Applications of computer algebra in the identifiability and diagnosability studies

Nathalie Verdière, Sébastien Orange

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France ISSAC 2022

Outline

(1) The relative identifiability

- State of the problem
- A short quiz
- A first neuron model
- Formalization of the identifiability definition
- Towards the relative identifiability with a (little) more complex example
- Conclusion
(2) Fault diagnosability
- State of the problem
- Algebraic signature
- Characterization of a single fault/Expected values of ASig
- Conclusion

Tutorial

- Relative identifiability
- Diagnosability
(4) Bibliography

Considered model

Given a system or a process, some quantities interact:

Neuron responding to a electrical signal

- Electrical signal (I)
- Membrane potential (V)
- Perturbations
- Non measurable varying quantities
- Unknown constant values

Schematic representation of the functioning of the neuron

$$
\begin{array}{ll}
\leftrightarrow & u=I=\text { input } \\
\leftrightarrow & y=V=\text { output } \\
\leftrightarrow & b \\
\leftrightarrow & x \\
\leftrightarrow & p=\text { vector of unknown parameters. }
\end{array}
$$

Considered model

Given a system or a process, some quantities interact:

Neuron responding to a electrical signal

Schematic representation of the functioning of the neuron

$$
\left\{\begin{array}{l}
\dot{x}(t, p)=f(x(t, p), u(t), p) \tag{1}\\
y(t, p)=h(x(t, p), p)
\end{array}\right.
$$

$\checkmark f$, h : real functions, analytic on M (an open set of \mathbb{R}^{n}),
$\checkmark p \in \mathcal{U}_{\mathcal{P}}$: vector of parameters,
$\mathcal{U}_{\mathcal{P}} \subset \mathbb{R}^{r}$: an a priori known set of admissible parameters.

Assume that the process can be modeled by

$$
\left\{\begin{array}{l}
\dot{x}(t, p)=f(x(t, p), u(t), p), \\
y(t, p)=h(x(t, p), p) .
\end{array}\right.
$$

Two problems can be considered:
\checkmark The forward problem: given p, u, find x and y.
\checkmark The inverse problem: given y and u, estimate p.
(1) Identifiability problem

Question

From the output(s) of the system, is it possible to estimate uniquely the parameter vector p ?
If the answer is YES, then the model is said identifiable.
(2) Identification problem

Assume that the process can be modeled by

$$
\left\{\begin{array}{l}
\dot{x}(t, p)=f(x(t, p), u(t), p), \\
y(t, p)=h(x(t, p), p) .
\end{array}\right.
$$

Two problems can be considered:
\checkmark The forward problem: given p, u, find x and y.
\checkmark The inverse problem: given y and u, estimate p.
A property of lots of inverse problems: ill-posedness.

Well-posedness is the sense of Hadamard

A problem is said well-posed in the sense of Hadamard if it satisfies the following properties:
(1) Existence: For all (suitable) data, there exists a solution of the problem (in an appropriate sense)
(2) Unicity : for all available data, the solution is unique
(3) Stability : the solution depends continuously of the data.

Example: The differentiation and integration are two inverse problems of each other.

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has neurons
\checkmark The insects have approximatively of neurons
\checkmark Modern man has of neurons in its best form
\checkmark Every day we loose approximatively neurons, which is the equivalent of
\checkmark At 80 years old, the brain is only percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively of neurons
\checkmark Modern man has of neurons in its best form
\checkmark Every day we loose approximatively neurons, which is the equivalent of
\checkmark At 80 years old, the brain is only percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has of neurons in its best form
\checkmark Every day we loose approximatively neurons, which is the equivalent of
\checkmark At 80 years old, the brain is only percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has 86 billion of neurons in its best form
\checkmark Every day we loose approximatively neurons, which is the equivalent of
\checkmark At 80 years old, the brain is only percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has 86 billion of neurons in its best form
\checkmark Every day we loose approximatively 85.000 neurons, which is the equivalent of 31 millions by year (≈ 1 by sec)
\checkmark At 80 years old, the brain is only percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has 86 billion of neurons in its best form
\checkmark Every day we loose approximatively 85.000 neurons, which is the equivalent of 31 millions by year (≈ 1 by sec)
\checkmark At 80 years old, the brain is only 70 percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has 86 billion of neurons in its best form
\checkmark Every day we loose approximatively 85.000 neurons, which is the equivalent of 31 millions by year (≈ 1 by sec)
\checkmark At 80 years old, the brain is only 70 percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to $120 \mathrm{~m} / \mathrm{s}$, ie $430 \mathrm{~km} / \mathrm{h}$.

What about the neuron?

\checkmark Microscopic worm Caenorhabditis elegans ($\approx 1 \mathrm{~mm}$ de long) has 302 neurons
\checkmark The insects have approximatively one million of neurons
\checkmark Modern man has 86 billion of neurons in its best form
\checkmark Every day we loose approximatively 85.000 neurons, which is the equivalent of 31 millions by year (≈ 1 by sec)
\checkmark At 80 years old, the brain is only 70 percent of what it was around 20 years
\checkmark Nerve information passes from neurons to neurons, up to $120 \mathrm{~m} / \mathrm{s}$, ie $430 \mathrm{~km} / \mathrm{h}$.

Neuron

A neuron is a nerve cell, that is an electrically excitable cell that receives, processes, and transmits information through electrical and chemical signals.

Membrane

A lipid membrane
A membrane is composed of a lipid bilayer which separates the intracellular milieu and the extracellular milieu.

The main ions in a neuron are:

- Sodium $\left(\mathrm{Na}^{+}\right)$
- Potassium (K^{+})
- Calcium (Ca^{2+})
- Chlorure $\left(\mathrm{Cl}^{-}\right)$

- Unequally distribution of ions
on both sides of the membrane
- Specific channels for each ion
- Channels can be:
\checkmark open or close
\checkmark active or inactive.

However there is electroneutrality!

Some mechanisms permit to regulate ionic concentrations and to maintain them constant. Two types of transport:
\checkmark passive transport:

- the concentration gradient: ions go from the most concentrated milieu to the least concentrated milieu extracellular \rightarrow intracellular: $\mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{Ca}^{2+}$ intracellular \rightarrow extracellular: K^{+}
- electrical gradient: the membrane is electrically charged: negatively inside, positively outside extracellular \rightarrow intracellular: $\mathrm{K}^{+}, \mathrm{Na}^{+}$et Ca^{2+} are attracted inside the neuron intracellular \rightarrow extracellular: Cl^{-}
\checkmark active transport (NA/K pump) requiring energy.

Potential differences:
\checkmark the potential difference of the membrane:

$$
V_{m}=\underbrace{V_{i}}_{\text {intracellular potential }}-\underbrace{V_{e}}_{\text {extracellular potential }}
$$

\checkmark the potential difference due to the passage of an ion:
$V_{m}-$
$\underbrace{E_{i o n}}$
equilibrium potential of an ion
The current due to the passage of an ion in a channel:
$\underbrace{V_{m}-E_{i o n}}_{m V}=\underbrace{r}_{\text {resistance of channel }} \times \underbrace{I_{i o n}}_{\text {ionic current }(\mathrm{pA})} \Leftrightarrow I_{\text {ion }}=\underbrace{G}_{\text {conductance (siemens } S \text {) }}\left(V_{m}-E_{i o n}\right)$.

Modeling of a simple ion channel with one activation (m):

$$
I=G(V-E) \text { where } G=g m
$$

where

- $V(m V)$: voltage
- $g(n S)$: maximal conductance
- $E(m V)$: equilibrium potential
- m is the probability of a canal to be open

Modeling of a simple ion channel with one activation (m):

$$
I=G(V-E) \text { where } G=g m
$$

where

- $V(m V)$: voltage
- $g(n S)$: maximal conductance
- $E(m V)$: equilibrium potential
- m is the probability of a canal to be open

The equation describing the activation of the gates to the answer of the potential of membrane is

$$
\frac{d m}{d t}=\frac{m_{\infty}(V)-m}{\tau(V)}
$$

where

- $m_{\infty}(V)$: the equilibrium value of m,
- $\tau(V)$: times at which the equilibrium is attained.

Question

Is it possible to determine in a unique way m_{∞}, τ, g from the measurement of the current?

What can we measure?

The voltage-clamp protocol

- characterizes the activation or inactivation properties of the ionic canal
- necessitates to treat the membrane of the neuron (tetrodoxine)
- consists in holding the voltage $(=V)$ piecewise constant \hookrightarrow after a while, m_{∞}, τ can be considered as constant and we have

$$
\frac{d m}{d t}=\frac{m_{\infty}-m}{\tau}
$$

Assumptions

$\checkmark \quad V=$ constant input
$\checkmark \quad I=$ output ($=y$)
$\checkmark m=$ state variable $(=x)$

A first example: The equation of one ion channel with one activation variable:

$$
\left\{\begin{array} { l l }
{ I } & { = g m (V - E) } \\
{ \frac { d m } { d t } } & { = \frac { m _ { \infty } - m } { \tau } }
\end{array} \underset { \substack { \mathrm { u } : = \mathrm { V } - \mathrm { E } = c \mathrm { cst } , \\
\mathrm { y } : = 1 } } { \Longleftrightarrow } \left\{\begin{array}{ll}
y & =g m u \\
\frac{d m}{d t} & =\frac{m_{\infty}-m}{\tau}
\end{array}\right.\right.
$$

Controlled models $(u \neq 0)$ WITHOUT initial condition; $(\bar{x}, \bar{y})=$ unique set of solutions

- The model is globally identifiable if there exists an input u such that, for all $p \in \mathcal{U}_{p}$, one gets

$$
\left.\begin{array}{c}
\bar{y}(t, p) \neq \emptyset \tag{2}\\
\bar{y}(t, p) \cap \bar{y}(t, \bar{p}) \neq \emptyset, \forall t \geq 0, \bar{p} \in \mathcal{U}_{p}
\end{array}\right\} \Rightarrow p=\bar{p}
$$

- The model is locally identifiable if it is globally identifiable in an open neighborhood $v(p) \subset \mathcal{U}_{p}$ of p.

Proposition

If V is a constant input and I is an output of the model then the model is not identifiable, in particular with respect to τ and m_{∞}.

Proof.

A first example: The equation of one ion channel with one activation variable:

$$
\left\{\begin{array} { l l l }
{ I } & { = g m (V - E) } \\
{ \frac { d m } { d t } } & { = \frac { m _ { \infty } - m } { \tau } }
\end{array} \underset { \substack { \mathrm { u } : = \mathrm { V } - \mathrm { E } = c s t , \\
\mathrm { y } : = 1 } } { \Longleftrightarrow } \left\{\begin{array}{rl}
y & =g m u \\
\frac{d m}{d t} & =\frac{m_{\infty}-m}{\tau}
\end{array}\right.\right.
$$

Concretely

The model can produce exactly the same output for different parameter/initial condition values!

A first example: The equation of one ion channel with one activation variable:

$$
\left\{\begin{array} { r l }
{ l } & { = g m (V - E) } \\
{ \frac { d m } { d t } } & { = \frac { m _ { \infty } - m } { m ^ { 2 } } } \\
{ m (0) } & { = m _ { 0 } }
\end{array} \underset { \substack { u \\
y : = 1 \\
y : = - E = c s t } } { \Longleftrightarrow } \left\{\begin{array}{ll}
y & =g m u \\
m & =m_{\infty}+\left(m_{0}-m_{\infty}\right) e^{-\frac{t}{\tau}}
\end{array}\right.\right.
$$

Controlled model $(u \neq 0)$ WITH initial conditions; (x, y) unique solution

- The model is globally identifiable if there exists an input u such that, for all $p, \bar{p} \in \mathcal{U}_{p}$, there exists $t_{1}>0$ such that if for all $t \in\left[0, t_{1}\right]$, the equalities $y(t, p)=y(t, \bar{p})$ implies that $p=\bar{p}$.
- The model is locally identifiable if it is globally in an open neighborhood $v(p) \subset \mathcal{U}_{p}$ of p.

Proposition

If V is a constant input and l is an output of the model then the model is identifiable, in particular τ and m_{∞}.

Proof.

Summary

\checkmark Identifiability: based on specific relations called Input-Output (IO) polynomials.
\checkmark The Rosenfeld-Groebner algorithm permits to obtain them. They take the form
$P(y, u, p)=m_{0}(y, u)+\sum_{k=1}^{q} \gamma_{k}(p) m_{k}(y, u)=0$.
\checkmark If $\left(m_{k}(y, u)\right)_{k=1, \ldots, q}$ are linearly independent, the model is globally identifiable at p if for all $\bar{p} \in \mathcal{U}_{p}$

$$
\begin{equation*}
\forall k=1, \ldots, q, \gamma_{k}(\bar{p})=\gamma_{k}(p) \Rightarrow p=\bar{p} \tag{3}
\end{equation*}
$$

\checkmark If $\phi(p)=\left(\gamma_{k}(p)\right)_{k=1, \ldots, q}$, (3) consists in verifying that ϕ is injective.
\checkmark Initial conditions can be introduced with algebraic relations.

A (little) more complex example....

$$
\left\{\begin{array} { l l }
{ l = g m h (V - E) , } \\
{ \frac { d m } { d t } = \frac { m \infty - m } { \tau _ { m } } , } & { \multicolumn {1} { c } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , } & { x _ { 1 } = m , x _ { 2 } = h , u = v - E } \\
{ p _ { 1 } = \frac { 1 } { \tau _ { m } } , p _ { 2 } = m _ { \infty } }
\end{array} \quad \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2} \\
p_{3}=\frac{1}{\tau_{h}}, p_{4}=h_{\infty}, p_{5}=g
\end{array}\right.\right.
$$

Non identifiable mode!!

A (little) more complex example....

$$
\left\{\begin{array} { l }
{ I = g m h (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau m } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2}, \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right), \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right)
\end{array}\right.\right.
$$

Questions:

x Key parameters permitting to obtain the identifiability of one or some non measurable parameters and eventually the identifiability of the model?
x Roles of the constraints?
x Natural integration of the constraints or the initial conditions in the identifiability study?

$$
\left\{\begin{array} { l }
{ I = g m h (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau _ { m } } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2}, \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right), \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right) .
\end{array}\right.\right.
$$

Obtain from ϕ and a set of algebraic constraints a decision tree!

$$
\left\{\begin{array} { l }
{ l = g m h (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau _ { m } } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2}, \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right), \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right) .
\end{array}\right.\right.
$$

First step: Redefine the identifiability: Relative identifiability For example:

- p_{1} is not identifiable;
- p_{3} is relatively identifiable with respect to the set $\left\{p_{1}\right\}$;
- p_{5} relatively identifiable with respect to the set $\left\{p_{1}, p_{3}\right\}$;
- p_{2} and p_{4} are not relatively identifiable with respect to the set $\left\{p_{1}, p_{3}\right\}$.

$$
\left\{\begin{array} { l }
{ l = \operatorname { g m h } (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau _ { m } } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2}, \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right), \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right) .
\end{array}\right.\right.
$$

Second step: definition of a semi-algebraic set from

- $\phi(p)=\left(\gamma_{k}(p)\right)_{k=1, \ldots, 9}$ the coefficient vector of the IO polynomial:

$$
\begin{equation*}
\ddot{y}^{2}+\gamma_{1} y^{2}+\gamma_{2} y \dot{y}+\gamma_{3} y \ddot{y}+\gamma_{4} y+\gamma_{5} \dot{y}^{2}+\gamma_{6} \dot{y} \ddot{y}+\gamma_{7} \dot{y}-\gamma_{8} \ddot{y}+\gamma_{9}=0 \tag{4}
\end{equation*}
$$

- \mathcal{C} the semi-algebraic set defined by $C(p)$ composed of all algebraic equations and inequalities verified by the components of the parameter vector $p=\left(p_{1}, \ldots, p_{5}\right)$
to test

$$
\left\{\begin{array}{ll}
p \in \mathcal{C} & \\
\bar{p} \in \mathcal{C} & \\
p_{1} & =\bar{p}_{1}, \\
p_{3} & =\bar{p}_{3}, \\
\phi(p)=\phi(\bar{p})
\end{array} \quad \Rightarrow p_{5}=\bar{p}_{5}\right.
$$

$$
\left\{\begin{array} { l }
{ l = \operatorname { g m h } (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau _ { m } } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2} \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right) \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right) .
\end{array}\right.\right.
$$

Second step: definition of a semi-algebraic set from

- $\phi(p)=\left(\gamma_{k}(p)\right)_{k=1, \ldots, 9}$ the coefficient vector of the IO polynomial:

$$
\begin{equation*}
\ddot{y}^{2}+\gamma_{1} y^{2}+\gamma_{2} y \dot{y}+\gamma_{3} y \ddot{y}+\gamma_{4} y+\gamma_{5} \dot{y}^{2}+\gamma_{6} \dot{y} \ddot{y}+\gamma_{7} \dot{y}-\gamma_{8} \ddot{y}+\gamma_{9}=0 \tag{5}
\end{equation*}
$$

- \mathcal{C} the semi-algebraic set defined by $C(p)$ composed of all algebraic equations and inequalities verified by the components of the parameter vector $p=\left(p_{1}, \ldots, p_{5}\right)$
to test
$S_{p_{1}, p_{3}} \cup\left\{p_{5} \neq \bar{p}_{5}\right\} \quad$ has no real solution.
where
$S_{p_{1}, p_{3}}=C(p) \cup C(\bar{p}) \cup\left\{p_{1}=\bar{p}_{1}, p_{3}=\bar{p}_{3}\right\} \cup\left\{\gamma_{k}(p)=\gamma_{k}(\bar{p}) \mid k=1, \ldots, 9\right\}$.
\Longrightarrow development of a method and the algorithm IdentifiabilityTree.

$$
\left\{\begin{array} { l }
{ l = g m h (V - E) , } \\
{ \frac { d m } { d t } = \frac { m _ { \infty } - m } { \tau _ { m } } , } \\
{ \frac { d h } { d t } = \frac { h _ { \infty } - h } { \tau _ { h } } , }
\end{array} \quad \begin{array} { l }
{ x _ { 1 } = m , x _ { 2 } = h , u = v - E } \\
{ p _ { 1 } = \frac { 1 } { \tau _ { m } } , p _ { 2 } = m _ { \infty } }
\end{array} \quad \left\{\begin{array}{l}
y=u p_{5} x_{1} x_{2} \\
\dot{x}_{1}=p_{1}\left(p_{2}-x_{1}\right) \\
\dot{x}_{2}=p_{3}\left(p_{4}-x_{2}\right)
\end{array}\right.\right.
$$

Results of the IdentifiabilityTree algorithm:

- One of the branch: $\left[D_{2}, D_{4}, p_{5}, D_{3}, p_{1}\right]$
- Two groups of parameters $\left\{p_{2}, p_{4}, p_{5}\right\}$ and $\left\{p_{1}, p_{3}\right\}$.
- Determination of the two parameters p_{2}, p_{4} and the parameter p_{3} ensures the identifiability of all the parameters.

The voltage clamp experiment:

(1) Estimate the triplet $\left\{p_{2}, p_{4}, p_{5}\right\}$ from $y=u p_{5} x_{1} x_{2}$ in fixing the voltage at different values and measuring the transmembrane current trace
(V constant: $\left.I=(V-E) p_{5} p_{2} p_{4}\right)$;
(2) Estimate p_{1} and p_{3} at a particular voltage value dependence.

Conclusion

Identifiability study:
\checkmark Ensures good properties to the mathematical model;
\checkmark Extension of this definition;
\checkmark Other examples: strategy to reparametrize unidentifiable ODE models into identifiable ones (Evans 2000, Meshkat 2011)....

The models

$$
\left\{\begin{array}{l}
\dot{x}(t, p, f)=g(x(t, p), u(t), f, p), \tag{6}\\
y(t, p, f)=h(x(t, p), u(t), f, p) \\
x\left(t_{0}, p, f\right)=x_{0} \\
t_{0} \leq t \leq T
\end{array}\right.
$$

Definitions

$\checkmark \mathbf{A}$ fault is an unpermitted deviation of at least one parameter of the system from the acceptable standard condition.
\checkmark Fault diagnosability establishes which faults can be discriminated using the available sensors in a system.
\checkmark Fault diagnosis consists in fault detection of the malfunction of a system and the fault isolation of the faulty component.
$f=0$ means no fault. In the case of uncontrolled models $u=0$.

Example: Mass $(m=1)$ attached to an elastic spring (force k) u external force ($\neq 0$), $d \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Example: Mass $(m=1)$ attached to an elastic spring (force k) u external force ($\neq 0$), $d \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature
$\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$, in particular:

$$
\begin{aligned}
& x \operatorname{ASig}\left(f_{\{1\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d\right) \text { et } \operatorname{ASig}\left(f_{\{1,2\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right) . \\
& x \operatorname{ASig}\left(f_{\{1\}}\right) \cap \operatorname{ASig}\left(f_{\{1,2\}}\right)=\emptyset \text { for all } f_{2} \in(0,2),-d \neq-d-f_{2} .
\end{aligned}
$$

Example: Mass $(m=1)$ attached to an elastic spring (force k) u external force $(\not \equiv 0)$, $\bar{d} \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature
$\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$, in particular:

$$
\begin{aligned}
& x \operatorname{ASig}\left(f_{\{1\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d\right) \text { et } \operatorname{ASig}\left(f_{\{1,2\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right) . \\
& x \operatorname{ASig}\left(f_{\{1\}}\right) \cap \operatorname{ASig}\left(f_{\{1,2\}}\right)=\emptyset \text { for all } f_{2} \in(0,2),-d \neq-d-f_{2}
\end{aligned}
$$

Definitions

x Two sets of faults are said algebraic discriminable if there exists an algebraic signature, such that, for all input u, the two signatures have an empty intersection.
x If all the distinct sets of faults are algebraic discriminable, the model is said algebraically diagnosable.

Example: Mass $(m=1)$ attached to an elastic spring (force k) u external force $(\not \equiv 0)$, $\bar{d} \geq 1$

$$
\ddot{y}+k\left(f_{1}-1\right)^{2} y-\left(d+f_{2}\right) u=0 \quad \phi(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)
$$

Algebraic signature
$\operatorname{ASig}(f)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$, in particular:

$$
\begin{aligned}
& x \operatorname{ASig}\left(f_{\{1\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d\right) \text { et } \operatorname{ASig}\left(f_{\{1,2\}}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right) . \\
& x \operatorname{ASig}\left(f_{\{1\}}\right) \cap \operatorname{ASig}\left(f_{\{1,2\}}\right)=\emptyset \text { for all } f_{2} \in(0,2),-d \neq-d-f_{2} .
\end{aligned}
$$

Definitions

x Two sets of faults are said algebraic discriminable if there exists an algebraic signature, such that, for all input u, the two signatures have an empty intersection.
x If all the distinct sets of faults are algebraic discriminable, the model is said algebraically diagnosable.

Remark

The current algebraic signature is not sufficiently discriminant!

$$
P(y, u, p, f)=m_{0}(y, u)+\sum_{k=1}^{q} \gamma_{k}(p, f) m_{k}(y, u)=0 \quad \text { and }\left\{\begin{array}{l}
\gamma_{1}(p, f)=\phi_{1} \\
\vdots \\
\gamma_{q}(p, f)=\phi_{q}
\end{array}\right.
$$

Algorithm Algebraic-Signature
\checkmark Groebner basis computation;
$P(y, u, p, f)=m_{0}(y, u)+\sum_{k=1}^{a} \gamma_{k}(p, f) m_{k}(y, u)=0$ and $\left\{\begin{array}{l}\gamma_{1}(p, f)=\phi_{1}, \\ \vdots \\ \gamma_{q}(p, f)=\phi_{q},\end{array}\right.$
Algorithm Algebraic-Signature
\checkmark Groebner basis computation;
Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, f_{1} \in[0,2), f_{2} \in[0,2)$
$\overline{\text { with } \phi(f)}=\left(\phi_{1}, \phi_{2}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$.
Algorithm Algebraic_signature: $\operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.

Remarks

\checkmark Algebraic signature: each of its component depends only on ϕ_{k} and the parameters of the system;
\checkmark By construction, one of the component of the algebraic signature vanishes when at least one specific (multiple) fault occurs.
$P(y, u, p, f)=m_{0}(y, u)+\sum_{k=1}^{a} \gamma_{k}(p, f) m_{k}(y, u)=0$ and $\left\{\begin{array}{l}\gamma_{1}(p, f)=\phi_{1}, \\ \vdots \\ \gamma_{q}(p, f)=\phi_{q},\end{array}\right.$
Algorithm Algebraic-Signature
\checkmark Groebner basis computation;
Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, f_{1} \in[0,2), f_{2} \in[0,2)$
$\overline{\text { with } \phi(f)}=\left(\phi_{1}, \phi_{2}\right)=\left(k\left(f_{1}-1\right)^{2},-d-f_{2}\right)$.
Algorithm Algebraic_signature: $\operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.

Remarks

\checkmark Algebraic signature: each of its component depends only on ϕ_{k} and the parameters of the system;
\checkmark By construction, one of the component of the algebraic signature vanishes when at least one specific (multiple) fault occurs.

How to certify the values of ASig?

$$
\begin{array}{cccc}
\text { ASig : } & \mathbb{R}^{e} & \longrightarrow & \left(R\left[\phi_{1}, \ldots, \phi_{N}\right]\right)^{\prime} \\
f & \mapsto & \left(\operatorname{ASig}_{1}(\phi), \ldots, \operatorname{ASig}_{l}(\phi)\right)
\end{array}
$$

Notations: (\mathcal{N} subset of $\{1, \ldots, e\}$)

- $C_{p, f}=$ set of all algebraic equations and inequalities verified by p and f.

Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, \operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.
$C_{p, f}=\left\{0<k<4,1 \leq d, 0 \leq f_{1}<2,0 \leq f_{2}<2\right\}$.

- $S_{\mathcal{N}}=\left\{\gamma_{1}(p, f)=\phi_{1}, \ldots, \gamma_{q}(p, f)=\phi_{N}\right\} \cup C_{p, f} \cup\left\{f_{i} \neq 0 \mid i \in \mathcal{N}\right\} \cup\left\{f_{i}=0 \mid i \notin \mathcal{N}\right\}$.

Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, \operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.
If $\mathcal{N}=\{1\}$ then $S_{\mathcal{N}}=\left\{k\left(f_{1}-1\right)=\phi_{1},\left(d+f_{2}\right)=\phi_{2}\right\} \cup C_{p, t} \cup\left\{f_{1} \neq 0\right\} \cup\left\{f_{2}=0\right\} ;$
If $\mathcal{N}=\{1,2\}$ then $S_{\mathcal{N}}=\left\{k\left(f_{1}-1\right)=\phi_{1},\left(d+f_{2}\right)=\phi_{2}\right\} \cup C_{p, f} \cup\left\{f_{1} \neq 0\right\} \cup\left\{f_{2} \neq 0\right\}$.

$$
\begin{array}{cccc}
\text { ASig : } \quad \mathbb{R}^{e} & \longrightarrow & \left(R\left[\phi_{1}, \ldots, \phi_{N}\right]\right)^{\prime} \\
f & \mapsto & \left(\operatorname{ASig}_{1}(\phi), \ldots, \text { ASig }_{l}(\phi)\right) .
\end{array}
$$

Criterion

Two criterion to discriminate multiple fault signatures:

- For the multiple fault $f_{\mathcal{N}}, S_{\mathcal{N}} \cup\left\{A\right.$ Sig $\left._{k}\left(f_{\mathcal{N}}\right)=0\right\}=\emptyset$?
- When $\operatorname{ASig}_{j}(f)=0$ is equivalent to $f_{i}=0$?
\hookrightarrow Algorithm ExpectedValuesOfASign.
Example: $\ddot{x}+k\left(f_{1}-1\right)^{2} x-\left(d+f_{2}\right) u=0, \operatorname{ASig}(f)=\left(\phi_{1}-k, \phi_{2}+d\right)$.

$$
\begin{gathered}
C_{p, f}=\{0<k<4,1 \leq d, \\
\left.0 \leq f_{1}<2,0 \leq f_{2}<2\right\}
\end{gathered}
$$

f	ASig $_{1}(f)$	ASig
$2(f)$		
$f_{\{ \}}$	0	0
$f_{\{1\}}$	\varnothing	0
$f_{\{2\}}$	0	\varnothing
$f_{\{1,2\}}$	\varnothing	\varnothing

$$
C_{p, f}=\emptyset
$$

f	ASig $_{1}(f)$	ASig $g_{2}(f)$
$f_{\{ \}}$	0	0
$f_{\{1\}}$		0
$f_{\{2\}}$	0	\varnothing
$f_{\{1,2\}}$		\varnothing

Conclusion

Diagnosability study:
\checkmark from the data collected on the physical system, can the chosen mathematical model permit to discriminate predefined faults that may occur on the system?
\checkmark New example of the interest of computer algebra and semialgebraic approach;
\checkmark Precomputations lead to efficient numerical procedures \rightarrow detect and isolate (multiple) faults.

Conclusion

Diagnosability study:
\checkmark from the data collected on the physical system, can the chosen mathematical model permit to discriminate predefined faults that may occur on the system?
\checkmark New example of the interest of computer algebra and semialgebraic approach;
\checkmark Precomputations lead to efficient numerical procedures \rightarrow detect and isolate (multiple) faults.

Procedure RelativeIdentifiabilityTree

Objective: det. the keys param. which estimations turn the model into an ident. one. Inputs: exhaustive summary, constraints on the parameters .
Output: A set of lists def. the relative identifiability tree \mathcal{T} (any prefix b of $I \in \mathcal{T}$ is followed in / by an identifiable parameter wrt to b if there exists one.)
Convention: $-p$ in a list I means that p is not rel. identifiable wrt the param appearing before p in the list l.

Branch and cut tech:

- Parameters relatively ident. wrt the same set of parameters can be permuted.
- The relative identifiability wrt a list of param. does not depend on the list of parameters but on the set they define.

Procedure ASign - Computation of an algebraic signature Objective: obtaining of polynomials discriminating the faults and depending only on the parameters and the components of the exhaustive summary.
Inputs: exhaustive summary, single faults list.
Output: an algebraic signature.

Procedure ExpectedValuesOfASign

Objective: det. the (multiple) faults which can be discriminated with the alg. signature. Inputs: Alg signature, exhaustive summary, single faults list, param constraints.
Outputs: the lists composed of a (multiple) faults and of the corresponding vector of expected values of the algebraic signature.

Procedure SingleFaultCharacterization

Objective: Reducing the number of tests needed to determine the table of the expect. values of the algebraic signature.
Inputs: Alg. signature, exhaustive summary, single faults list, parameters contraints. Output: list of 2-uplets $\left[f_{i}\right.$, ASig $\left._{k}\right]$ such that $f_{i} \neq 0 \Leftrightarrow$ ASig $_{k} \neq 0$

\rightarrow The output can be used as an optional argument in proc. ExpectedValuesOfASign.

THANK YOU FOR YOUR ATTENTION and HAVE FUN WITH THE TUTORIAL!

- F. Boulier. Study and implementation of some algorithms in differential algebra. PhD thesis, Université des Sciences et Technologie de Lille - Lille I, June 1994.
- F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representation for radicals of finitely generated differential ideals. Technical report, Université Lille I, LIFL, 59655, Villeneuve d'Ascq, 1997.
- C. Chen, J. H. Davenport, J. P. May, M. Moreno Maza, B. Xia, and R. Xiao. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation, 49:3-26, 2013.
- D. Csercsik, K.M. Hangos, G. Szederkényi, Identifiability and parameter estimation of a single Hodgkin-Huxley type voltage dependent ion channel under voltage step measurements conditions, Neurocomputing 77, 178-188, 2012.
- L. Denis-Vidal, G. Joly-Blanchard, C. Noiret, and M. Petitot. An algorithm to test identifiability of non-linear systems. In Proceedings of 5th IFAC Symposium on Nonlinear Control Systems, volume 7, pages 174-178, St Petersburg, Russia, 2001.
- M.S. El Din. Raglib: A library for real solving polynomial systems of equations and inequalities, 2007.
- J. C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 02, page 75-83, New York, NY, USA, 2002. Association for Computing Machinery
- F. Lemaire, C. Chen., J. H. Davenport, M. Moreno Maza, N. Phisanbut, B. Xia, R. Xiao, Y. Xie, Solving semi-algebraic systems with the RegularChains library in Maple, MACIS 2011.
- N. Verdière, C. Jauberthie, L. Travé-Massuyès, Functional diagnosability and detectability of nonlinear models based on analytical redundancy relations, Journal of Process Control, September 2014, Vol. 35, 1-10.
- N. Verdière, S. Orange, Diagnosability in the case of multi-faults in nonlinear models, Journal of Process Control, Vol 69, pp. 1-7, 2018.

