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Aim of modeling (E. Walter and L. Pronzato, Identification of parametric models from
experimental data, 1997):

estimating quantities for which no sensor is available from indirect measurements

testing hypotheses (in pharmacokinetic)

Method for doing fault diagnosis (system of neural network)

Teaching (simulators of aircrafts,...), predicting short-term behaviour....

Given a system (mechanical, biological...), the modeling depends on the aim of the
modeler.

Any model depends on some parameters to be estimated!
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Given a system or a process, some quantities interact:

u

b x

y

System

We act on the system by means of some quantities which are more or less under
control: input vector u

Some characteristic quantities of the system are observed: output vector y

The system (or the measurements taken from the system) endures the action of
some quantities that are not under control and/or more or less unknown:
perturbations or noises vector b.

Some quantities of the system can not be directly measured (denoted x).



Introduction

Assume that the process can be modeled by
G(x ,u,p) = y

x state variables
p parameter vector
u input vector
y output vector.

G defines a rule of calculus which, from quantities a priori known or measured form the
system permits to estimate quantities that interest us.

X choice of G = characterization of the system

X G = parametric model

Several models can be considered and are not all equivalent (linear or not linear model),
continuous or discrete, deterministic or stochastic....
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Introduction

Assume that the process can be modeled by
G(x ,u,p) = y

x state variables
p parameter vector
u input vector
y output vector.

Two problems can be considered:

X The forward problem: given p, u, find x and y .

X The inverse problem or identification problem: given y and u, estimate p.
A property of lots of inverse problems: ill-posedness.

Definition

A problem is said well-posed in the sense of Hadamard if it satisfies the following
properties:

1 Existence: For all (suitable) data, there exists a solution of the problem (in an
appropriate sense)

2 Unicity : for all available data, the solution is unique

3 Stability : the solution depends continuously of the data.

Example: The differentiation and integration

Goal of the lesson: Propose a method based on algebra tools to study inverse problems
on systems of nonlinear differential equations.



Identifiability Models

Γp
{

ẋ(t ,p) = f (x(t ,p),u(t),p),
y(t ,p) = h(x(t ,p),p).

(1)

X x(t ,p) ∈ Rn: state variables at time t ,
X y(t ,p) ∈ Rm: output vector at time t ,
X u(t) ∈ Rr : input vector at time t ,
X f , h: real functions, analytic on M (an open set of Rn),
X p ∈ UP : vector of parameters, UP ⊂ Rp: an a priori known set of admissible

parameters.

Question

From measurements of the output(s) of the system, is it possible to estimate uniquely the
parameter vector p?
If the answer is YES, then the model is said identifiable.

Tools

X Similarity method (S. Vajda),

X Method of invariants (M. Petitot),

X Input-output method based on the Rosenfeld-Groebner algorithm (implemented
in Maple by F. Boulier, CRIStAL) and based on differential algebra approach
(Kolchin and al., 1973)
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X Every day we loose approximatively ..... neurons, which is the equivalent of ......
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Identifiability Example in Neurosciences

X Microscopic worm Caenorhabditis elegans (≈ 1mm de long) has 302 neurons

X The insects have approximatively one million of neurons

X Modern man has 86 billion of neurons in its best form

X Every day we loose approximatively 85.000 neurons, which is the equivalent of 31
millions by year (≈ 1 by sec)

X At 80 years old, the brain is only 70 percent of what it was around 20 years

X Nerve information passes from neurons to neurons, up to 120 m / s, ie 430 km / h.

A neuron is a nerve cell, that is an electrically excitable cell that receives, processes,
and transmits information through electrical and chemical signals.

REPRESENTATION OF A NEURON



Identifiability Example in Neurosciences

Membrane

A lipid membrane

A membrane is composed of a lipid bilayer which separates the intracellular milieu and
the extracellular milieu.

The main ions in a neuron are:
Sodium (Na+)
Potassium (K +)
Calcium (Ca2+)
Chlorure (Cl−)



Identifiability Example in Neurosciences

Ions are unequally distributed

on both sides of the membrane

There exist channels, specific for

each ion through which the ions cross

the membrane.

Channels can be:

X open or close

X active or inactive.

However there is electroneutrality!



Identifiability Example in Neurosciences

Some mechanisms permit to regulate ionic concentrations and to maintain them con-
stant. Two types of transport:

X passive transport:
concentration gradient: ions go from the most concentrated milieu to the
least concentrated milieu
extracellular→ intracellular: Cl−, Na+ , Ca2+

intracellular→ extracellular: K +

electrical gradient: the membrane is electrically charged: negatively inside,
positively outside
extracellular→ intracellular: K +,Na+ and Ca2+

intracellular→ extracellular: Cl−

X active transport (NA/K pomp) requiring energy.



Identifiability Example in Neurosciences

Potential differences:

X the potential difference of the membrane:
Vm = Vi︸︷︷︸

intracellular potential

− Ve︸︷︷︸
extracellular potential

X the potential difference due to the passage of an ion:
Vm − Eion︸︷︷︸

equilibrium potential of an ion

.

The current due to the passage of an ion in a channel:
Vm − Eion︸ ︷︷ ︸

mV

= r︸︷︷︸
resistance of channel

× Iion︸︷︷︸
ionic current (pA)

⇔ Iion = G︸︷︷︸
conductance (siemens S)

(Vm − Eion).
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Modeling of a simple ion channel with one activation (m):

I = G (V − E) where G = g m

where

V (mV ): voltage

g (nS): maximal conductance

E (mV ): reversal potential

m is the probability of a channel to be open



Identifiability Example in Neurosciences

Modeling of a simple ion channel with one activation (m):

I = G (V − E) where G = g m

where

V (mV ): voltage

g (nS): maximal conductance

E (mV ): reversal potential

m is the probability of a channel to be open

The equation describing the activation of the gates to the answer of the potential of
membrane is

dm
dt

=
m∞(V )−m

τ(V )

where

m∞(V ): the equilibrium value of m

τ(V ): times at which the equilibrium is attained.



Identifiability Example in Neurosciences

What can we measure?
The voltage-clamp protocol

characterizes the activation or inactivation properties of the ionic canal
necessitates to treat the membrane of the neuron (tetrodoxine)
consists in holding the voltage (= V ) piecewise constant⇒ during each interval,
m∞, τ can be considered as constant and we have

dm
dt

=
m∞ −m

τ

.
For example, the potassium: IK (t) = GK (t)(V − EK )⇒ GK (t) =

IK (t)
(V−EK )

Assumptions:

X V = constant input
X I = output (= y)
X m = state variable (= x)



Identifiability Example in Neurosciences

Example 1

The equation of one ion channel with one activation variable: dm
dt

=
m∞ −m

τ
, m0 = m(0)

I(t) = g m (V − E)
⇔
{

m(t) = m∞ + (m(0)−m∞) e−
t
τ

y(t) = g m u
(2)

where u := V − E = cst and y := I.

For τ = 100ms, u = 20mV , (m(0),m∞,g) = (1, 0.5, 5) and (m(0),m∞,g) = (2, 1, 2.5):

During the voltage step protocol,
the model can produce exactly the
same output for different
parameter/initial condition values!
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Identifiability Definition of identifiability

Formalization

Controlled models (u 6= 0) WITHOUT initial condition; (x̃ , ỹ) = unique set of solutions

The model is globally identifiable if there exists an input u such that, for all p ∈ Up,
one gets

ỹ(t ,p) 6= ∅,

ỹ(t ,p) ∩ ỹ(t , p̄) 6= ∅, ∀ t ≥ 0, p̄ ∈ Up

 ⇒ p = p̄. (3)

The model is locally identifiable if it is globally identifiable in an open
neighborhood v(p) ⊂ Up of p.

Controlled model (u 6= 0) WITH initial conditions; (x , y) unique solution

The model is globally identifiable if there exists an input u such that, for all
p, p̄ ∈ Up, there exists t1 > 0 such that if for all t ∈ [0, t1], the equalities
y(t ,p) = y(t , p̄) implies that p = p̄.

The model is locally identifiable if it is globally in an open neighborhood v(p) ⊂ Up
of p.
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Identifiability Definition of identifiability

Example 1: WITHOUT initial condition

The equation of one ion channel with one activation variable:

I(t) = g m (V − E) (4)

where
dm
dt

=
m∞ −m

τ
. (5)

m∞: the equilibrium value of m,
τ : times at which the equilibrium is attained,
E known constant reversal potential.

Proposition

If V is a constant input and I is an output of the model then the model is not identifiable,
in particular with respect to τ and m∞.

Proof.

...



Identifiability Definition of identifiability

Example 1: WITH initial condition I(t) = g(V − E)m
dm
dt

=
m∞ −m

τ
,m(0) = m0.

(6)

Proposition

If V is a constant input and I is an output of the model then the model is identifiable, in
particular τ and m∞.



Identifiability Definition of identifiability

Example 1: WITH initial condition I(t) = g(V − E)m
dm
dt

=
m∞ −m

τ
,m(0) = m0.

(6)

Proposition

If V is a constant input and I is an output of the model then the model is identifiable, in
particular τ and m∞.

Proof.

Results obtained in the case without initial conditions stay valid: τ et gm∞ are
identifiable.
The solution of the second equation is

m(t) = m0e−t/τ + m∞(1− e−t/τ )

In taken y(t) = g u m(t) and in substituting m by its expression, one gets:
y(t)

m∞ g u
=

m0

m∞
e−t/τ + 1− e−t/τ . Since the product g m∞ is identifiable, y(t)

m∞ g u can be

estimated and the model is identifiable with respect to m∞.



Identifiability Definition of identifiability

Example 1: WITH initial condition I(t) = g(V − E)m
dm
dt

=
m∞ −m

τ
,m(0) = m0.

(6)

Proposition

If V is a constant input and I is an output of the model then the model is identifiable, in
particular τ and m∞.

Remarks

Identifiability result based on specific relations called Input-Output (IO) polynomials

Differential algebra permit to obtain them owing to the Rosenfeld-Groebner
algorithm.



Identifiability General method

General case:

Γp
{

ẋ(t ,p) = f (x ,u,p), x ∈ Rn, u ∈ Rq , p ∈ Rp

y(t ,p) = h(x ,p) ∈ Rm.
(7)

1 Rewrite (7) : 
p(x ,u,p) = 0
q(x , y,u,p) = 0
r(x , y, y,p) 6= 0
ṗi = 0, i = 1, . . . ,p.

(8)

2 Use the Rosenfeld-Groebner algorithm with the elimination order [p] ≺ [y,u] ≺ [x] :

C(p) = {ṗ1, . . . , ṗp,P1(y,u,p), . . . ,Pm(y,u,p),Q1(x , y,u,p), . . . ,Qn(x , y,u,p)}.

This set is called the characteristic presentation (general case).
3 Identifiability study done from the input-output polynomials

Pi (y,u,p) = mi
0(y,u) +

q∑
k=1

γ i
k (p)mi

k (y,u) = 0. (9)

Remark

Under some technical assumptions, (9) are contained in the characteristic presentation
obtained with p as a constant vector and [y,u] ≺ [x] as the elimination order.

Afterwards, 1 observation⇒ i = 1.



Identifiability General method

P(y,u,p) = m0(y,u) +

q∑
k=1

γk (p)mk (y,u) = 0.

Proposition

If (mk (y,u))1≤k≤q are linearly independent then the model is globally identifiable at p if
for all p̄ ∈ Up

∀k = 1, . . . ,q, γk (p̄) = γk (p)⇒ p = p̄. (10)

Proof.

...



Identifiability General method

P(y,u,p) = m0(y,u) +

q∑
k=1

γk (p)mk (y,u) = 0.

Proposition

If (mk (y,u))1≤k≤q are linearly independent then the model is globally identifiable at p if
for all p̄ ∈ Up

∀k = 1, . . . ,q, γk (p̄) = γk (p)⇒ p = p̄. (10)

Remark

X If φ(p) = (γk (p))k=1,...,q , (10) consists in verifying that φ is injective.

X The functions (mk (y,u))k=1,...,q are linearly independent if the functional
determinant is not identically equal to zero. It is sufficient to find a time point at
which the Wronskian is non-zero.

X We recall that the Wronskian of the sequence of functions (φ1, . . . , φs) is defined by:

Wronskian = Det(φ1, . . . , φs) =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1 . . . φs

φ̇1 . . . φ̇s
... . . .

...
φ

(s−1)
1 . . . φ

(s−1)
s

∣∣∣∣∣∣∣∣∣∣∣∣
. (11)



Identifiability General method

The identifiability when initial conditions are considered:

Γp =

{
ẋ(t ,p) = f (x(t ,p),p), x(0,p) = x0
y(t ,p) = h(x(t ,p),p).

(12)

f and h are supposed to be rational and analytical.

P(y,u,p) = m0(y,u) +

q∑
k=1

γk (p) mk (y,u) = 0

Proposition

Let l the highest order derivative in the polynomial P. If (mk (y,u))1≤k≤q are linearly
indépendant then the model is globally identifiable at p if for all p̄ ∈ Up{

∀k = 1, . . . ,q, γk (p̄) = γk (p)

1 ≤ s ≤ l − 1, y(s)(0+,p) = y(s)(0+, p̄)
⇒ p = p̄ (13)

Moreover, if the coefficient of y(l) in P is not equal to 0 at t = 0 then the reciprocal is true.



Identifiability General method

Example 2: the FitzHugh-Nagumo model

R. FitzHugh (1961) and Nagumo (1962) proposed a simplification in two dimensions of the
Hodgkin-Huxley (HH; Hodgkin Huxley, 1952) model:

HH or conductance-based model: mathematical model describing how action
potentials in neurons are initiated and propagated

HH model is constructed in using an analogy with a circuit.



Identifiability General method

Example 2: the FitzHugh-Nagumo model

R. FitzHugh (1961) and Nagumo (1962) proposed a simplification in two dimensions of the
Hodgkin-Huxley (HH; Hodgkin Huxley, 1952) model:

HH or conductance-based model: mathematical model describing how action
potentials in neurons are initiated and propagated

HH model is constructed in using an analogy with a circuit.

X Membrane = capacitor of capacity C and ionic channels = variable resistors

X Kirchhof’s law: at any node (junction) in an electrical circuit, the sum of currents
flowing into that node is equal to the sum of currents flowing out of that node

−C
dV
dt

= IK + INa + IL − I



Identifiability General method

Model HH



−CV̇ = m3hgNa(V − ENa) + n4gK (V − EK ) + gL(V − EL)− I

ṅ =
n∞ − n
τn

ṁ =
m∞ −m

τm

ḣ =
h∞ − h
τh

(14)

X V : potential of the membrane

X I: injected current

X C: capacitor

X EK , ENa are EL: reversal potentials.

X n: probability that a potassium
channel is opened

X m: probability that a sodium channel
is opened

X h: probability that a sodium channel is
activated

Simulations show that the HH model can be approximated by the FitzHugh-Nagumo
model: 

dx1

dt
= a(x2 − f (x1) + I) f cubic function

dx2

dt
= b(g(x1)− x2) g linear function

x1: potential.



Identifiability General method

FitzHugh-Nagumo model (c 6= 0):
dx1

dt
= c(x1 −

x3
1

3
+ x2)

dx2

dt
= −

1
c

(x1 − a + bx2)

(15)

Proposition

Given y := x1 the output of the model, the model is identifiable with respect to a, b, c.

Proof.

Using the DifferentialAlgebra package of Maple with the elimination order [y] ≺ [x1, x2],
the Rosenfeld-Groebnerr algorithm gives the characteristic presentation:

i := [−y + x1, −c y3 + 3 c x2 + 3 c y − 3 ẏ,
b c y3 + 3 c2 y2 ẏ − 3 b c y − 3 c2 ẏ − 3 a c + 3 b ẏ + 3 c y + 3 c ÿ].

Hence, P(y) = ÿ − a 1 +
b
3

y3 + c ẏ y2 + (−b + 1) y +
−c2 + b

c
ẏ .

X det(1, y3, ẏ y2, y, ẏ) is not identically null.

X If p = (a,b,c), the function φ(p) = (−a, b
3 ,c,−b + 1, −c2+b

c ) is injective.

In conclusion, the model is identifiable.



Identifiability Exercise

Exercise

Consider an ion channel model with one activation (m) and one inactivation variable
(h) in the case of a voltage clamp protocol.

I = gmh(V0 − E) = gmh(u − E),
dm
dt

= m∞−m
τm

,

dh
dt

= h∞−h
τh

,

y = I, u = V0 = cst .

(16)

By a change of variables: x1 = m, x2 = h, p1 = τm, p2 = m∞, p3 =
1
τh

, p4 = h∞, p5 = g,

k1 = u − E, the model can be rewritten:
dx1

dt
= p1(p2 − x1),

dx2

dt
= p3(p4 − x2),

y = k1p5x1x2.

(17)

Study the identifiability of model (17).



Parameter estimation methods

2 types of algorithms:

global algorithm: genetic algorithm

local algorithms: Gauss-Newton and Levenberg-Marquardt algorithms.



Parameter estimation methods Output error and cost function

y = (y(t1), . . . , y(tn))T = vector coming from experimental results.

In neurosciences, measurable characteristic: mean between the height of spikes and the
length of spikes, resting potential of the membrane, potential after a hyperpolarisation,
firing rate, bursting rate....



Parameter estimation methods Output error and cost function

y = (y(t1), . . . , y(tn))T = vector coming from experimental results.

Given a model, ym(t ,p): (ym(t1), . . . , ym(tn))T = output vector calculated from the
model and the parameter vector p

Goal

Given y , calculate p such that ym(t ,p) "approximate" experimental data y .
Define the output error:

e(t ,p) = ym(t ,p)− y(t).



Parameter estimation methods Output error and cost function

y = (y(t1), . . . , y(tn))T = vector coming from experimental results.

Given a model, ym(t ,p): (ym(t1), . . . , ym(tn))T = output vector calculated from the
model and the parameter vector p

Goal

Given y , calculate p such that ym(t ,p) "approximate" experimental data y .
Define the output error:

e(t ,p) = ym(t ,p)− y(t).

Problem

Perturbations of the system⇒ e(t ,p) can never been equal to 0.
The model outputs can never fit the system outputs with these perturbations.



Parameter estimation methods Output error and cost function

Solution

Define the differentiable cost function

j(p) =
1
2
‖ e(t ,p) ‖2

2=
1
2
‖ ym(t ,p)− y(t) ‖2

2, où p ∈ Uad (18)

and solve the problem
find p̂ such that j(p̂) = min

p
j(p).

Choose an optimization algorithm to minimize j(p). In general, the error must be near 0.

Examples

X Compare simulated ionic currents (Iest ) and registered ionic currents (Iref ):

j(p) =
∑

t

∑
stim

(Iest (stim, t)− Iref (stim, t))2.

X Compare simulated potentials Vest (stim, t) and registered potentials:

j(p) =
∑

t

∑
stim

(Vest (stim, t)− Vref (stim, t))2.



Parameter estimation methods Input-output method

7 Classical local algorithms (least-squares ): Gauss-Newton, Levenberg-Marquardt

7 Problem: necessitate a first initial guess for the parameter vector

7 Solution: Use the IO polynomial to obtain a first initial guess.

Principle of the method

Observations are supposed to be done at discrete times t1, . . . , tM (yk := y(tk ),
uk := u(tk )).

X The input-output polynomial:

P(y,u,p) = m0(y,u) +

q∑
l=1

γl (p)ml (y,u) = 0.

X Rectangular linear system (γ = (γ1(p), . . . , γq(p))T ):

Aγ = b, (A)k = (ml (yk ,uk ))l=1,...,q , bk = −m0(yk ,uk ). (19)

((A)k = (mj (yk ,uk ))j=1,...,q , bk = −m0(yk ,uk )) solve with the QR factorization.



Parameter estimation methods Input-output method

Example 2

FitzHugh-Nagumo model (c 6= 0):
dx1

dt
= c(x1 −

x3
1

3
+ x2)

dx2

dt
= −

1
c

(x1 − a + bx2)

(20)

X P(y) = ÿ − a 1 +
b
3

y3 + c ẏ y2 + (−b + 1) y +
−c2 + b

c
ẏ .

X Rectangular linear system Aγ = b such that (A)k = (1, y3
k , ẏk y2

k , yk , ẏk ), bk = −ÿk .

7 Problem: Estimation of derivatives of order 2

7 Solution: Integrate twice the IO polynomial (over a sliding time window of fixed
length):

Inx(t) :=

∫ t

t−τ

∫ τ1

τ1−τ
. . .

∫ τn−1

τn−1−τ
x(τn)dτn . . .dτ1, n higher derivative order.

For example: I2ÿ(t) =

∫ t

t−τ

∫ τ1

τ1−τ
ÿ(τ2)dτ2dτ1 = y(t)− 2y(t − τ) + y(t − 2τ).



Parameter estimation methods Input-output method
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7 Problem: Estimation of derivatives of order 2

7 Solution: Integrate twice the IO polynomial (over a sliding time window of fixed
length):

Inx(t) :=

∫ t

t−τ

∫ τ1

τ1−τ
. . .

∫ τn−1

τn−1−τ
x(τn)dτn . . .dτ1, n higher derivative order.

For example: I2ÿ(t) =
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Parameter estimation methods Input-output method
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τ1−τ
. . .
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x(τn)dτn . . .dτ1, n higher derivative order.

For example: I2ÿ(t) =

∫ t

t−τ

∫ τ1

τ1−τ
ÿ(τ2)dτ2dτ1 = y(t)− 2y(t − τ) + y(t − 2τ).



Parameter estimation methods Exercice

Consider the FitzHugh-Nagumo with a=0.2, b=0.2, c=0.6 and the program Scilab:
1 run the program with different values of τ
2 test this program in adding noises on the output.
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