David Manceau

LMAH (Laboratoire de Mathématiques appliquées du Havre)

Université Le Havre Normandie
25 rue Philippe Lebon,
BP 540,
76058 Le Havre cedex.

Tel : 33 (0)2 32 74 43 17

Maître de conférences (associate professor).

referencement google


  1. N. Verdière, D. Manceau, S. Zhu & L. Denis-Vidal, Inverse problem for a coupling model of reaction-diffusion and ordinary differential equations systems. Application to an epidemiological model, Appl. Math. Comput. 375 (2020).

  2. A. Ducrot & D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: strong convergence to equilibrium, Proc. Amer. Math. Soc. 148 (2020), no. 8, 3381-3392.

  3. S. Zhu, N. Verdière, D. Manceau, L. Denis-Vidal & D. Kateb, Existence and positivity of a global solution in a spatio-temporal model of the chikungunya disease, J. Nonlinear Syst. Appl., 7(1), 21-30, 2018.

  4. R. Labbas, S. Maingot, D. Manceau & A. Thorel, On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain, J. Math. Anal. Appl., 450(1), 351-376, 2017.

  5. E. Bonnetier, D. Manceau & F. Triki, Asymptotics of the velocity of a dilute suspension of droplets with interfacial tension, Quart. Appl. Math., 71(1), 89-117, 2013.

  6. D. Manceau, Duality and compactness results in high-contrast homogenization of incompressible two-dimensional elasticity problems, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), no. 5, 997-1015.

  7. M. Briane & D. Manceau, Duality results in the homogenization of two-dimensional high-contrast conductivities, Networks and Heterogeneous Media, 3 (3) (2008), 935-969.

  8. M. Briane, D. Manceau & G.W. Milton, Homogenization of the two-dimensional Hall effect, J. Math. Ana. App. 339 (2008), 1468-1484.

  9. D. Manceau, Small amplitude homogenization applied to models of non-periodic fibered materials, M2AN Math. Model. Numer. Anal. 41 (2007), no. 6, 1061-1087.