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The relative identifiability State of the problem

Considered model
Given a system or a process, some quantities interact:

Neuron responding to a electrical 
signal

Schematic representation of 
the functioning of the neuron

• Electrical signal (I) ↔ u = I = input
• Membrane potential (V ) ↔ y = V = output
• Perturbations ↔ b
• Non measurable varying quantities ↔ x
• Unknown constant values ↔ p = vector of unknown parameters.



The relative identifiability State of the problem

Considered model
Given a system or a process, some quantities interact:

Neuron responding to a electrical 
signal

Schematic representation of 
the functioning of the neuron{

ẋ(t ,p) = f (x(t ,p),u(t),p),
y(t ,p) = h(x(t ,p),p).

(1)

✓ f , h: real functions, analytic on M (an open set of Rn),

✓ p ∈ UP : vector of parameters,
UP ⊂ Rr : an a priori known set of admissible parameters.



The relative identifiability State of the problem

Assume that the process can be modeled by{
ẋ(t ,p) = f (x(t ,p),u(t),p),
y(t ,p) = h(x(t ,p),p).

Two problems can be considered:

✓ The forward problem: given p, u, find x and y .

✓ The inverse problem: given y and u, estimate p.
1 Identifiability problem

Question

From the output(s) of the system, is it possible to estimate uniquely the parameter vector
p?
If the answer is YES, then the model is said identifiable.

2 Identification problem



The relative identifiability State of the problem

Assume that the process can be modeled by{
ẋ(t ,p) = f (x(t ,p),u(t),p),
y(t ,p) = h(x(t ,p),p).

Two problems can be considered:

✓ The forward problem: given p, u, find x and y .

✓ The inverse problem: given y and u, estimate p.

A property of lots of inverse problems: ill-posedness.

Well-posedness is the sense of Hadamard

A problem is said well-posed in the sense of Hadamard if it satisfies the following
properties:

1 Existence: For all (suitable) data, there exists a solution of the problem (in an
appropriate sense)

2 Unicity : for all available data, the solution is unique
3 Stability : the solution depends continuously of the data.

Example: The differentiation and integration are two inverse problems of each other.



The relative identifiability A short quiz

What about the neuron?

✓ Microscopic worm Caenorhabditis elegans (≈ 1mm de long) has .... neurons

✓ The insects have approximatively ..... of neurons

✓ Modern man has ........ of neurons in its best form

✓ Every day we loose approximatively ..... neurons, which is the equivalent of ......

✓ At 80 years old, the brain is only ..... percent of what it was around 20 years

✓ Nerve information passes from neurons to neurons, up to ......
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The relative identifiability A short quiz

What about the neuron?

✓ Microscopic worm Caenorhabditis elegans (≈ 1mm de long) has 302 neurons

✓ The insects have approximatively one million of neurons

✓ Modern man has 86 billion of neurons in its best form

✓ Every day we loose approximatively 85.000 neurons, which is the equivalent of 31
millions by year (≈ 1 by sec)

✓ At 80 years old, the brain is only 70 percent of what it was around 20 years

✓ Nerve information passes from neurons to neurons, up to 120 m / s, ie 430 km / h.

Neuron

A neuron is a nerve cell, that is an electrically excitable cell that receives, processes,
and transmits information through electrical and chemical signals.

REPRESENTATION OF A NEURON



The relative identifiability A first neuron model

Membrane

A lipid membrane

A membrane is composed of a lipid bilayer which separates the intracellular milieu and
the extracellular milieu.

The main ions in a neuron are:
Sodium (Na+)
Potassium (K+)
Calcium (Ca2+)
Chlorure (Cl−)



The relative identifiability A first neuron model

Unequally distribution of ions

on both sides of the membrane

Specific channels for each ion

Channels can be:
✓ open or close
✓ active or inactive.

However there is electroneutrality!



The relative identifiability A first neuron model

Some mechanisms permit to regulate ionic concentrations and to maintain them con-
stant. Two types of transport:

✓ passive transport:
the concentration gradient: ions go from the most concentrated milieu to
the least concentrated milieu
extracellular → intracellular: Cl−, Na+ , Ca2+

intracellular → extracellular: K+

electrical gradient: the membrane is electrically charged: negatively inside,
positively outside
extracellular → intracellular: K+,Na+ et Ca2+ are attracted inside the neuron
intracellular → extracellular: Cl−

✓ active transport (NA/K pump) requiring energy.



The relative identifiability A first neuron model

Potential differences:

✓ the potential difference of the membrane:
Vm = Vi︸︷︷︸

intracellular potential

− Ve︸︷︷︸
extracellular potential

✓ the potential difference due to the passage of an ion:
Vm − Eion︸︷︷︸

equilibrium potential of an ion

.

The current due to the passage of an ion in a channel:
Vm − Eion︸ ︷︷ ︸

mV

= r︸︷︷︸
resistance of channel

× Iion︸︷︷︸
ionic current (pA)

⇔ Iion = G︸︷︷︸
conductance (siemens S)

(Vm − Eion).



The relative identifiability A first neuron model

Modeling of a simple ion channel with one activation (m):

I = G (V − E) where G = g m

where

V (mV ): voltage

g (nS): maximal conductance

E (mV ): equilibrium potential

m is the probability of a canal to be open



The relative identifiability A first neuron model

Modeling of a simple ion channel with one activation (m):

I = G (V − E) where G = g m

where

V (mV ): voltage

g (nS): maximal conductance

E (mV ): equilibrium potential

m is the probability of a canal to be open

The equation describing the activation of the gates to the answer of the potential of
membrane is

dm
dt

=
m∞(V )− m

τ(V )

where

m∞(V ): the equilibrium value of m,

τ(V ): times at which the equilibrium is attained.

Question

Is it possible to determine in a unique way m∞, τ , g from the measurement of the
current?



The relative identifiability A first neuron model

What can we measure?

The voltage-clamp protocol

characterizes the activation or inactivation properties of the ionic canal

necessitates to treat the membrane of the neuron (tetrodoxine)

consists in holding the voltage (= V ) piecewise constant
↪→ after a while, m∞, τ can be considered as constant and we have

dm
dt

=
m∞ − m

τ

.

Assumptions

✓ V = constant input

✓ I = output (= y)

✓ m = state variable (= x)



The relative identifiability Formalization of the identifiability definition

A first example: The equation of one ion channel with one activation variable: I = g m (V − E)
dm
dt

=
m∞ − m

τ

⇐⇒
u:=V-E=cst,
y:=I

 y = g m u
dm
dt

=
m∞ − m

τ

Controlled models (u ̸= 0) WITHOUT initial condition; (x̄ , ȳ) = unique set of solutions

The model is globally identifiable if there exists an input u such that, for all p ∈ Up,
one gets

ȳ(t ,p) ̸= ∅,

ȳ(t ,p) ∩ ȳ(t , p̄) ̸= ∅, ∀ t ≥ 0, p̄ ∈ Up

 ⇒ p = p̄. (2)

The model is locally identifiable if it is globally identifiable in an open
neighborhood v(p) ⊂ Up of p.

Proposition

If V is a constant input and I is an output of the model then the model is not identifiable,
in particular with respect to τ and m∞.

Proof.

...



The relative identifiability Formalization of the identifiability definition

A first example: The equation of one ion channel with one activation variable: I = g m (V − E)
dm
dt

=
m∞ − m

τ

⇐⇒
u:=V-E=cst,
y:=I

 y = g m u
dm
dt

=
m∞ − m

τ

Concretely

τ = 100ms, u = 20mV ,
(m(0),m∞,g) = (1, 0.5, 5) and
(m(0),m∞,g) = (2, 1, 2.5).

The model can produce exactly the
same output for different
parameter/initial condition values!



The relative identifiability Formalization of the identifiability definition

A first example: The equation of one ion channel with one activation variable:


I = g m (V − E)
dm
dt

=
m∞ − m

τ
m(0) = m0

⇐⇒
u:=V-E=cst,
y:=I

{
y = g m u

m = m∞ + (m0 − m∞)e− t
τ

Controlled model (u ̸= 0) WITH initial conditions; (x , y) unique solution

The model is globally identifiable if there exists an input u such that, for all
p, p̄ ∈ Up, there exists t1 > 0 such that if for all t ∈ [0, t1], the equalities
y(t ,p) = y(t , p̄) implies that p = p̄.

The model is locally identifiable if it is globally in an open neighborhood v(p) ⊂ Up
of p.

Proposition

If V is a constant input and I is an output of the model then the model is identifiable, in
particular τ and m∞.

Proof.

...



The relative identifiability Formalization of the identifiability definition

Summary

✓ Identifiability: based on specific relations called Input-Output (IO) polynomials.

✓ The Rosenfeld-Groebner algorithm permits to obtain them. They take the form

P(y,u,p) = m0(y,u) +
q∑

k=1

γk (p)mk (y,u) = 0.

✓ If (mk (y,u))k=1,...,q are linearly independent, the model is globally identifiable at p
if for all p̄ ∈ Up

∀k = 1, . . . ,q, γk (p̄) = γk (p) ⇒ p = p̄. (3)

✓ If ϕ(p) = (γk (p))k=1,...,q , (3) consists in verifying that ϕ is injective.

✓ Initial conditions can be introduced with algebraic relations.



The relative identifiability
Towards the relative identifiability with a (little) more

complex example

A (little) more complex example....
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒
x1 = m, x2 = h, u = V − E

p1 =
1

τm
, p2 = m∞,

p3 =
1

τh
, p4 = h∞, p5 = g,

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Non identifiable model!



The relative identifiability
Towards the relative identifiability with a (little) more

complex example

A (little) more complex example....
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Questions :

✗ Key parameters permitting to obtain the identifiability of one or some non
measurable parameters and eventually the identifiability of the model?

✗ Roles of the constraints?

✗ Natural integration of the constraints or the initial conditions in the identifiability
study?



The relative identifiability
Towards the relative identifiability with a (little) more

complex example
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Obtain from ϕ and a set of algebraic constraints a decision tree!



The relative identifiability
Towards the relative identifiability with a (little) more

complex example
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

First step: Redefine the identifiability: Relative identifiability
For example:

p1 p3

p2

p4

p5

p1 is not identifiable;

p3 is relatively identifiable with
respect to the set {p1};

p5 relatively identifiable with
respect to the set {p1,p3};

p2 and p4 are not relatively
identifiable with respect to the
set {p1,p3}.



The relative identifiability
Towards the relative identifiability with a (little) more

complex example
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Second step: definition of a semi-algebraic set from

ϕ(p) = (γk (p))k=1,...,9 the coefficient vector of the IO polynomial:

ÿ2 + γ1y2 + γ2yẏ + γ3yÿ + γ4y + γ5ẏ2 + γ6ẏ ÿ + γ7ẏ − γ8ÿ + γ9 = 0 (4)

C the semi-algebraic set defined by C(p) composed of all algebraic equations and
inequalities verified by the components of the parameter vector p = (p1, . . . ,p5)

to test 
p ∈ C
p̄ ∈ C
p1 = p̄1,
p3 = p̄3,
ϕ(p) = ϕ(p̄)

⇒ p5 = p̄5.



The relative identifiability
Towards the relative identifiability with a (little) more

complex example
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Second step: definition of a semi-algebraic set from

ϕ(p) = (γk (p))k=1,...,9 the coefficient vector of the IO polynomial:

ÿ2 + γ1y2 + γ2yẏ + γ3yÿ + γ4y + γ5ẏ2 + γ6ẏ ÿ + γ7ẏ − γ8ÿ + γ9 = 0 (5)

C the semi-algebraic set defined by C(p) composed of all algebraic equations and
inequalities verified by the components of the parameter vector p = (p1, . . . ,p5)

to test

Sp1,p3 ∪ {p5 ̸= p̄5} has no real solution.

where
Sp1,p3 = C(p) ∪ C(p̄) ∪ {p1 = p̄1,p3 = p̄3} ∪ {γk (p) = γk (p̄) | k = 1, . . . , 9} .

=⇒ development of a method and the algorithm IdentifiabilityTree.



The relative identifiability
Towards the relative identifiability with a (little) more

complex example
I = gmh(V − E),
dm
dt

=
m∞ − m

τm
,

dh
dt

=
h∞ − h

τh
,

⇐⇒
x1 = m, x2 = h, u = V − E

p1 =
1

τm
, p2 = m∞,

p3 =
1

τh
, p4 = h∞, p5 = g,

 y = u p5 x1 x2,
ẋ1 = p1 (p2 − x1),
ẋ2 = p3 (p4 − x2).

Results of the IdentifiabilityTree algorithm:
One of the branch: [��p2,��p4,p5,��p3,p1]

Two groups of parameters {p2,p4,p5} and {p1,p3}.

Determination of the two parameters p2, p4 and the parameter p3 ensures the
identifiability of all the parameters.

The voltage clamp experiment:

1 Estimate the triplet {p2,p4,p5} from y = up5x1x2 in fixing the voltage at different
values and measuring the transmembrane current trace
(V constant: I = (V − E)p5 p2 p4);

2 Estimate p1 and p3 at a particular voltage value dependence.



The relative identifiability Conclusion

Conclusion

Identifiability study:

✓ Ensures good properties to the mathematical model;

✓ Extension of this definition;

✓ Other examples: strategy to reparametrize unidentifiable ODE models into
identifiable ones (Evans 2000, Meshkat 2011)....



Fault diagnosability State of the problem

The models 
ẋ(t ,p, f ) = g(x(t ,p),u(t), f ,p),

y(t ,p, f ) = h(x(t ,p),u(t), f ,p),

x(t0,p, f ) = x0,

t0 ≤ t ≤ T .

(6)

Definitions

✓ A fault is an unpermitted deviation of at least one parameter of the system from
the acceptable standard condition.

✓ Fault diagnosability establishes which faults can be discriminated using the
available sensors in a system.

✓ Fault diagnosis consists in fault detection of the malfunction of a system and the
fault isolation of the faulty component.

f = 0 means no fault. In the case of uncontrolled models u = 0.



Fault diagnosability Algebraic signature

Example: Mass (m = 1) attached to an elastic spring (force k) u external force (̸≡ 0),
d ≥ 1

ÿ + k(f1 − 1)2 y − (d + f2)u = 0 ϕ(f ) =
(

k(f1 − 1)2,−d − f2
)



Fault diagnosability Algebraic signature

Example: Mass (m = 1) attached to an elastic spring (force k) u external force (̸≡ 0),
d ≥ 1

ÿ + k(f1 − 1)2 y − (d + f2)u = 0 ϕ(f ) =
(

k(f1 − 1)2,−d − f2
)

Algebraic signature

ASig(f ) =
(

k(f1 − 1)2,−d − f2
)

, in particular:

✗ ASig(f{1}) = (k(f1 − 1)2,−d) et ASig(f{1,2}) = (k(f1 − 1)2,−d − f2).

✗ ASig(f{1}) ∩ ASig(f{1, 2}) = ∅ for all f2 ∈ (0, 2), −d ̸= −d − f2.



Fault diagnosability Algebraic signature

Example: Mass (m = 1) attached to an elastic spring (force k) u external force (̸≡ 0),
d ≥ 1

ÿ + k(f1 − 1)2 y − (d + f2)u = 0 ϕ(f ) =
(

k(f1 − 1)2,−d − f2
)

Algebraic signature

ASig(f ) =
(

k(f1 − 1)2,−d − f2
)

, in particular:

✗ ASig(f{1}) = (k(f1 − 1)2,−d) et ASig(f{1,2}) = (k(f1 − 1)2,−d − f2).

✗ ASig(f{1}) ∩ ASig(f{1, 2}) = ∅ for all f2 ∈ (0, 2), −d ̸= −d − f2.

Definitions

✗ Two sets of faults are said algebraic discriminable if there exists an algebraic
signature, such that, for all input u, the two signatures have an empty intersection.

✗ If all the distinct sets of faults are algebraic discriminable, the model is said
algebraically diagnosable.



Fault diagnosability Algebraic signature

Example: Mass (m = 1) attached to an elastic spring (force k) u external force (̸≡ 0),
d ≥ 1

ÿ + k(f1 − 1)2 y − (d + f2)u = 0 ϕ(f ) =
(

k(f1 − 1)2,−d − f2
)

Algebraic signature

ASig(f ) =
(

k(f1 − 1)2,−d − f2
)

, in particular:

✗ ASig(f{1}) = (k(f1 − 1)2,−d) et ASig(f{1,2}) = (k(f1 − 1)2,−d − f2).

✗ ASig(f{1}) ∩ ASig(f{1, 2}) = ∅ for all f2 ∈ (0, 2), −d ̸= −d − f2.

Definitions

✗ Two sets of faults are said algebraic discriminable if there exists an algebraic
signature, such that, for all input u, the two signatures have an empty intersection.

✗ If all the distinct sets of faults are algebraic discriminable, the model is said
algebraically diagnosable.

Remark

The current algebraic signature is not sufficiently discriminant!



Fault diagnosability Algebraic signature

P(y,u,p, f ) = m0(y,u) +
q∑

k=1

γk (p, f )mk (y,u) = 0 and


γ1(p, f ) = ϕ1,
...
γq(p, f ) = ϕq ,

Algorithm Algebraic-Signature

✓ Groebner basis computation;



Fault diagnosability Algebraic signature

P(y,u,p, f ) = m0(y,u) +
q∑

k=1

γk (p, f )mk (y,u) = 0 and


γ1(p, f ) = ϕ1,
...
γq(p, f ) = ϕq ,

Algorithm Algebraic-Signature

✓ Groebner basis computation;

Example: ẍ + k(f1 − 1)2 x − (d + f2)u = 0, f1 ∈ [0, 2), f2 ∈ [0, 2)
with ϕ(f ) = (ϕ1, ϕ2) = (k(f1 − 1)2,−d − f2).

Algorithm Algebraic_signature: ASig(f ) = (ϕ1 − k, ϕ2 + d).

Remarks

✓ Algebraic signature: each of its component depends only on ϕk and the
parameters of the system;

✓ By construction, one of the component of the algebraic signature vanishes when
at least one specific (multiple) fault occurs.



Fault diagnosability Algebraic signature

P(y,u,p, f ) = m0(y,u) +
q∑

k=1

γk (p, f )mk (y,u) = 0 and


γ1(p, f ) = ϕ1,
...
γq(p, f ) = ϕq ,

Algorithm Algebraic-Signature

✓ Groebner basis computation;

Example: ẍ + k(f1 − 1)2 x − (d + f2)u = 0, f1 ∈ [0, 2), f2 ∈ [0, 2)
with ϕ(f ) = (ϕ1, ϕ2) = (k(f1 − 1)2,−d − f2).

Algorithm Algebraic_signature: ASig(f ) = (ϕ1 − k, ϕ2 + d).

Remarks

✓ Algebraic signature: each of its component depends only on ϕk and the
parameters of the system;

✓ By construction, one of the component of the algebraic signature vanishes when
at least one specific (multiple) fault occurs.

How to certify the values of ASig?



Fault diagnosability Characterization of a single fault/Expected values of ASig

ASig : Re −→ (R[ϕ1, . . . , ϕN ])
l

f 7→ (ASig1(ϕ), . . . , ASigl(ϕ)) .

Notations: (N subset of {1, . . . , e})

Cp,f = set of all algebraic equations and inequalities verified by p and f .

Example: ẍ + k(f1 − 1)2 x − (d + f2)u = 0, ASig(f ) = (ϕ1 − k, ϕ2 + d).

Cp,f = {0 < k < 4, 1 ≤ d, 0 ≤ f1 < 2, 0 ≤ f2 < 2}.

SN = {γ1(p, f ) = ϕ1, . . . , γq(p, f ) = ϕN} ∪ Cp,f ∪ {fi ̸= 0|i ∈ N} ∪ {fi = 0|i ̸∈ N}.

Example: ẍ + k(f1 − 1)2 x − (d + f2)u = 0, ASig(f ) = (ϕ1 − k, ϕ2 + d).

If N = {1} then SN = {k(f1 − 1) = ϕ1, (d + f2) = ϕ2} ∪ Cp,f ∪ {f1 ̸= 0} ∪ {f2 = 0};

If N = {1, 2} then SN = {k(f1 − 1) = ϕ1, (d + f2) = ϕ2} ∪ Cp,f ∪ {f1 ̸= 0} ∪ {f2 ̸= 0}.



Fault diagnosability Characterization of a single fault/Expected values of ASig

ASig : Re −→ (R[ϕ1, . . . , ϕN ])
l

f 7→ (ASig1(ϕ), . . . , ASigl(ϕ)) .

Criterion

Two criterion to discriminate multiple fault signatures:

For the multiple fault fN , SN ∪ {ASigk (fN ) = 0} = ∅?
When ASigj(f ) = 0 is equivalent to fi = 0?

↪→ Algorithm ExpectedValuesOfASign.

Example: ẍ + k(f1 − 1)2 x − (d + f2)u = 0, ASig(f ) = (ϕ1 − k, ϕ2 + d).

Cp,f = {0 < k < 4, 1 ≤ d,
0 ≤ f1 < 2, 0 ≤ f2 < 2}

f ASig1(f ) ASig2(f )
f{} 0 0
f{1} ̸0 0
f{2} 0 ̸0

f{1,2} ̸0 ̸0

Cp,f = ∅

f ASig1(f ) ASig2(f )
f{} 0 0
f{1} 0
f{2} 0 ̸0

f{1,2} ̸0



Fault diagnosability Conclusion

Conclusion

Diagnosability study:

✓ from the data collected on the physical system, can the chosen mathematical
model permit to discriminate predefined faults that may occur on the system?

✓ New example of the interest of computer algebra and semialgebraic approach;

✓ Precomputations lead to efficient numerical procedures → detect and isolate
(multiple) faults.



Fault diagnosability Conclusion

Conclusion

Diagnosability study:

✓ from the data collected on the physical system, can the chosen mathematical
model permit to discriminate predefined faults that may occur on the system?

✓ New example of the interest of computer algebra and semialgebraic approach;

✓ Precomputations lead to efficient numerical procedures → detect and isolate
(multiple) faults.

THANK YOU FOR YOUR ATTENTION and HAVE FUN WITH THE TUTORIAL!



Tutorial Relative identifiability

Procedure RelativeIdentifiabilityTree
Objective: det. the keys param. which estimations turn the model into an ident. one.
Inputs: exhaustive summary, constraints on the parameters .
Output: A set of lists def. the relative identifiability tree T (any prefix b of l ∈ T is followed
in l by an identifiable parameter wrt to b if there exists one.)
Convention: −p in a list l means that p is not rel. identifiable wrt the param appearing
before p in the list l.

Branch and cut tech:
Parameters relatively ident. wrt the same set of parameters can be permuted.

The relative identifiability wrt a list of param. does not depend on the list of
parameters but on the set they define.



Tutorial Diagnosability

Procedure ASign - Computation of an algebraic signature
Objective: obtaining of polynomials discriminating the faults and depending only on the
parameters and the components of the exhaustive summary.
Inputs: exhaustive summary, single faults list.
Output: an algebraic signature.



Tutorial Diagnosability

Procedure ExpectedValuesOfASign
Objective: det. the (multiple) faults which can be discriminated with the alg. signature.
Inputs: Alg signature, exhaustive summary, single faults list, param constraints.
Outputs: the lists composed of a (multiple) faults and of the corresponding vector of
expected values of the algebraic signature.



Tutorial Diagnosability

Procedure SingleFaultCharacterization
Objective: Reducing the number of tests needed to determine the table of the expect.
values of the algebraic signature.
Inputs: Alg. signature, exhaustive summary, single faults list, parameters contraints.
Output: list of 2-uplets [fi ,ASigk ] such that fi ̸= 0 ⇔ ASigk ̸= 0

→ The output can be used as an optional argument in proc. ExpectedValuesOfASign.
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