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Abstract

We consider some generalized diffusion operators of fourth order and their corresponding
abstract Cauchy problem. Then, using semigroups techniques and functional calculus, we
study the invertibility and the spectral properties of each operator. Therefore, we prove that
we have generation of Cy-semigroup in each case. We also point out when these semigroups
become analytic.
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1 Introduction

In this article, we study five abstract problems modelling a class of generalized diffusion problems
set on a cylindrical space Q = (a,b) X w where w is a bounded regular open set of R*~!, n > 2. By
generalized diffusion problems, we mean a linear combination of the laplacian and the biharmonic
operator. Here, the biharmonic term represents the long range diffusion, whereas the laplacian
represents the short range diffusion.

This kind of problem arises in various concrete applications in physics, engineering and biology.
For instance, in elasticity problems, we can cite [6], [19] or [32]. In electrostatic, we refer to [4],
[17] or [23] and in plates theory, we refer to [12], [15] or [36]. In population dynamics, we also
refer to [5], [21], [22], [29] or [28] and references therein cited.

Let T'> 0,k € Rand f € LP((0,T) xQ), p € (1,400). We consider, as an application model,
the following generalized diffusion problem :

gz(t,x,y) = —A%(t,z,y) + kAv(t,z,y) + f(t,2,y), te€ (0,T], =€ (a,b), y €w,
’U(O,:L‘,y) = UO(xay)v LS ((I, b)7 Yy Ew, (1>
v(t,z,¢) = Av(t,z,() =0, te (0,7], (z,¢) € (a,b) x Qw
Boundary Conditions (BC) on {a,b} X w,

where v is a density, vy is given in a suitable space and the boundary conditions (BC) denote one
of the following homogeneous boundary conditions:

v(t,a,y) = 0, v(t,byy) = 0, te (0,7, y €w,
Pv(t,a,y) = 0, O2v(t,byy) = 0, t€(0,T], y€w,

dpv(t, a,y) 0, dpv(t,byy) = 0, t€(0,T], y€w,

O2v(t, a,y) + Ayv(t,a,y) 0, 02v(t,b,y)+ Ay(t,by) = 0, t€(0,T], y€w,
U(t7 a7y) - 07 ,U(t7 b7y - b t e (07T]7 y E w?
Ou(t,a,y) = 0, dw(t,byy) = 0, t€(0,T], y€w,



ov(t,a,y) = 0, dwu(t,byy) = 0, t€(0,T], y€w,
8£v(t7 7y) 07 8£U(t7 ) ) - 07 t 6 (0’ T]7 y 6 w?
or
v(t,a,y) = 0, v(t,byy) = 0, te(0,7], y €w,
02v(t,a,y) + Ayu(t,a,y) = 0, 92v(b,y) + Ayu(t,b,y) = 0, te(0,T], y€w.
We set

D(Ag) := W2P(w) N WP (w)
VI/J S D(AQ), A()l/} = Ayw

Now, for i = 1,2,3,4,5, let us introduce the following linear operators which correspond to the
abstract formulation of the spatial operator in (1):

{ D(Ap;) = {ue WhP(a,b;LP(w)) N LP(a,b; D(A%)) and u” € LP(a,b; D(Ap)) : (BCi),}

[Aou] (z) = —u® (7) — (249 — kD)u"(x) — (A2 — kAo)u(z), wu€ D(Ap;), = € (a,b).

Here, (BCi)g, i = 1,2, 3,4, 5, represents the following boundary conditions (BCi) in the homoge-
neous case:

{uugg AT (BC1)
{u”<a>+A$EZ; e, u"(b>+A§ZEZ§ o (BC2)
i R )

(s o (BCa)
(e i) = 20 eaiy = 52 -

where ¢1, 2, 03,04 € LP(w).

In this work, we study operators A;, i = 1,2, 3,4, 5, wherein we have considered a more general
operator A, satisfying some elliptic assumptions described in section 4, instead of Ag. Then, we
study the spectral equation

where g € LP(a,b; X) with p € (1,+00) and X a complex Banach space. This leads us to solve
the abstract Cauchy problem

{ V'(t) — Aww(t) = f(t), te(0,T)

(2)
v(0) = vp,
in two cases:

1. f:]0,T] — LP(a,b; X) with p € (1,400) and vy is in suitable spaces,

2. f:[0,T] — C%(a,b); X) with 6 € (0,1), vo € D(A;) and f, vy satisfying some compatibil-
ity condition which will be specified in section 5.



Moreover, we will study, among others, the optimal regularity of the two following functions
u _ ( (z—a)As _ _(xz—a)A1 d _ ([ (b—x)A2 _ _(b—z)A1
w(x) = (e e Y and wvy(z) = (e e WV,

where p € X, z € (a,b) C R, with a < b, Ay = A; + B; here A; is a boundedly invertible
operator satisfying the Maximal Regularity property (MR), see section 3.2.3, B € £(X) and
AlB = BAl on D(Al)

This optimal regularity, which is an interesting result in itself, will be very useful for the study
of the spectral properties of A;.

This article is organized as follows. In section 2, we recall some classical definitions and results
about sectorial operators and interpolation spaces. In section 3, we study a class of general fourth
order linear abstract problem where we show the existence and uniqueness of the classical solution
for each problem. In section 4, using the results of the previous section, we study the spectral
properties of each A; for i = 1,2,3,4,5 and we prove that —.A; is sectorial. We then obtain
that A; generates a Cy-semigroup which becomes analytic for some A as Ag. Finally, section 5 is
devoted to an application focused on the study of problem (1).

2 Definitions and prerequisites

2.1 The class of Bounded Imaginary Powers of operators

Definition 2.1. A Banach space X is a UMD space if and only if for all p € (1, +00), the Hilbert
transform is bounded from LP(R, X)) into itself (see [2] and [3]).

Definition 2.2. Let o € (0,7). Sect(ca) denotes the space of closed linear operators 77 which
satisfying

Z) O’(Tl)CSia,
ii) Va'e(am), swp{ XA =T1) g AEC\ Sur} < +o0,

where
{z€C:2#0 and |arg(z)| <a} if ae€ (0,7,

Sa = { (0, +00) it a=0, ®)

see [18], p. 19. Such an operator 7} is called sectorial operator of angle .

Remark 2.3. From [20], p. 342, we know that any injective sectorial operator T} admits imagi-
nary powers T7%, s € R, but, in general, T7* is not bounded.

Definition 2.4. Let 6 € [0, 7). We denote by BIP(X,#), the class of sectorial injective operators
T5 such that

i) D(Ty) = R(T») = X,
ii) VseR, TieL(X),
i) 3C>1, VseR, ||T5|x) < Cellf,

see [31], p. 430.

2.2 Interpolation spaces

Here we recall some properties about real interpolation spaces in particular cases.



Definition 2.5. Let T3 : D(T13) C X — X be a linear operator such that
(0,+00) Cp(T3) and IC>0:Yt>0, [t(Ts—t)"zx) <C. (4)
Let m € N\ {0}, 6 € (0,1) and ¢ € [1,+00]. We will use the real interpolation spaces
(D(T3"), X)o.q = (X, D(T5"))1-0.9:

defined, for instance, [24] or [25].
In particular, for m = 1, we have the following characterization

(D(T5), X)oq := {t € X+t — £ T5(T5 — t1)~"pl|x € LY(0,+00) },

where Li(0,+00) is given by

+oo dt\ V4
L1(0,400;C) := < f € L0, +00) : (/ \f(t)]qt) <400y, forgell,+00),
0
and for ¢ = 400, by
L(0,+00;C) := {f measurable on (0, +00) : ess sup |f(¢)] < +oo} ,
te(0,4-00)

see [7] p. 325, or [16], p. 665, Teorema 3, or section 1.14 of [37], where this space is denoted by
(X, D(T3))1-9,4- Note that we can also characterize the space (D(T3), X )p , taking into account
the Osservazione, p. 666, in [16].

We set also, for any m € N\ {0}

(D(T3)7X)m+9,q = {w € D(Tgb) : T?:nw € (D(T3)7X)9,q}7

and
(X, D(T3))m+0,q = {¥ € D(T3") : Ts"¢ € (X, D(T3))o,q4} »

see [26], definition 3.2, p. 64.

Remark 2.6. Note that for T3 satisfying (4), 74" is closed for any m € N\ {0} since p(T3) # 0;
consequently, if mf < 1, we have

(D(T5"), X)o,q = (X, D(T5"))1-0,4 = (X, D(T3))m-mo,q = (D(T3), X)(m-1)tma,g C D(T3" ).

For more details see [25], (2.1.13), p. 43; [26] Proposition 3.8, p. 69 or [16], p. 676, Teorema 6.

2.3 Prerequisites

In this section, we recall some well-known facts, useful in our proofs.

Lemma 2.7 ([16]). Let T3 be a linear operator satisfying (4). Let u such that
u e W™P(a,b; X)N LP(a,b; D(T3")),

where a,b € R with a < b, n,m € N\ {0} and p € (1,400). Then for any j € N satisfying the
Poulsen condition 0 < % +j <nands € {a,b}, we have

u(s) € (D(T5"), X) s, 1,

A
n ' np’

This result is proved in [16], Teorema 2’, p. 678.



Lemma 2.8. Let ¥ € X and T3 be a generator of a bounded analytic semigroup in X with
0 € p(T3). Then, for any m € N\ {0} and p € [1, +oc], the next properties are equivalent:

1.z Te@=aTy) ¢ [P(a, 4+00; X)
2. % € (D). X1,

3.z e@=ITsp ¢ WP (g, b; X)

4. x> TPe@=aTse) € LP(a,b; X).

The equivalence between 1 and 2 is proved in [37]. The others are proved in [35], Lemma 3.2,
p. 638-639.

Lemma 2.9 ([21]). Let V € £(X) such that 0 € p( + V). Then
T+t =1-V({I+V) !,

and V(I + V)~ 1(X) c V(X). Moreover, if T is a linear operator in X such that V(X) c D(T)
and for ¢ € D(T), TV = VT, then

Ve D(T), VI+V) Ty =TV({I+V) 1.

This result is proved in [21], Lemma 5.1, p. 365.

3 General fourth order abstract problem
In this section, we study the following more general linear abstract equation of fourth order:
u (@) + (P + Q" (z) + PQu(z) = f(z), x € (a,b). ()

Here, P and @ are two linear operators on a Banach space X verifying some assumptions (see
below) and f € LP(a,b; X), with p € (1, +00).
We search a classical solution u of (5), which is a solution u of (5) such that

u € WH(a,b; X) N LP(a,b; D(PQ)) and " € LP(a,b; D(P) N D(Q)).

Moreover, we consider, in this section, the boundary conditions (BCi), i = 1,2, 3,4, 5, where Ay is
replaced by P. We say that u is a classical solution of (5)-(BCi), i =1,2,3,4,5, if u is a classical
solution of (5) satisfying (BCi).

This study will allow us, in particular, to deduce all the spectral properties for operators A;,
for each 1 =1,2,3,4,5.

3.1 Assumptions, main results and some remarks
3.1.1 Assumptions

We assume the following hypotheses:

S

(Hy) X is a UMD space,

(Hy) P and Q are closed and 0 € p(P) N p(Q),
(H;) D(P)=D(Q) and P71Q~'=Q P!,
(Hy) —P,—Q € BIP(X,0,), for 6 € [0,7),
(Hs)

P — @ admits an invertible extension B € L(X).

A

5

5



Some of our results will need a supplementary hypothesis:
(Hs) 0€p(U)Nnp(V),
where

= L= eI B[4 M) (eM — L) = 1T~ € £(X)

(6)
Vo= T e BrU(L 4 M)? (M = ecb) = - TF € £(X),

withc:=b—a >0, L:=—/—Q and M := —/—P.

Note that, from (H4), —P and —(Q are sectorial operators; this allows us to define
L=—/-Q and M=-V-P, (7)

which generate bounded analytic semigroups on X and due to (Hs), L + M also generates a
bounded analytic semigroup on X, see for instance [31] Theorem 5, p. 443.

3.1.2 Main results

Theorem 3.1. Let f € LP(a,b; X), with p € (1,+00). Assume that (Hy), (H2), (Hs), (Hs) and
(Hs) hold. Then,

1. there exists a unique classical solution u; of problem (5)-(BC1) if and only if

¢1,92 € (D(P), X); 1, and 3,04 € (D(P), X)1 . (8)
2p? 2p?
This solution, denoted by Fg ¢ with ® = (¢1, 2, 3, ¢4), is given, for all « € [a,b], by

Foga) = (@m0 — lbmoMeed) 7o) 4 (bm0M _ cla—alM el 74,

_l’_

N~ NI~ N

b
(e(b,x)MecM - e(rfa)M) ZMfl/ e(sfa)MUO(S) ds

—+

b
<e(z_a)MecM o e(b—m)M) ZM—I/ e(b_s)MUO(S) dS

+

T 1 b
M_l/ @My (s) ds+§M_1/ et=2IMy0(s) ds,

where
vo(z) = (e(z_a)L — e(b_x)LeCL) W (3 + Pp1)

+ (e(bfx)L . e(mfa)LecL> W (@4 + PQOQ)

b
+1 <€(b—z)LecL o 6(x—a)L) WL—I/ e(s—a)Lf(S) ds

2 (10)

1 b
_1_5 (e(a:—a)LecL _ e(b—x)L) WL—I/ e(b—s)Lf(S) ds

1 z 1 b
+§L_1/ e f(s) ds + iL_l/ e £ () ds,

with Z := (]_ 620M>_1 and W e (I— €20L>_1

Note that the existence of Z and W is ensured by [25], Proposition 2.3.6, p. 60.
2. there exists a unique classical solution us of problem (5)-(BC5) if and only if

¢1,02€ (D(P),X);, 1, and 3,04 € (D(P),X)1 . (11)
2p” 2p?

In this case, the unique solution is us = F(y, vy o5 Po1,oa—Pes), f-

6



Theorem 3.2. Let f € LP(a,b; X) with p € (1,400). Assume that (H;), (H2), (Hs), (Hy) and
(Hs) hold. Then
1. there exists a unique classical solution ug of (5)-(BC2) if and only if
V1,92 € (D(P),X)1+%+%7p and 3,94 € <D(P)7X)271p’p. (12)
If moreover, (Hg) holds, then
2. there exists a unique classical solution ug of (5)-(BC3) if and only if
P02 € (D(P), X)L, and 3,00 € (D(P), X)1 141, (13)
3. there exists a unique classical solution uy of (5)-(BC4) if and only if
V1,92 € (D(P),X)1+%+ﬁ’p and 3,94 € (D(P),X)%p. (14)

3.1.3 Some remarks

Remark 3.3.
1. In [21], problems

u®(z) + (24 — kD" (z) + (A2 — kA)u(z) = f(z), =z € (a,b),
(BCi),

for each i = 1,2,3,4,5, correspond to problems (5)-(BCi) where P = A and Q = A — kI,

with & € R such that [k, 4+00) C p(A).
2. Assumptions (H3) and (H3) involve: D(PQ) = D(QP) = D(P?) = D(Q?). Moreover,

D(LM) = D(ML) = D(L?) = D(M?) and LM = ML.

3. Due to (Hy) and [18], Proposition 3.2.1, e), p. 71, we have

—L,—M € BIP (X, 60/2);

(15)

so from [31], Theorem 4, p. 441, —(L + M) € BIP (X,6y/2 + ¢) with € > 0. Moreover,

L + M is invertible with bounded inverse.

4. Assumption (Hj5) means that operators —P and —@ satisfy the following property:

dBeL(X) : 0€p(B) and P=Q+ B.

When P = A and Q = A — pl with g€ C\ {0}, then P — Q = pl € L£(X) is invertible.

5. Assume that (Hy), (H2), (Hs), (Hy4) and (Hs) are satisfied.

Then, (Hg) holds if ¢ = b — a is enough large. Indeed, since L, M and L 4 M are invertible
with bounded inverse and generate bounded analytic semigroups, there exist § > 0 and
C >1 (see [25], (2.1.1) and (2.1.2) p. 35 taking w = —9 where ¢ > 0 is enough small) such

that
max < L2t ’ > < Ce %,
L(X)

it Hc(X) ’

M2€CMH£(X) ’

7



thus

My = e (77 g |

T+HL(X))

eC(L+M)"L(X) n HB‘1 (L + M) M—QH

N

QecMH

L(X) H £(X)

Bt @ ant L et

’L(X)
—1 2 32 r—2 -1 2 -2 —dc
< <1 + Bt L+ ) HE(X) +B @My L Hﬁ(X)) Cede.
Finally, for ¢ = b— a enough large, |77 ;(x) < 1 and HT*HE(X) < 1. Tt follows that U and

V are invertible.

6. In some particular cases, we could check assumption (Hg) using functional calculus for
sectorial operators, see for instance [21] where B =k € R\ {0}.

Remark 3.4.

1. Note that P — Q C B € £(X) involves that P — @ is closable but, in general, is not closed.
In fact, if P — @ is closed, then due to D(P — Q) = X and P — Q C B € L(X), we deduce
that D(P—Q) = X, thus D(P) = D(Q) = X. Then, P—Q is closed only if P—Q € L(X).

2. Since L = —/—Q and M = —/—P we have P — Q = L? — M?. Moreover
(L— M)(L+M) =12 M, (16)
indeed, it is well known that if Cj, j = 1,2, 3,4, are linear operators, then
C1C5 4+ C1Cy + C2C5 4+ CoCy C (Cy + Cy) (C5 + Cy)
but not necessary the equality. In our case, from (15), we have
L2—M?=1°+LM - ML—-M*cC (L-M)(L+M),
and also D(L? — M?) = D (M?). To conclude it suffices to check that
D((L = M)(L+ M)) C D(L* = M?) = D (M?).
To this end, consider ¢» € D((L — M)(L + M)). Then ¢ € D(L + M) and
(L+ M)y eD(L—M)=D(M).

Thus, there exists x € X such that (L + M)y = M~'y. Hence M+ = (L+M)~'x € D(M),
that is 1 € D(M?) = D(L?).

3. Recall that L2 — M? C B means that
V€ D(M?), (L*— M?) = By.

Hence
Ve DM), (L-—M)yp=(P—-Q)L+M) ") =B(L+ M) . (17)

4. For z € p(—P) N p(—Q), we have
B(—Q — 2I) Y (=P — z1)7!

(P=Q)(=Q—=2I)" (=P —zI)""
(—Q —2[+ P+ 2I)(—Q — zI) (=P — zI) 7}
= (=P—z2)"'—(-Q-=2D7L.

Thus
B(—Q—z2) N (=P -z ' =(-P—z2I)"' - (—Q — 2I)" ", (18)



3.2 Preliminary results
3.2.1 Particular solutions : proof of Theorem 3.1

1. The proof is similar to the one of Theorem 2.2, p. 355 in [21], thus we omit it.

2. It suffices to remark that condition (BC5) writes as
u(a) = ¢, u(b) = 2,
u’(a) = 3= Po1, u(b) = p4— P,

and then to apply the first statement.

3.2.2 Representation formula
We begin by two technical lemmas.

Lemma 3.5. Assume that (H;), (Hs), (H3), (Hy) and (Hs) hold. Then, P~'B = BP~!, which
means that
Vi € D(P), ByeD(P) and PBiy = BPy. (19)

In the same way, we have Q~'B = BQ~!, which means that

Vi e D), ByeDQ) and QByY = BQ. (20)

Proof. First of all, note that from (Hs), P — @ is resolvent commuting with P, @, P + @ and all
linear combination of P and Q.
Let x € X. There exists (xn),5o C D (P) such that x,, — x. Then, since we have

n—-+4o0o
P7'B,BP7 '€ £(X) and B= P — Q on D (P), we obtain
-1 o . -1 o . -1 B _ . B 1
P By =  lim P By, = lim P™(P—Q)xn Jm (P = Q) P xn
= lim BP 'y, = BP ly.

n—> -+00

Thus, P~'B = BP~\,
If ¢» € D(P) then, setting xy = P, we have

By = BP™'x = P"'By = P 'BP.

Then By = P~'BPy € D(P) and PBvy = BP%. In the same way, replacing P by @Q in the
previous proof, we obtain (20). O

Lemma 3.6. Assume that (H;), (Hs), (Hs), (H4) and (Hs) hold. Then, D(L) = D(M).

Proof. By definition, using the Dunford-Riesz integral, we have

M—V-P - Q;T(I—P)/lfz(—P—zI)l dz
L=VQ = gU-@) [ e e

where ~ is a sectorial curve surrounding o (—P) U o (—Q), see [18], p. 61. Moreover,

L 1\4/52 (=P —zI)"" dz e L(X)

Ky 1\—/|—gz (—Q — zI)7" dz e L(X),



and

Y e D(M)=D(/—-P —P—zIy'y dze D(P)

II II

S+

Y e D(L)=D(/-Q —Q—zI)" 'y dzeD(P).

(=
[

N

Now, we will show that D(L) C D(M). Let ¢ € D(L), then we have

Vz -1 _ \ﬁ__z__zfl__zflz
(e Tva = [ P (P

_ /1\@ (cP+Q—Q—2)(—Q — 2I)" (=P — 1) dz
o

A 1\f2 (—P+Q)(—Q —zI) ' (=P —zI) 'y dz

vz -1
+A1+Z(—P—2I) Y dz

R L L
= —71+ZB(—Q—z[) (=P —zI)" 4 dz

vz -1
+A1+Z(—P—ZI) Y dz

_BQ_1C+L 1+2

— 2"y dz,

where

[ Vz . 1
C._[Y1+ZQ(—Q—zI) (=P —2)" "4 dz € X.

Then, since ¢ € D(L) and due to (21), we have

vz 1 A1 vz —1 _
[P di=Q BC+A1+Z(—Q—ZI) W dz € D(Q) = D(P),

Thus, from (21), we deduce that ¢ € D(v/—P) = D(M).
Replacing P by @ in the previous proof, we show that D(M) C D(L). O

Now, we give an explicit representation formula of the classical solution u of equation (5).

Proposition 3.7. Let f € LP(a,b; X), p € (1,400). Assume that (Hy), (H2), (H3), (Hy) and
(Hs) hold. If w is a classical solution of (5), then there exists K1, K, K3, K4 € X, such that for
all = € [a, b], we have

u(x) = elr=a Mg 4 b=)M g ele—a)lpeo | ob=2)lpe, o Fo ¢(z), (22)
where F{ r is defined in Theorem 3.1 with ® =0 = (0,0,0,0).

Proof. If u is a classical solution of (5), due to Theorem 3.1, we can take the classical solution
Fy ¢ of (5)-(BC1) as a particular solution; i.e.

Fo.f(a) = Fo5(b) = F(’)ff(a) = F(’]’,f(b) =0. (23)
Then upom := u — Fp ¢ is a classical solution of
u™(2) + (P + Q)" (x) + PQu(z) =0, =z € (a,b).

We set
—1 1. n . —1 1.n
v:i=—QB “upom — B upyy, and w:= PB upem + B up,,,.

10



Moreover, from (20), we have
U” + Pv = _B_l (ul(;f))m + (P + Q)ugom + PQUhOW) = O’

and
’U}” + Q’LU = Bil ( @) + (P + Q)u;iom + PQUhom) =0.

hom

Note that u) € LP(a,b; D(P)) then, from (19), PBu} = BPuj}  in LP(a,b; X). In the same

hom hom hom

way QBuj . = BQuj . Moreover, since upom € LP(a,b; D(PQ)), we have
QPBupom = BQPupom = PQBupom = BPQupom.
Then, from [13], there exist K, K9, K3, K4 € X such that
v(z) = e(I*“)MKl + e(bf’”)MKg and w(z)= e(”’*“)LKg + e(bfm)LKzl.

Finally, since v + w = (P — Q) B upom = Unom, We obtain (22). O

3.2.3 Regularity of the difference of analytic semigroups

Definition 3.8. A linear operator A on X, satisfies maximal regularity property (MR) if and
only if: there exists ¢ € (1,+00) and a,b € R with a < b such that, for all h € L(a,b; X), there
exists a unique u € Wh4(a, b; X) N L4(a,b; D(A)) satisfying

{ () = Au(x) + h(x), a.e. z € (a,b)
u(a) = 0.

Due to [8], Theorem 2.2, Theorem 2.4, Theorem 4.2, and [9], Theorem 3.2, we have

1. A satisfies (MR) implies that A is the infinitesimal generator of an analytic semigroup.
2. (MR) is independent of ¢, a and b.

3. —A € BIP (X,6), 0 < 0 < w/2 involves that A satisfies (MR).

Consider A1, Ay and B three linear operators on X such that

A; satisfies (MR)

0€p(A)

BeL(X)

A1B = BA; on D(A;) (commutative case)
Ay = A+ B.

Then, from [34], Theorem 3.4.1, p. 71 or [11], Chapter III section 1.3, p. 158, we deduce that Ao
is the infinitesimal generator of an analytic semigroup.
In the sequel, for a linear operator 1" on X, we set

D(T*>) = (| D(T™).
neN

Theorem 3.9. Let ¢ € X. For x € (a,b) C R, with a < b, we set
uy(z) = (e(x_a)AQ — e(x_“)Al) Y and vy(x) = (e(b_“’v)A2 — e(b_x)Al) 1.
Then, for all m,q € N\ {0, 1}, the following properties hold:
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1. uy € C* ((a,b]; X) N CY ([a, b]; X), moreover for ¢ > 1 and z € (a, b

ul) (x) = Ay () + TAT @028y,

where T = kfjl Ag_lAl_(k_l) € L(X).
Note that A9 = A} = I then in particular T3 = I.
2. uy € WP (a,b; X) N LP (a,b; D(Ay)).
3. uy € WP (a,b; X) N LP (a,b; D(AT")) if and only if

Bye (D(Ar),x) ,

m=1p P
4. If uy, € WP (a,b; X) N LP (a,b; D(AT")), then for all £ € {1,...,m — 1},

uy) € Wb (a,b; X) 0 LP (a, b; D(A;”—f)) .

, with ¢ € (1,+00), then for all ¥ € X:

1
(q—Dp'P

5. If B satisfies B (X) C (D (A?l) ,X)
wy € W (a,b; X) N L (a, b; D(AY)) .

6. If moreover B satisfies

(a) B(X) C D(A{) then AIB € £ (X)
(b) 0 €p(AfB),

then, we have:

(a) ¥ € X :uy € WITLP (a,b;X) 1 LP (a,b; D(A]))

(b) Let m > q + 2, with ¢ € (1, +00). Then uy € W™P (a,b; X) N L (a,b; D(AT")) if and
only if
ve (D). x)

1
(m—g—1)pP

7. The six previous statements hold if we replace u, by vy.
Proof.

1. Note that for z > a, we have e@=@M1y e(F=0h2q) € D (A) = D (AP).
Moreover, uy, € C* ((a,b); X) N CY ([a,b]; X). Then, for £ > 1 and z € (a,b], it follows

ul(f) (.%') — Age(xfa)Ag _ Age(azfa)l\lw

= A{ (e(a:—a)Az _ e(:c—a)A1) v+ (Ag _ A{) e($—a)A2w

l
= Afuy (z) + <Z A’zflAgk) (Mg — Aq) @ @A2qp
k=1
L
= AMuy (2) + (Z A’;*Aﬁ—k> elr=®h2By)
k=1
‘ k—1
 Mug @)+ (z AbAT >> A elmanay,
k=1

12



2. From the previous statement, u, is a solution C! ((a,b]; X) N C° ([a,b]; X) of the Cauchy
problem
u () = Au(z)+e@ DBy xc (a,b]
u(a) = 0.

Thus, for z € (a,b], u is given by the variation of constant formula
uy () = / e(z=s)A1 e(S*(l)A2B,lp ds — Al_l [Al/ e(ﬂ?*S)Ale(Sfa)AQB,l/} dsl . (24)

Moreover, we have
PN B(S_a)A2B¢ c CO ([a’ b]7X) c LP (aa b; X) s

and from [9], Theorem 3.2, p. 196, it follows

Gl T+ Al/ elr=s)higls—ahapy, qg e P (a,b; X).

a

We deduce that uy; = A7 g1y € LP (a,b; D(A1)) and then

u = Au+ et~ 2By e [P (a,b;X).

3. Assume that By € (D (A’ln_l) ,X) ) . From (24), we have

(m-DpP

uy () = A7™ {Al/ el@= M gAm=los=ahea gy, gs| -z € (a,b].

Since By € (D (A;”_1> X)) » we obtain
(m—1)p~>

s ATl DMBY, € [P (a,b; X)) .
From [37], Theorem, p. 96, we deduce that
S A’ln_le(sfa)Angp = e(sfa)BAT_le(s*a)Ale € LP(a,b;X),

and from [9], Theorem 3.2, p. 196, we have
X
Gmap © T — Al/ e(x_s)AlA’ln_le(S_a)AQBw ds € LP(a,b; X).
a

It follows that

Uy = N Gmp € LP (a,b; D(AT)).
Moreover, uy, € W™P (a,b; X) since uy, € C*((a,b); X) N C°([a,b]; X) and from state-
ment 1., for £ € {1,...,m} and x € (a,b], we obtain

ugf) (2) = Muy (v) + TN Tte@=a)hz gy,

Then uff) € LP(a,b; X).
Conversely, if uy, € W™P (a,b; X) N L (a,b; D(AT")) then, from Lemma 2.7, we have

Bu = () € (D). X)) = (XDAP), + 1,
= (X7D(A1))m7%71,p

= (P(ar7).x)

m-DpP
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, then

1
(m-Dp'P

4. Note first that, from statement 3., we have By € (D (Agn_l) ,X)

AT et OM A € LP (a,b; X) .
Let ¢ € {1,...,m — 1}. For = € (a,b], we have
uff) (x) = Afuw (x) + TgAﬁ_le(x_“)AQBw.
It follows that:

(a) uff) € LP(a,b; D(ATY)) since

AT = APy () + TAT @92 By € LP (a,b; X).

k
(b) ugf) € WP (a,b; X) since, for k € {1,...,m — £}, we have (uff))( ) € LP(a,b; X)
and

= AfFuy + Ty AT 02 By
AFFuy 4 Ty p AR AT (=02 By, € [P (a,b; X)) .

Since A{™uy € LP (a,b; X) and £+ k < m, we obtain Ty, A{T™ ™ € £(X) and

Ty AFE—mAm—Le(=aA2 By e [P (0, b; X) .

5. If v € X, then By € (D (A(fl) ,X) ) and from statement 3., we obtain the result.

a—1pP

6. For statement a) it suffice to note that if ¢ € X, then

Bye D(A) c D(ATY) and A{'By =D (A1) C (D (A1) X1y

From statement 3., u,, € WP (a,b; X) N LP (a, b; D(A(fﬂ))-

For statement b), if ¢ € (D (AT_q_l) ;X ) ) then, from the reiteration property
m—q-1)p"P
described in Remark 2.6, we have

peD (AT—H) and AT % € (D (Ay) D OF
It follows that
By = N{BA; € D (A2),

and

A28 = A 2AIBAT Y = AIBAT 2y € (D (Ay) X)1,
Then, from statement 3., we obtain that u, € W™ (a,b; X) N LP (a, b; D(AT")).
Conversely, if uy, € W™P (a,b; X) N LP (a,b; D(AT")), then, from statement 3., we have
By € (D (ATI”A) ,X) L . Hence, from Remark 2.6, we deduce that

m—Dp'P

By e D(AP?) and A72By € (D (A1), X)

1 .
;vp
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Then, there exists y € (D (A1), X)1 , such that By = A1_m+2x, it follows
p7

= (A{B) " AIBY = (AIB) AT e D (A7),

and
AP = (AIB) T x € (D (A1), X))

p7p,

which gives ¢ € (D (A’lﬂ‘q‘l) ,X) L
(m—q—1)p”*

7. It suffice to write vy (z) = uy (b+ a — x). Then, vy, satisfies the properties of w,.
O

Corollary 3.10. Assume that (Hy), (H2), (Hs), (Hs) and (Hjs) are satisfied. Let ¢ € X. For
z € (a,b) C R, we set

uy (z) = (e(:c—a)L _ e(w—a)M) p and vy(z) = (e(b—x)L B e(b—:c)M) .
Let m > 3, then

1.V € X :uy € WP (a,b; X) N LP (a,b; D(M?)).
2. uy € W™P (a,b; X) N LP (a,b; D(M™)) < € (D (M™2),X)_,

(C=rkd
In this case, for all £ € {1,...,m — 1}
f m— m—
uly) € Wb (a,b; X) 0 LP (a, b; D(M f)) .
In particular,

Uy € W (a,b; X) N LP (a,b;D(M4)) =Y eDM), X)),

and in this case uj, € L (a,b; D(M?)).
3. The previous statement holds true if we replace uy by vy.
Proof. We set B= B (L + M)~*. Moreover, B satisfies

1) B(X) C D(L+ M) =D (M) then MB € L (X).
2)0 € p(MB) with (MB)™' =(L+M)M'B1.

From (17), we have L = M+B (L + M)™'. Then, setting Ao = L, Ay = M and B= B (L + M) ™"
in statement 6. of Theorem 3.9, we obtain statements 1. and 2. Moreover, from statement 7. of
Theorem 3.9, we obtain statement 3. O

3.3 Proof of Theorem 3.2

We first give a useful remark concerning the regularity.

Remark 3.11. From Lemma 2.7, if u € W*P(a,b; X) N LP(a,b; D(M*)) then, for s € [a,b], we
obtain

u(s)E(D(M‘L),X)é’p, u’(s)e(D(M‘*),X)%%,p and u”(s)e(D(M‘L),X)%Jrﬁ’p.

Moreover, from Remark 2.6, for s € [a, b], we deduce that

u'(s) € (D(M), X) and u”(s) € (D(M), X)

u(s) € (D(M), X)g. 1, iy .
In the same way, we obtain the following equalities:
(D(M), X)y,1, = (D(P), X)yy 1,
(D(M)7X)2+%,p = (D(P)aX)1+%+i,pv (25)
(D(M), X),1, = (D(P), X) 1 .

Thus, we only have to prove the converse implications in Theorem 3.2.
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3.3.1 Proof of 1. of Theorem 3.2 (Boundary Conditions (BC2))

Assume that (Hy), (H2), (Hs), (Hy), (Hs) and (12) hold.
If w is a classical solution of (5)-(BC2), then from Proposition 3.7, u satisfies (22). We set

K1 — Ko K3 — Ky K1+ Ky K3+ Ky
=0, = 3= and = ——. (26)

Then, for a.e. z € (a,b), u is given by
u(z) = (e(a:—a)M _ e(b—x)M) ar + (e(az—a)L B e(b—z)L) N

(27)
+ (e(xfa)M + e(b*ZE)M) as + (6(53*(1)11 + e(bfz)L> oy + FO,f (SU) .

Following the same steps as those used in the proof of Theorem 2.5, p. 365 in [21] (where we
replace kI by B), we obtain

o = (I+ ecM)_l (Mg — (I +eL) LM~ ay)
-1 _
o= (1) ) B <¢3 2 W) (28)
az = (I - eCM> (M L5y — (I - eCL> LM*1a4>
oy = (I—i— eCL)il B! (@3 —; cp4> )
where
5 = ©1+ w2 — Iy p(a) — Iy (D) ond Gy = 1 — 2 — I 4(a) + F(;,f(b)‘ (29)

2 2

Now, thanks to Lemma 2.8, Lemma 2.9, Corollary 3.10 and using again the same method as in
[21], we obtain that u is the unique classical solution of (5)-(BC2).

3.3.2 Proof of 2. of Theorem 3.2 (Boundary Conditions (BC3))

Assume that (Hy), (H2), (Hs), (H4), (Hs), (Hg) and (13) hold.

As previously, following the same steps as those used in the proof of Theorem 2.5, p. 365 in
[21] (where we replace kI by B) and using Lemma 2.8, Lemma 2.9 and Corollary 3.10, we deduce
that u is the unique classical solution of (5)-(BC3), given by (22) where

a; = ;B (L+ MU~ 1[LI+eCL P1— @2)—2(I—€CL)¢1}
g = —%B (L+ MU [M (I +eM)(p; — 2)—2(I—€CM)851] (30)
a3 = %B (L+ M)V~ 1[L <p1+<p2)—2(l+eCL)sO}
ay = —%19*1(L+M)V*1 [M(I—eCM)(sol+goz)—2(f+eCM)¢z},
with
5 = <P3+<P4—Fég(a)_F6,f(b) and Gy = 903—<P4—F0/g(a)+F6,f(b)‘ (31)
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3.3.3 Proof of 3. of Theorem 3.2 (Boundary Conditions (BC4))
Assume that (Hy), (Hs), (Hs), (Hs), (Hs), (Hg) and (14) hold. We proceed as in the previous

proof.

Following the same steps as those used in the proof of Theorem 2.5, p. 365 in [21] (where we
replace kI by B) and using Lemma 2.8, Lemma 2.9 and Corollary 3.10, we deduce that w is the
unique classical solution of (5)-(BC4), given by (22) with

m = GBI MV [T - e H)LM Gy — (T4 )M (s — )]
ag = —%Bfl(L + M)V 2T = eM)MLT Gy — (I + €M) L™ (g3 — )| )
a5 = SBNLA MU [T+ N IM TG — (T — )M (s + )]
ay = —%B_l(L + MU {2(1 +eMML™ @y — (I — ML (3 + <P4)} ;
where ¢1 and ¢, are given by (29).
4 Back to the parabolic problem
Let X be a complex Banach space and A;, i = 1,2, 3,4, 5, the linear operator defined by
{ D(A;) = {ueW*(a,b; X) N LP(a,b; D(A?)) and v € LP(a,b; D(A)) : (BCi),} @)
[Au] (z) = —u®(z) = (24 — kD)u"(z) — (A? — kA)u(z), u € D(A;), = € (a,b),

where k € R and (BCi) represents the boundary conditions (BCi), ¢ = 1,2, 3,4, 5, with ¢; =0,
j=1,2,3,4 and wherein Ay is replaced by a more general closed linear operator A satisfying the
assumptions below.

Then, we will study the spectral properties of A; in order to solve the Cauchy problem (2),
where f and vg are in appropriate spaces.

4.1 Assumptions and main results
4.1.1 Assumptions
Let A be a closed linear operator and assume
(H1) X is a UMD space,
(H2) 0€ p(A),
(Hs) — A€ BIP(X,04), for 04 €[0,7/2),

(Ha) [k, +00) € p(A).
In some results, for the boundary conditions (BC3) and (BC4), we may need a supplementary
hypothesis:

(Hs) — A € Sect(0).

4.1.2 Main results
Proposition 4.1. Assume that (H1), (H2), (H3) and (H4) hold. Then

1. for : =1,2,5, we have
2

— A+ %I € Sect (264),
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2. for i = 3,4, we have

k2 T . s
—A; + ZI+ rl € Sect <2) , if204 € [07 2>

2
—A; + %I+TI € Sect (204), if 204 € [g,ﬂ> ,

where 7 > 0 is defined in Proposition 4.10.

Moreover, there exist ' > r and 6y > 0, such that
Ko . m
_Ai+ZI+TI€Sect(20A), if 204 € 075
kQ
—A; + ZI +7'T € Sect (0y), if204 =0.

Theorem 4.2. Assume that (H1), (Hz2), (Hs) and (H4) hold. Then, for i = 1,2,3,4,5, if
04 < m/4, operator A; is the infinitesimal generator of an analytic strongly continuous semigroup

(etA'i> .
t>0

Remark 4.3. For i = 1,2,5 and 04 < 7/4, from Proposition 4.1, we have

¢
SMZ‘E 4,

IM; >1:Vt >0, HetAi .
(X)

First of all, we have to study the spectral properties of A;. Thus, we focus on the resolvent
set of —A;. To this end, we analyse the equation (—A; — A\)u = f.

4.2 Study of the resolvent set
Let A € C and fix i € {1,2,3,4,5}. By definition A € p(A;) means that the following equation
u(2) + (24 — kD" (z) + (A% — kA — X)u(z) = f(z), =z € (a,b), (34)

supplemented by the boundary conditions (BCi)p admits a unique solution w in D(A4;). Since A
satisfies the first four previous assumptions, we define

k
Apo=A——1I.
k/2 2

k2
Let A € C\ (—k?/4,+00) which means that —\ — 7€ C\ (—00,0). We set

/ k2 / k2
PA:Ak/quZ' *)\*ZI and Q)\IAk/Q*Z' *)\*ZI, (35)

so that we can rewrite equation (34) as
u® (@) + (Pr+ Qu)u"(z) + PQxulx) = f(x), « € (a,b),

and use results of section 3.
We state three technical lemmas which allow us to justify the other results of this section.
We first recall that if z € C, then arg(z) is the unique argument of z in (—m,7].

Lemma 4.4. Let A € C. The two following statements are equivalent
k2 —_—
cAe—+ (C\SzeA)a
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2

. A#—%and <2(m—104).

]CQ
arg (—)\ — 4> +7

Proof. Let A € C, then
k‘2
arg (—)\ — 4> +7

k2 ]{72
arg (—)\ — 4) <m—204 and —arg (—/\ — 4) < —204.

<2(7T—9A),

is equivalent to

Now, it remains to study the two following cases.

/{72
o First case : arg <—)\ - 4) = 0.

Here, (36) is equivalent to

k,2
0 < arg <A4> <m—204,

2 2
and using arg <)\ + Z) = arg <)\ — Z) — 7, then (36) becomes

2

—7m < arg ()\ + Z) < —204.

k2
e Second case : arg (—)\ — 4) < 0.

Now, (36) writes
2

k
0< —arg (—)\—4> <m—204,

k2 k2
and using arg <)\ + 4) = arg (—)\ - 4) + 7, then (36) becomes

k2
204 < arg ()\—1—4) <7

k? —_—
Finally, (36) is equivalent to A + 7€ C\ S2p,, which gives the result.

2

O]

Lemma 4.5. Assume that (1), (Hz), (H3) and (H4) hold. Let X € —% + (C \ SggA). Then,

we have

/ k2
arg (ii e 4)

2. —P, € BIP (X, 0;) and —Q, € BIP (X, ), with 61,60 € [0,7 — 6,4), where

_ ‘arg (—)\ — %) + 71‘

1.
2

<7 —04.

2 2

01 := max (9147 ‘arg (_)\ _ %) Bl W’) and 0y := max (0,4, ‘arg (_)\ 1

2)-#\)'
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Proof.
1. Since 04 < /2, the result follows from Lemma 4.4.
2. From (H1), (H2), (Hs), (H4) and [1], Theorem 2.3, p. 69, we have
—Ay)s € BIP(X,64),
hence, if A = —k?/4, we obtain

_P—k2/4 = _Q—k2/4 - _Ak/2 E BIP ()(7 HA)

k2 —
Moreover, if A € -7 + ((C \ 520,4)’ then

/ k2
arg (:I:i —A— 4) ‘ =

so +i —A—%%R.

A B

Finally, — A/, € BIP (X,04) and +iy/—X — & € C\ (—00,0). Moreover, from (37) and

Lemma 4.4, we have
k2
+iy/ —A— —
arg ( i 1 )

thus, from [27], Theorem 2.4, p. 408, we obtain

04+ <, (38)

—Py € BIP(X,0;) and — Q) € BIP(X,6,).

Now, in order to use [10] in the next proof, we first need to give the following remark.

Remark 4.6. In the sequel, we will use results of [10] in which the authors use operators of type
¢ instead of sectorial operators. For ¢ € (0,7). A closed linear operator T': D(T) C X — X is
said of type ¢ with bound C if and only if S, C p(—T) and

neS, @0, < o

It is clear that if T is of type ¢, then T' € Sect(m — ). More precisely, the two notions are linked
by the equivalence of the two following assertions:

1. T € Sect(0r) with 07 € [0,7) and 0 € p(T),
2. Vee (0,m—0r), Tisof type p =7 —0p —e € (0, 7).

Lemma 4.7. Let k € R and A\ € —k?/4 + (C\S20A) and assume that (1), (Hz2), (Hs) and
(H4) hold. Then 0 € p(Py) N p(Qy) and there exists C' > 0, independent of A, such that

X) <S¢ and HL’\M/\_IHE(X) <G

20



Proof. Since —Ay 5 € BIP (X,04), its spectral angle 4 satisfies 0 < 9y < 6a (see [30],

p. 218). Moreover, 1, i, the spectral angle of i1/ —\ — % I, satisfies 1y}, = |arg <i\/ A= % .

Furthermore, from (38), it follows that
2
WL
arg (z 1 )

Then due to Theorem 8.3 (iv), p. 218 in [30], we have 0 € p(Py). In the same way, we obtain
0 € p(@,). Thus, from Lemma 4.5, we deduce /—Py and /—Q) are well defined and invertible
with bounded inverse. Since we have

Yap +rp <04+ <.

ML = MEMTULY = —PAMT LYY,

we deduce that

k2
MLYD = (—Am —i\A- T I) MLy

o1 k2
= —AppML - —)\—ZMAILAl

- 1 k2 g
= /=AM Ay L —i —/\—ZMAlLl\l

— o NN
. K NN NN

Thus, it follows that

1
-3
HMALXlHa(X) S|V AR (_Ak/Z ! \ A ij>
£(X)
5\ 2
X ,/—Ak/g _Ak/Q +i ) —A— ZI)

k;2

N |=
D=

=
D=

Thus, due to (Hz) and Remark 4.6, we can apply [10], Lemma 2.6 statement a), p. 104: there
exist C1,Cy > 0, which are independent of A, such that

_1
— K2\ C
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and

1
9 T2
(oo )] e "

£(X) ’A + 5

Therefore, (39) and (40) give us the expected estimate for || MyLy!|. In the same way, replacing
M, by Ly and L) by M), we obtain the symmetric result for ||L,\M)\_1H. O

Now, we adapt a useful technical lemma from [10].

2
Lemma 4.8 ([10]). Let X € —% + ((C \ SggA) and assume that (H1), (H2), (H3) and (#H4) hold.

Then, the two analytic semigroups (e*tv 7PA)t>0 and (e*tv 7QA),5>0’ are well defined.

Moreover, let a € R and fix tg > 0, there exist K > 0 and @ > 0, such that for any
2

S —%—l— (C\%), we have

5 (1/4 1/4

A%—

—tow

< Ke
L(X)

—tow )\+

< Ke
L(X)

H(—PA) e

and [[(-Qa)%e

k2 [
Proof. Let \ € - + (C \ 529A>. From Lemma 4.5 and [18], Proposition 3.1.2, p. 63, we deduce

that
V—P\ € BIP (X,6,/2) and +/—Q) € BIP (X,602/2),

with 61/2,602/2 € [0,7/2). Then, we deduce that —/—Py and —/—Q) are the infinitesimal
generators of the two analytic semigroups

./ k2
(e—t /7_]3)\) _ e—t\/—Ak/Q—l _)\_TI
t=0

>0

1] — Ay jatiy/ —A—EET
(e—tm) — e \/ et :
>0

t=>0

Moreover, let o € R and fix tg > 0, from [10], Lemma 2.6, statement b), p. 104, we deduce that
there exist K > 1 and @ > 0, such that

and

H(—P)\) e cx Ak/Q—z —)\—I) e v
L(X)
—tods [ i/ —A—E2
< Ke ;
and
k‘Q “ to\/Ak/2+i 7)\7EI
— a,—tov—Qx — _ i =\ — — v 4
H( Q)% cxy ( Ak/g—l-l A 4]) e
£(X)

N
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with

1/4

~ . k2 - 2
—to, | i —A—=" —tow””‘)\—l-% —to@
Ke = Ke = Ke

Proposition 4.9. Let i = 1,2,5 and assume that (H1), (Hz2), (Hs), (Ha) hold. Then, we have

ool o (L 1) o

k2
AE-

O]

Proof.

o If A = 0, we obtain, for k& # 0, that 0 € p(A4;), from [21], Theorem 2.2, p. 355 and
Theorem 2.5, p. 356-357, by taking

{P)\:A—k‘f and Q)= A, if k>0,
P=A and Qy=A—kI, ifk <0,

Moreover, if k = 0, from [35], Theorem 2.6 and Theorem 2.8, then 0 € p(A4;).

2
o If X = —kz, then from Lemma 4.5, —P_j2/y = —Q_j2;4 = —Ap2 € BIP (X, 0), where

§ = max (01, 65). Thus, from [35], Theorem 2.6 and Theorem 2.8, we have —k?/4 € p(—A;).

k2 —
e Let A\ € -7 + ((C \ SQQA). Then, using P, and @) defined by (35), we obtain that

2
By = 2| -\ — %1 € £(X), (41)

is invertible with bounded inverse. Moreover, we have P\ = Q) + B).

We are now in position to apply the results of section 3 with P, ) replaced by Py, Q. From
Lemma 4.5, it follows that assumptions (H1), (H2), (H3), (H4) and (Hs) of section 3.1 are
satisfied. Then, from Theorem 3.1 and Theorem 3.2, there exists a unique classical solution
of (34)-(BCi)p. Thus, we deduce that have A € p(—A;).

O
Proposition 4.10. Let i = 3,4 and assume that (H1), (H2), (Hs), (H4) hold. Then, there exists

r > 0, such that
V(-5 + ey ETmus) ) <o

Moreover, if in addition, we assume (#5), we obtain 0 € p(—.A4;).

Proof. As in the proof of Proposition 4.9, assumptions (Hi), (H2), (Hs), (Hs) and (Hs) of
2

k
section 3.1 are satisfied and also -7 € p(—A;).

Now, we adapt notations of section 3.1, replacing L, M, U, V, T—, T+, B and Mp by L,
My, Uy, Vi, Ty, Ty, By and Mp,. Our aim is to show that (Hg) of section 3.1 holds with Uy
and V) instead of U and V. To this end, we recall that ¢ = b — a > 0. From Lemma 4.8, for

k2 —
to = ¢ > 0, there exist K > 1 and some @ > 0, such that, for any A\ € 7 + ((C \ SQQA), we have

} 511/4
M2 cMy, _ — Py /=P, < K —cw )\—l—%
[M5e“Mexy = [ — Pe lexy < Ke
1/4
e/ — fc&z)\Jrﬁ
IL3e™ ey = 1= Qe gy < Ke o
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hence
||60(LA+MA)|‘£(X) — ||6_C(\/_Q)\+\/_PA)HL(X) _ He—c\/—Q)\e—c\/—P{

l2(x)
< eV e lle™ e
/
< K2 —2c@ )\—&—% v
< e

where L) and M, are defined by (7). Moreover, from Lemma 4.7, there exists C' > 0, which is
independent of A, such that

2

e A L e [N e S
H(L/\ + M) L;2H£(X) < HM,\L/(lHZ(X) +2 HM,\L/(lHE(X) +1 < C.
Furthermore, from (41), we have
B 1
HB}\lHL(X) < I . (42)
Then, due to (42), we obtain
N (L e Py
< eclEati) £0%) + HBA_l (L + My)? M)‘_QHL(X) HMgeCMA L(X)
+ 1By (La +M>‘)2L)_‘2HE(X) | 23ect £(x)
< ettty cx) T HBKIHc(X) H(L* +MA)2M;2H£(X) HMgeCMA £(X)
+ BXIHE(X) H(L/\ + M))* L;‘2HE(X) HL?\eCLA L(X)
2
S eetir i) e " HBA_IHLQO <1+ HLAMA_IHc()O) HM%CMA £(x)
2
ey (18 ) 18
o ot ok s .
Then, there exists » > 0 such that, for any —kj + ((C \ (W U %))’ we have
k:2
A+ =1 >0, (43)

and )
Mp, = max <HT/\HL(X) ’ HT;HL’(X)) S 2 <1

For such A, we deduce that Uy =1 —T, and V) =1 —-T /QL are invertible with bounded inverse,
with
U e <2 and [[Vy ) <2, (44)
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which involves that (Hg) of section 3.1 holds.
Finally, from Theorem 3.2, there exists a unique classical solution of (34)-(BCi)y. Hence

_"’f + ((c\ ( (0,7) USQQA)) C p(—Ai),

which gives the result.

If in addition, we assume (H5), then from [21], Theorem 2.2, p. 355 and Theorem 2.5, p. 356-
357, we obtain that 0 € p(—A;), i = 3, 4. O
4.3 Norm estimates

In this section, we focus on the norm estimates of the classical solution of problem (34)-(BCi)o,
for i = 1,2,3,4,5. To this end, we adapted the following technical useful results from [14].

Lemma 4.11 ([14]). Assume (#1), (H2) and (H3). Let f € LP(a,b; X) with 1 < p < +00. Then,
for all p € (0,7 —04), we have

—A is of type ¢,

2. For all pe€ S, C p(—A) and all z € [a,b], we set

I

T b
uf () :/ e~ @Al £y ds  and Jyup(x) = / e~ TRV AT £ (6 ds

Then, for all 4 € S, we have

s lioanes <~ ey 204 sl < e 1 iaans
SLr@bx) S A IR @bX) =T ]

where C is a positive constant independent of f and pu.
Statement 1. is given by Remark 4.6 and statement 2. is proved in [14], Lemma 4.6.

Lemma 4.12. Assume (H1), (H2) and (Hs3). Let ¢ € (0, 7—04) fixed. Then, there exists C' > 0,
such that, for all n,u € S, C p(—A) and all f € LP(a,b; X) with 1 < p < +o0, we have

C
\/1+\u\ V1+1n]

b
1. e_('_a)m/ 6_(5_a)mf(3) ) ”fHLP(a,b;X)a

b
9. €—<.—a>¢T+nI/ e—(b—sNTWf(s)d 11 Lo (a,ix) »

b
3. |- O—)v=arI / e~ O~ WVTATH £ () g

P(a,b;X)
b; X)

a

11l 2o a6 -

P(a,5:X) (x/l + [u \/1+!n\

<\/1 |/‘L| \/1+|,,7|>HfHLpabX

b
4. e -)v=amr / e—(s—a)Wﬂs)d

abx) \/1+!u! \/1+!n\

Proof. We first focus on statement 1. For all z € [a, b, setting

ola) = e~ [ " e~ (aV=ATHT (g g
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we have .
o(@) = e EaV=ATI / e~ (5—OV=ATHT ¢ g

pe eV " o~V (5 g

T

- / ¥ o) VAT (o) (VATRL VAT () s
+ o~ (o=} = AT y—(z—a)=AFHI / " o~V (5 g

In,g(x) + ef(xfa)x/7A+7]I€f(xfa)\/fA+,uIJ’u’f(x)’

where g(s) = e~ (s=a)(V=ATuT+v _A+"I)f(s). Then from (38) in [14], there exists C' > 0, indepen-
dent of  and p, such that

He—(ﬂc—a)\/—A-I—n]e—(a:—a)\/—A—HLIHl:(X) <C and ||g||Lp(a7b;X) <C Hf‘|Lp(a7b;X) .

Finally Lemma 4.11 gives statement 1. The other statements are obtained, in the same way.
Note that statements 1. and 2. have been proved in Lemma 5.6 in [14], in the case when
a=0,b=1and n=pu. O

k2 —
Remark 4.13. Note that, for A € -7 + ((C \ 529A>, we have

My=—\/~Ao+pl and Ly=—/~ Ay +l,

k2
with p = —np = —i/ -\ — T But, from Lemma 4.4, we deduce that u,n € S;_g,, thus we can

apply Lemma 4.12.
Lemma 4.14. Let tg > 0 fixed. Then
1. C\ Sy, C p(Ag/2) and for any v € (0,7 — 64), there exists C), > 0 such that

G

< ) e SV‘
cex)y I

H (—Ak/z - MI)_l

2. There exists Cy, > 0 such that, for any u € S;_y,, we have

< Ctm

H (I + etOHu)il )

where H), := —/— Ao — pl.

Proof.
L. The result follows from Theorem 2, p. 437 in [31] since — Ay, € BIP (X, 04).

2. We apply the same technique as in the proof of Lemma 5.1 in [14]: A is replaced by A /2
and €24 is replaced by efodr/2.

O]
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Due to the previous study, we can apply the results of section 3 and then obtain that, for
each i = 1,2,3,4,5, problem (34)-(BCi)y admits a unique classical solution w; given by (22) in
Proposition 3.7, where M and L are replaced by M) and Ly. We need to give estimates on u;
which take into account the dependence on A, but u; contains Fy y and F(/), g To this end, we give

the following result.

Lemma 4.15. Let v € {a,b}. Assume that (H1), (H2), (Hs) and (H4) hold. Then, there exists

k2 S
C > 0, such that, for all A € Y + ((C \ SQ@A) and all f

C

€ LP(a,b; X), we have

||U0HLP((1,b;X) < 5 ||f||LP(a,b;X)
1+ /[p+ 5|
C
HL)\UO(')HLP(a,b;X) < HfHL”(a,b;X) ’
Ly [P+ &
Moreover, for T\ = M) or L), we have
3 C
HS( a)TAFé’f(’Y)’ LP(a,b;X) = % ||f”Lp(ll7b§X)
(1 +y[r+ 8 )
B C
e~ Fg 4(7)] sy S 5 1 lzr@px),
(1 +y P+ )
and C
(.—a)T,\ /
|e LaFy 1) LabX) = A+ 2| I lzrteso
1
B C
| DLaFg ()|, < 1 12r a,0:x)
(avva) 1 + ’)\ + E
1
where for all z € [a, b], Fé’ s and vg are given by
/ 1 (z—a)M (b—z)M) ,cM. b (s—a)M
Fpy(z) = —3 (e Y te ‘e A) Z/ e 2uo(s) ds
a

2

NI 1
+§/a =My (s) ds—§

and

b

41 (0= 4 o= gedn) 7 / b=y (o) dis

b
/ =DMy (s) ds,

b
o(b—2)Lx yeln _ e(ﬂc—a)LA> WL;I/ = f(s) ds

J% (e(x—a)L)\ecLA B e(b—x)L)\> WLt /b e®=)Lx f(5) ds
1

x b
+2L>_\1/ @A f(s) ds + ;L;l/ e f(5) ds,

with Z = (I — eZCMA)il and W = (I — eQCLA)il.

27

(45)



Proof. In the sequel, C' > 0 will denote various constants which are independent of f and .

2
Let tg > 0 fixed. For all A € —% + (C \ SQ@A), we have

M, = —\/_Ak/2_i\/T_lfI’ with i\/T—%GSW—eA
L _wAm_(_imf), with —iy/ A~ E €5, ,.

Then, from Lemma 4.14, there exists Cy, > 0 such that for all A € —%2 + (C \ 529A>, we obtain

< Gy, (47)

H([j: etOMA)71 )

< Gy, and H(Ii etoL*)il

L(X)

Moreover, since —M), € BIP(X,60;;) and —L) € BIP(X,0;), with 0,0, € [0,7/2), from
Lemma 4.8, we deduce that

e“Mx <C and |[eff < (48)
L(X) L(X)
Furthermore, from [10], Lemma 2.6, statement a), p. 104, we have
[ < < - (19)
['(X) . k2 2
1+ |—iy/-A— & 1+ ’)\ + &
and o o
. : =
£(X) . 2 >
L+ |iy/—A— & 1+ ‘ A+ B

From (46), since vo(z) € D(L)), for z € [a, b], we have

b 1 b
L)\U()(l') _ ;Weche(bz)LA/ e(sfa)LAf(s) ds_iwe(xfa)lo\/ e(sfa)LAf(s) ds

a a

b
—4—%1/1/@6“e(”'“"fa)LA /b e(bfs)LAf(s) ds — %We(bfx)L*/ e(bfs)L*f(s) ds

T b
% / e g (s) ds+% / et £ (5) ds.
Hence

ecLA

e(b—=)Lx /b e(S*a)LAf(S) ds

1
1ty < 5 1W e |

LP(a,b;X)

1 —a b sS—a
5 Wy e [7elemt p(s) ds

1 C.
5 IWllizxy |l b

1 - b,
5 Wl |08 [ el (s) ds

LP(a,b;X)

b
.- / eI f(s) ds

2

/' e(‘_s)LAf(s) ds

9

LP(a,b;X)

LP(a,b;X) 2
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and from (47), (48), Lemma 4.11, Lemma 4.12 and Remark 4.13, we have
C

L0 () 1o (apx) < 111 2o (a,05) -

Moreover, since vg = L;lLAvo(.), it follows that

-1
ollgoapy < 23y IEA00 0 oy

Thus, from (50) and (51), it follows that
C

(51)

HUOHLp(a,b;X) S ——F— ”fHLP(a,b;X)' (52)

1+ /[r+ 5|
In the same way, from (45), we have
L/\Fé,f(’Y) =

1 b
-3 Ze(aMip /

a

b
e(sfa)MA,UO(S) ds — ;Zeche(b’Y)MALA/ e(S*a)MAU()(S) ds

a

b b
—i—%Ze(b*”)MAL)\/ eI My (s) ds + %ZeCM*e(V*a)M*LA/ =My (s) ds

a a

1 i 1 b
+§L>\/ =My (s) ds — §L)\/ e May(s) ds,
a v

hence

LA p(7) =

1
_§ZG(W—G)MA /

a

1 b 1 b
+§Ze(b_7)M*/ e(b_S)MALAvo(s) ds + §ZeCM*e(7_“)M*/ e(b_s)M*L)\vg(s) ds

a a

b 1 b
e IMAL\vg(s) ds — §ZeCM*e(b_7)MA/ e OMAL g (s) ds

a

1 [ 1 b
+§/ e(V_S)MALAvo(s) ds — 5/ e(s_V)MALAvo(s) ds.
a v

Moreover, we have

et LAFG ()

<
LP(ab;X)

3 1212 e

£(X)

LP(a,b;X)

ecMA

‘e(b*’Y)MA

1
+5 12 e

L(X) ‘ L(X)

b
’e('“)TA/ =ML w0 (s) ds
a LP(a,b;X)

1
- (b—7)M
5 1Z gy

L(X)

b
‘e('_a)TA/ e=IMAL 0y (s) ds
a LP(a,b;X)

CM)\

b
e('_a)T*/ e=IMAL w0 (s) ds

He(W—G)MA

1
5 1Z1ex) |€

L(X) L(X)

LP(ab;X)

+1 +1
2

b
o(—0)T / ENMAL o (s) ds
LP(a,b;X) 2 Y

.
e(-—a)TA/ e(W_S)MAL)\UO(S) ds

LP(ab;X)
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Since Lyvo(.) € LP(a,b; X), from (47), (48), Lemma 4.12 and Remark 4.13, we have

C

RN L0003

<
Lr(abiX)

A+ 8

Moreover, from (50), we have

et Fg 1 (7)

_ He("“m LALYYF () Lab)

LP(a,b;X)

12w 9

< S I Lavo ()l 2 (ap: x) -
L4/ + 2

o= 208 0)

Lr(a,b; X)

In the same way, we obtain that

and

Q

= LaF s

D) S LA () Lo a,65x)

—_
+
>~
4

INE

eI E s 3) ¢

< I LAvo ()l L (a,p;x) -
LP(a,b; X a,b;X)
P(a:biX) 1+ ‘)\+ kj

Finally, from (51), we obtain the expected results. O

Proposition 4.16. Assume that (#1), (H2), (H3) and (#4) hold. Then

2

k -
. for i = 1,2,5, there exists constants C; > 0, such that, for all A € 7 + ((C \ SQQA) and

all f € LP(a,b; X), we have

C;
L(X) ‘)\

|4 =207

57 1 e (apix)s

k‘2
for i = 3,4, there exists C; > 0, such that, for all A € vy + ((C\ ( (0,7)U SQ@A)> and

all f € LP(a,b; X), we have
C;

o
Lo

H(fAi N )\I)_lfHL(X)

Proof. In the sequel, C' > 0 will denote various constants which are independent of f and .
Moreover, we will use that, for i = 1,2,3,4,5, we have (—A; — AI)~!f = u;, where u; is the
unique classical solution of (34)-(BCi)o.

2

1. Let A € —%Jr (C\%).

We first focus on —A;. Our aim is to obtain that

C

— 7 Iy
1+A+ 8 (o)

H( A — M) lfH = [lur]|Lr(ap:x) <
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To this end, we first recall, from Theorem 3.1, the expression of u; = Fp ¢, given, for all
x € [a,b], by

1 b
Fo¢(x) = B ((2(17_35)1‘/1Ae‘31\/[A - e(:”_a)M*) ZM;1/ =My (s) ds
1 b
B (e(:”’_“)M*ed‘/[A — e(b_”")M*> ZM;I/ e(b_S)M*Uo(S) ds (53)

1 z 1 b
+§M>\_1/ e@=)My(s) ds + iM/\_l/ e My (s) ds,

-1
where vy is given by (46) and Z = (I — 62CMA) .

Moreover, following the same step as in the proof of Lemma 4.15, we have

C
1 F0, | Lr(apix) < — lvoll L7 (a,b:x)>
14/ + &
and from Lemma 4.15, we have
C
||U0||Lp(a,b;X) S —F—— ||f||LP(a,b;X)'
k2
L4/ + &
Then, we obtain
C
||u1||LP(a,b;X) = ||F0,f||Lp(a,b;X) < ||f”LP(a,b;X)
k2 k2
L2 p+ B+ |+ 2
(54)
C
< —1 a7 e x)-
1+ A+ 8 (00

From Theorem 3.1, since us = uq, the result follows for us.

Our aim is now to show that

C

— 7 Iy
1+ A+ 8 (0

H(_Az - )‘I)_lfHE(X) = |luz||zr(ap:x) <

We first recall, from (27), (28) and (29), that us is given, for all x € [a, b], by

up(z) = (e(z—a)MA _ e(b—m)MA) o + (e(w—am _ 6(b—x)LA) o

n (e(a;—a)MA L e(b—az)]\@) as + (e(fv—a)LA + e(b‘x)“) ay + Fo p(),

where Fj r = u; is given by (53) and

0 = 7% (HGCMA)_IM;l (F(;,f(a)+F6,f(b))
as = 0
o5 = — (1-e™) My (B ) — B4 0)
oy = 0.
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Thus, we have

bollinn < ()] I oo [ 0
+% (1+e) 1 )||MA_1||£(X) et 4 (0) LP(ab:X)
+% (F+eth) 1 £(x )”MA_l”ﬁ(X) 0TI 4(a) L0 (a5:X)
+% (r+et) 1 £(x )”MA_1||£(X) e TIFG 5 (b) LP(abiX)
+% (1—e) 1 HMXIHL(X) eI @]
+% (1—e) 1 I o) R O iy
+% (1—et) 1 o I e || F 4 (a) L7 (a5;X)
e (r—ed“)q'qx>ww;waa>e“‘”“Fi<® .

and from (47), (49), Lemma 4.15 and (54), we have
c S -

”U2||Lp(a,b;X) < : +2M+ ))\_1_ %‘ ||f||LP(a,b;X) < ‘/\7

: Let)\G—%—i—(C\( (0, T)US%A))

Our aim is to obtain that

C .
—— 7 I fllrapx), fori=3,4.

H(—A — ) lfH = |luill Lr(ap;x) < < ’)\

Recall, from (27), (31) and (30), that us is given by

uz(z) = (e(x—a)MA _ e(b—r)MA) o1 + (e(x—a)LA _ e(b—x)L,\) s
(55)
4 (e(w—a)MA i e(b—x)%) o + (e(m—a)m + e(b—ﬂﬁ)LA) s+ Fo (@),

where Iy y = u; is given by (53) and

a1 = B (Ia+ MUT (1= ) (Fy () + F )
ay = _%BXI(LAJrMA)U*l (I_ CMA) (Fof( )+F6’f(b))
a3 = %BA_I(LAJFMA)VA_I (I+ CLA) (Fof( )~ Fé’f(b))
oy = *%BXI(LA+MA)V§1 (I+GCMA) (Féﬁf(a)iFé’f(b))'

Moreover, let



then from (42), (44), (47), Lemma 4.7 and Lemma 4.15, for ¢« = 1,2, 3,4, we have

C —a
||€('7G)TA04z‘||LP(a,b;X) < e IN(Ly + M) Ep ¢(a) Lo (abeX
‘)\ + ﬁ (av ’ )
1
C
(.7a)T>\ /
— e (Lx + M) Fy ¢(b) Le(apX)
A+ 8
< ml SRRV P S S M) P
A+ & .
A+ K
C
Ly + My)Ly* e TVINL FY (b
At %’ (LA ML HL(X) H Ao, (0) LP(a.b;X)
—1 (.—a,)T/\ /
< - I+ MLy Hc(X) He LFo,5(a) LP(a,biX)
A+ &
C -1 —a)T /
+ I+ MyLy HL(X) He( LF 4(0) LP(ab;X)
A+ 8 v
1
hence
e lmguny € e (1 [ g ) [ 2 E )
Lr(ah;X) X 5 L(X) Lr(a,b; X)
A+ 2
1
C -1 a)T
2 (1 t HM’\LA H ) H AL’\FOf LP(a,b;X)
A+ &
< ¢ e(‘*a)TALAF[S’f(a)
‘)\ " K2 LP(a,b;X)
1
C
e(-—a)T)\L/\Féj(b)’ )
k2 P(a,b;
A+ 2
C
< |l
A+ 2|+ 1+ £
In the same way, we obtain that
C
et 1120 @ )-
LP(a,b; X v
Pabx) - A+ 8|+ |+ 2
Moreover, due to (43), we have
L2
‘A + T > /r > 0.
Hence
¢ <
~ k‘2 M
Jr B+ s NGEPR
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Therefore, for i = 1,2, 3,4, we have

C
(-—a)Tx

e gy < T2 YRS 7 11|z, (56)
and

e < W lasx (57

LP(a,b;X) ‘A (@:b:X)>
Finally, from (54), (55), (56) and (57), we obtain
C
sl £p (a,b;) < ‘)\ 51 1l e (a0 x) -

Now, we focus ourselves on —A4. Recall that, from (27), (29) and (32), uy is given, for all
x € |a,b], by

uy(z) = (e(x—a)MA _ e(b—r)MA) or + (e(x—a)LA _ e(b—x)L,\) o
58
+ (e(a:—a)MA + e(b—x)MA> s + (e(m—a)LA + e(b—x)LA) o + Fy £ (z), (58)

where Fyy = u is given by (53) and

1 _ . B
a1 = —3BNLa+ MYy (1 —e LA) LMt (F(;f(a) +F57f(b))
0 = SBIV(Ly 4 M)V (1= M) MyLS! (Fg (@) + Ff 4 (b
2 = 5 A VALY e Ay o,f(a) o,f( )
1 _ . B
o = LB a0y (1) £ (o)~ )
L, - c
ar = By (La+ MU (14 e ) MaLy (Ff pla) = Fy 4(0)).
As previously, from (42), (43), (44), (47), Lemma 4.7 and Lemma 4.15, for : = 1,2, 3,4, we
have
e < ——= Il (59)
LP(a,b:X) ‘)\ Lp(abi X))
and
e < ———= I/l (60)
LP(a,b;X) ‘/\ Lr(abiX):
Finally, from (54), (58), (59) and (60), we obtain
C
[[wall Lo (a,p;x) < ‘A 51 1l e (a0 x) -
[

4.4 Proof of Proposition 4.1

For ¢ = 1,2,5. From Proposition 4.9, we have

k2 —_—
g <_AZ + 4I> - SQGAv
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and from Proposition 4.16, for all A € ((C \ SggA), there exist C; > 1, such that

2 -
(—Ai + —1— )J)
4
2

k
Then, due to Definition 2.2, we deduce that —A; + ZI , is a sectorial operator of angle 26 4.
For i = 3,4. From Proposition 4.10, there exists r > 0, such that

L(X)

k2 k2 S
o _Az‘i‘zI CB<—47T> USQ@A. (61)
Thus
k2 S
J(—Ai+41+7’1> C z if29,4<g

wla

2
o (—Al + IZI-FTI) C So0,, if204 >

Moreover, due to Proposition 4.16, there exist constants C; > 1, such that for all complex numbers
2

S —kz + (C\ (B(O,T‘) U%)), we have
C;

< )
1+l

2 -

L(X)

k2
Then, due to Definition 2.2, we deduce that —A; + ZI + rl, is a sectorial operator of angle g if

204 < g or of angle 204 if 204 > g

Moreover, when 204 € (O, g), it is clear from (61) that, there exists ' > r large enough,
such that

k2 -
o (—.Az + 4]—1—7“,[) C SQQA,
and in the same way, if 84 = 0, there exists 6y > 0 such that
k? —
o (—Ai + 4[—}—7“']) C So,,
which gives the result.

5 Application

Let T >0 and ¢ = 1,2,3,4,5. Recall problem (2):

{ V(t) — Aw(t) = f(t), te(0,T] (62)
v(0) = o,

which is set in the space
E:=LP(a,b; X).

Here A; is defined by (33). We assume that
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(H1) X is a UMD space,

(H2) 0 € p(A),

(Hs) — A€ BIP(X,04), for 04 €[0,7/4),
(H4) [k, +00) € p(A).

Thus, due to Theorem 4.2, A; is the infinitesimal generator of a strongly continuous analytic
semigroup in €. Note that if k > 0, (H4) follows from (Hs2) and (H3).
In the sequel, we will consider two cases:

L few'(0,T:€), 0 ¢ (0,}),

2. feC%0,T);€), 6 € (0,1).

5.1 First case

Assume that f € WOP(0,T; &) with 6 € (0, %) (see [7], p. 330, for the definition of such a space).

From [7], Theorem 4.7, p. 334, there exists a unique classical solution u of problem (62) if and

only if vy € (D(A;), €)1 ,,.
p?

5.2 Second case

Now, assume that f € C?([0,T];&), & € (0,1) and vy € D(A;). We then apply Theorem 4.5,
p. 53 in [33] to obtain the existence and the uniqueness of a solution v € C([0,T]; ) to problem
(62) such that

v e %0, T];6) and Aju(.) € C%([0,T]; €),

if and only if

f(0) + Aivg € (D(Ai), €)1 g 100 -
Remark that in this case, D(A;) = £.
Remark 5.1.

1. We can prove easily that operators —A4; and —.A5 are BIP (£,204 + €), € > 0. Therefore,
using the Dore-Venni Theorem, we can solve (62) for f € LP(0,T;&).

2. We can explicit all the above results in the concrete case, that is:

A=Ay and & =LP(a,b;LP(w)).
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