pp. 195-222.

[22] H. Triebel, Interpolation theory, function Spaces, differential Operators, North-Holland pub-
lishing company Amsterdam New York Oxford, 1978.

27


	Introduction
	Operational formulation
	Assumptions, consequences and statement of results
	The class BIP(X,)
	Interpolation spaces
	Hypotheses
	Consequences
	The main results

	Preliminary results
	Problem (P-)
	Problem (P+)
	The transmission system
	Functional calculus

	Proof of the main result
	Calculus of the determinant
	Inversion of the determinant
	Regularity


