[118]
Synchronization of Turing patterns in complex networks of reaction-diffusion systems set in distinct domains,
AA, GC, AT, Nonlinearity, Vol. 37(2), 2024.
DOI 10.1088/1361-6544/ad1a48,
[117]
Analysis of a spatio-temporal advection-diffusion model for human behaviors
during a catastrophic event,
by K.Khalil, V.L. D.M. A.A. DP.
M3AS (Mathematical Models and Methods in Applied Sciences), Vol. 34(7), pp:1309-1342, 2024.
https://doi.org/10.1142/S0218202524500234
[116]
Emergent dynamics in fractional-order Wilson-Cowan neural network systems,
Mondal, Kaslik,AA, etal,
Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena,
Volume 181,114687, 2024.
[115]
Hopf bifurcation and normal form in a delayed oncolytic model,
NF, MA, RY, AA, LB to appear in International Journal of Biomathematics, 2024,
https://doi.org/10.1142/S1793524523501115
[114]
Emergent Properties in a V1-Inspired Network of Hodgkin-Huxley Neurons,
M Maama, B.Ambrosio, A.A., & S. Mintchev,
Mathematical Modelling of Natural Phenomena, Vol. 19 - 3, 2024.
See: arXiv:2004.10656 :
,
DOI: https://doi.org/10.1051/mmnp/2024001
[113]
Synchronization in a Three Level Network of All-to-All Periodically Forced Hodgkin–Huxley
Reaction–Diffusion Equations,
B.A. , A.A. & A.O. Mathematics, 12(9), pp:1382, 2024.
,
https://doi.org/10.3390/math12091382
[112]
Trends and paradoxes of competitive evolution in the predation mechanism,
E.Sanchez-Palenica & A.A. Mathematics, 2024, 12(7), pp:1117.
,
https://doi.org/10.3390/math12071117
-
[111]
A survey on constructing Lyapunov functions for reaction-diffusion systems with delay and their application in biology,
F.Najm, R.Y, A.A., etal.,
in Mathematical Modeling and Computing, Vol.10(3), pp. 965–975, 2023.
https://doi.org/10.23939/mmc2023.03.965 ,
[110]
Mathematical analysis of an epidemic model with direct and
indirect transmission modes and two delays,
Najm F., Yafia R., A.A. etal,
Nonautonomous Dynamical Systems, 10 (1), 20230103, 2023.
DOI: https://doi.org/10.1515/msds-2023-0103 ,
[109]
Non trivial dynamics in the FitzHugh-Rinzel model and
non-homogeneous oscillatory-excitable reaction-diffusions
systems,
B.Ambrosio, A.A. etal, in Biology, 12(7), 918, 2023.
https://doi.org/10.3390/biology12070918 ,
[108]
Modeling and Analysis of the Impact of Risk Culture on Human Behavior during a Catastrophic Event,
Lanza,V. etal,
in Sustainability, Vol. 15(14), 11063, 2023.
https://doi.org/10.3390/su151411063 ,
[107]
Gaining profound knowledge of cholera outbreak: the significance of
the Allee effect on bacterial population growth and its implications for
human-environment health, G.Kolaye, A.A., etal.
in Sustainability, Vol. 15(13), 10384, 2023.
https://doi.org/10.3390/su151310384 ,
[106]
Study of the Effect of Rescuers and the Use of a Massive Alarm in a Population in a Disaster Situation,
V.N., D.P. etal,
in Sustainability, Vol. 15(12), 9474, 2023.
https://doi.org/10.3390/su15129474 ,
[105]
Turing Bifurcation Induced by Cross-Diffusion and Amplitude Equation in Oncolytic Therapeutic
Model: Viruses as Anti-Tumor Means,
F.Najm, R.Y, A.A., IJBC,
Vol. 33(5) pp:2350062, 2023.
DOI: 10.1142/S0218127423500621
[104]
Traveling pulses and its wave solution scheme in a diffusively coupled 2D Hindmarsh-Rose excitable systems,
(S.Das, etal, A.A. ),
Nonlinear Dynamics, Vol. 111, pp:6745–6755, 2023.
https://doi.org/10.1007/s11071-022-08168-x
[103]
Feedback stabilization for prey predator general model with diffusion via multiplicative controls,
(Lamrani, ElHarraki, & A.A.), in AIMS Mathematics,
Vol. 8(1), pp: 2360-2385, 2023.
doi: 10.3934/math.2023122
-
[102]
Emergence of Canard induced mixed mode oscillations in a slow-fast dynamics of a biophysical excitable model,
Sharma, Mondal, A.Alaoui., J.Ma,
Chaos, Solitons and Fractals, 164, 112669, 2022.
[101]
The generation of diverse traveling pulses and its solution scheme in an excitable slow-fast dynamics
,
A.Mondal, AA, etal,
Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 32(8), pp: 083121, 2022.
[100]
Hopf Bifurcation in Oncolytic Therapeutic Approache Modeling:
Viruses as Anti-Tumor Weapons With Viral Lytic Cycle,
F.Najm, R.Y, A.A., IJBC, Vol. 32(11), pp:2250171, 2022.
DOI: 10.1142/S0218127422501711
[99]
Mathematical modeling of COVID-19 pandemic in the context of sub-Saharan Africa: a short-term forecasting in Cameroon and Gabon
,
C.Nkwayep, S.Bowong, B.Tsanou, M.A. Aziz-Alaoui, J. Kurths,
IMA Journal of Mathematical Medicine and Biology, Vol. 39(1), pp:1-48, 2022, dqab020,
https://doi.org/10.1093/imammb/dqab020.
[98]
Independent vertex sets in the Zykov sum,
Y.Liao, A.A. & Y.H. in Discrete Applied Mathematics, Vol. 306, pp:133-137, 2022.
https://doi.org/10.1016/j.dam.2021.09.027.
[ - ]
Editorial: Modeling brain function at the level of neurons and circuits via computational and data-driven approaches,
RK Upadhyay, D Ghosh, MA Aziz-Alaoui, M Uzuntarla, Edited special issue,
Frontiers in Computational Neuroscience, Vol. 16 : 965735, 2022.
doi: 10.3389/fncom.2022.965735.
See : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421231/
-
[97]
Opinion diffusion in two-layer interconnected networks,
C.Liu, X.Wu, R.Niu, A.A. & ,J.Lu.
in
IEEE Transactions on Circuits and Systems I: Regular Papers, Volume: 68(9), pp:3772-3783, 2021.
DOI:10.1109/TCSI.2021.3093537.
[96]
Bifurcations and synchronization in networks of unstable reaction–-diffusion systems,
A.Miranville, G.Cantin & A.A.,
Journal of Nonlinear Science, Vol.31(2), article n°44, 2021.
https://doi.org/10.1007/s00332-021-09701-9
[95]
SIARD Model and Effect of Lockdown on the Dynamics of COVID-19 Disease with non Total Immunity,
M.Aziz-Alaoui, F.Najm, R. Yafia,
Mathematical Modelling of Natural Phenomena, pp:1-15, Vol.16(31), 2021,
https://doi.org/10.1051/mmnp/2021025
[94]
An analytical scheme on complete integrability of 2D biophysical excitable systems,
A. Mondal, K.C. Mistri, M.A.Aziz-Alaoui, R.K. Upadhyay,
Physica A: Statistical Mechanics and its Applications Vol. 573, pp:125924,
Biophysics and Systems biology, 2021,
https://doi.org/10.1016/j.physa.2021.125924
[93]
Prevalence-based modeling approach of schistosomiasis: global stability
analysis and integrated control assessment,
Aziz-Alaoui M., Lubuma J. & Tsanou B.
Computational and Applied Mathematics, Springer, 40(1), 2021,
https://doi.org/10.1007/s40314-021-01414-9
[92]
Deciphering role of inter and intracity human dispersal on epidemic spread via coupled reaction-diffusion models,
Aziz-Alaoui M. & Roy P., Journal of Applied Mathematics and Computing, Vol. 66, pp:769–808,
Springer, 2021.
https://doi.org/10.1007/s12190-020-01450-4
[91]
On the modeling of the three types of non-spiking neurons of the Caenorhabditis elegans,
Naudin L, Corson N, Aziz-Alaoui M, etal., in
International Journal of Neural Systems (World Scientific),
Vol. 31(2), 2050063, 2021.
https:///dx.doi.org/10.1142/S012906572050063X
[90]
Dimension estimate of attractors for complex networks of reaction-diffusion systems
applied to an ecological model,
Cantin G. & A.A. , in Communications on Pure and Applied Analysis, Vol.20(2), 623-650, 2021,
doi: 10.3934/cpaa.2020283.
[89]
Propagation of bursting oscillations in coupled non-homogeneous Hodgkin-Huxley
Reaction-Diffusion systems
(B. Ambrosio, M.A. Aziz-Alaoui, A. Balti), in Differential Equations and Dynamical Systems,
vol.29(4), pp:841–855, 2021.
https://doi.org/10.1007/s12591-017-0366-6.
See Here.
-
[88]
On a coupled time-dependent SIR models fitting with New York and New-Jersey states COVID-19 data,
(B.Ambrosio & A.A.), in Biology, Vol. 9(6), 135, 2020.
https://doi.org/10.3390/biology9060135.
[87]
Spectra of generalized windmill networks: Analytical solutions and applications,
(Y.Liao & A.A. & Y Chen), in
International Journal of Modern Physics C,
Vol. 31(11), Article No. 2050159, World Sc. 2020,
DOI : https://doi.org/10.1142/S0129183120501594
[86]
Optimal networks for exact controllability
(Y.Liao, M.M. & A.A.)
in International Journal of Modern Physics C, World Sc. Vol. 31(10), pp: 2050144,
DOI : https://doi.org/10.1142/S0129183120501442
[85]
Oscillations induced by Quiescent Adult Female in
a Model of Wild Aedes Aegypti Mosquitoes
(A.Aghriche, R.Yafia, M.Aziz-Alaoui, A.Tridane),
DCDS-S,
Vol.13, Number 9, 2020, pp. 2443-2463.
doi:10.3934/dcdss.2020194,
-
[84]
Large-time dynamics in complex networks of reaction–diffusion systems applied to a panic model
(G.Cantin, M.A. Aziz-Alaoui, N.V.),
IMA Journal of Applied Mathematics, Vol. 84(5), 2019, pp:974–1000.
https://doi.org/10.1093/imamat/hxz022.
[83]
The behavior of Tutte polynomials of graphs under five graph operations and its applications,
(Y.Liao, M.Aziz-Alaoui, J.Zhao & Y.Hou),
Applied Mathematics and Computation,
Vol. 363, Pages 1-15: 124641, 2019.
https://doi.org/10.1016/j.amc.2019.124641
[82]
Dynamical Behavior of a Delayed Predator-prey Model in Periodically Fluctuating Environments
(A.Moussaoui and M.Aziz-Alaoui),
Discontinuity, Nonlinearity and Complexity, vol.8(3), pp:325-340 2019,
[81]
Large Time Behavior and Synchronization of Complex Networks
of Reaction-Diffusion Systems of FitzHugh-Nagumo Type,
(B. Ambrosio, M.A. Aziz-Alaoui, V.L.E. Phan),
in IMA Journal of Applied Mathematics,
Vol. 84(2), Pages 416–443, 2019.
https://doi.org/10.1093/imamat/hxy064,
[80]
Oscillations Induced by Quiescent Adult Female in a Reaction-Diffusion Model of
Wild Aedes Aegypti Mosquitoes
(A. Aghriche, R. Yafia, M.Aziz-Alaoui, A. Tridane, F.Rihan),
International journal of Bifurcation & Chaos,
Vol.29(13), pp:1950189 (16 pages), 2019.
[79]
Dynamics Analysis and Optimality in Selective Harvesting Predator-Prey
Model With Modified Leslie-Gower and Holling-Type II ,
(W.Abid, R.Y. & M.Aziz-Alaoui),
Nonautonomous Dynamical Systems, Vol.6(1), 1-17,
2019.
[78]
Diffusion dynamics of a conductance based neuronal population,
(A. Mondal, S.K, R.U, M.Aziz-Alaoui, etal),
Physical Review E, Vol. 99(4), 042307, 2019.
[77]
The number of spanning trees of a hybrid network created by inner-outer iteration,
(Y. Liao, M. Maama, M.A. Aziz-Alaoui), Physica Scripta,
Vol.94(10), 2019.
[76]
Mathematical assessment of the role of environmental factors on the dynamical transmission of cholera,
(GG. Kolaye, S. Bowong, R. Houe, M. Aziz-Alaoui, M. Cadivel),
Communications in Nonlinear Science and Numerical Simulation, Vol.67, 203-222, 2019.
[75]
Tutte polynomials of two self-similar network models,
(Y.Liao, X.Xie, Y.Hou & A.A), in Journal of Statistical Physics, Vol :174(4),
pp:893–905, 2019.
https://doi.org/10.1007/s10955-018-2204-9.
-
[74]
Permanence and extinction of a diffusive predator-prey model with Robin boundary conditions,
(M.A. Aziz-Alaoui, M.O.Daher, A.Moussaoui). Acta Biotheoretica, Vol. 66(4), pp:367–378, 2018.
DOI : https://doi.org/10.1007/s10441-018-9332-0
[73]
Canard Phenomenon in a Slow-Fast modified Leslie-Gower model
(B. Ambrosio, M.A. Aziz-Alaoui, A. Yafia),
Mathematical Biosciences , Vol.295, pp:48–54, 2018.
See https://arxiv.org/abs/1703.09266.
[72]
Predator-prey dynamics with seasonal water level fluctuations
(A.Moussaoui, M.Aziz-Alaoui, S.Bassaid), Journal of Biological Systems,
Vol. 26, No. 4, pp:495–510, 2018.
[71]
Global Attractor of Complex Networks of Reaction-Diffusion Systems of Fitzhugh-Nagumo
Type,
(B.Ambrosio, M.A. Aziz-Alaoui & V.L.E.Phan), in DCDS-B,
Vol.23(9), pp:3787-3797, 2018,
doi: 10.3934/dcdsb.2018077.
[70]
Optimal harvesting and Stability for a prey-predator model,
(K.Belkhodja, A. Moussaoui, M.A. Aziz Alaoui), Nonlinear Analysis Real World Applications,
Vol.39, pp:321-336, 2018.
[69]
The Effect of non-Selective Harvesting in Predator-Prey Model
With Modified Leslie-Gower and Holling Type II Schemes,
(I.ElHarraki, R.Yafia, M. Aziz-Alaoui, A.Boutoulout),
in
Discontinuity, Nonlinearity and Complexity, Vol.7(4), pp:413-427, 2018.
Doi:10.5890/DNC.2018.12.006
[68]
Turing instability and Hopf Bifurcation in a Modified Leslie-Gower Predator-Prey
Model with Cross-Diffusion
(W Abid, R Yafia, M.A. Aziz-Alaoui, A Aghriche)
International Journal of Bifurcation and Chaos, Vol. 28, No. 7, pp:1850089, 2018
[67]
A multi-base Harmonic Balance method applied to Hodgkin-Huxley model,
(A.Balti, V.Lanza, & A.A.), in Mathematical Biosciences and Engineering,
Vol. 15(3), pp:807-825, 2018.
doi:10.3934/mbe.2018036.
[66]
A Network Model for Control of Dengue Epidemic Using Sterile Insect Technique,
(A. Mishra, B.A., S.G., A.A.), Mathematical Biosciences and Engineering,
Vol.15(2), pp: 441–460, 2018. Doi:10.3934/mbe.2018020,
-
[65]
Chaos in fractional order cubic Chua system and synchronization,
(Odibat Z., A.A.,etal.)
International Journal of Bifurcation and Chaos,
Vol. 27(10), pp:1750161 , 2017.
[64]
Permanence and periodic solution for a modified Leslie-Gower type predator-prey
model with diffusion and non constant coefficients,
(A. Moussaoui, M.A. Aziz-Alaoui, R.Yafia), BIOMATH, Vol. 6(1),
1707107,
pp:1-8, 2017.
DOI: http://dx.doi.org/10.11145/j.biomath.2017.07.107 .
See
[63]
Synchronisation analysis through coupling mechanism in realistic neural models,
(R.K. Upadhyay, A. Mondal & M. Aziz-Alaoui), Applied Mathematical Modelling,
Vol.44, pp:557–575, 2017.
See
[62]
Knowledge Diffusion in Complex Networks,
(Y.Zhang, X.Li, M.Aziz-Alaoui, C.Bertelle, J.Guan, S.Zhou)
Concurrency and Computation: Practice and Experience. Vol.29 (3), 2017
13 pages.
First published online (wileyonlinelibrary.com): 24 Feb 2016, DOI: 10.1002/cpe.3791,
-
[61]
Basin of attraction of solutions with pattern formation in slow-fast
symmetric reaction-diffusion systems,
(B.Ambrosio & M. Aziz-Alaoui), Acta Biotheoretica
Vol. 64(4), pp:311-325, 2016.
DOI: 10.1007/s10441-016-9294-z .
See
[60]
Synchronization for networks of coupled nonlinear systems with external disturbances,
(Q. Zhang, A.A. & C.B.), IMA JOURNAL of Mathematical Control and Information, Vol. 33(2),
191-207, 2016.
First published online October 21, 2014.
See http://imamci.oxfordjournals.org/,
doi:10.1093/imamci/dnu038,
See
[59]
Mathematical Modeling of Human Behaviors During Catastrophic Events:
Stability and Bifurcations,
(G. Cantin et al.), International Journal of Bifurcation and Chaos,
Vol. 26, No. 10, 1630025, 2016.
[58]
Sinusoidal disturbance induced topology identification of Hindmarsh-Rose neural networks
(Zhao J, A.A., C.B, & N.C.), Science China Information Sciences,
Vol.59(11): 112205, pp: 112205:1–112205:9, 2016.
DOI: 10.1007/s11432-015-0915-9 ,
See
Here, and
pdf Here
[57]
Review on Finite
Difference Method for Reaction-Diffusion Equation Defined on a Circular Domain,
(W.Abid, R Yafia, M.A.Aziz-Alaoui, H.Bouhafa & A.Abichou).
Discontinuity, Nonlinearity and Complexity, Vol. 5(2), pp: 133–144, 2016.
See
[56]
Signals and Systems in Learning and Memory,
(R.Upadhyay, Aziz-Alaoui, A.M. , V.R.)
Journal of Nonlinear Systems and Applications, Vol.5(2), 2016, Pages 66-77
[55]
Targeting the quiescent cells in the cancer chemotherapy treatment: Is it enough?
(A. Tridane, R. Yafia, M.A.Aziz-Alaoui),
Applied Mathematical Modelling,
Vol.40, Issues 7–8, pp:4844–4858, 2016.
doi:10.1016/j.apm.2015.12.023 .
[54]
Global Dynamics of a Three Species Prey-Predator Competition Model
with Holling type II Functional Response on a Circular Domain,
(Abid & al.). Journal of Applied Nonlinear Dynamics, Vol.5(1), pp:93–104, 2016.
-
[53]
Global Dynamics on a Circular Domain of a Diffusion Predator-Prey Model with
Modfied Leslie-Gower and Beddington-DeAngelis Functional Type,
(Abid, Yafia, A.A. et al),
Evolution Equations and Control Theory,
Vol. 4(2), pp: 115 - 129, 2015.
DOI:10.3934/eect.2015.4.xx ,
[52]
Understanding and simulation of human
behaviors in areas affected by disasters: from
the observation to the mathematical conception.
(N. Verdière, G. Cantin, et al.),
Global Journal of Human Social Science,
Volume 15, Issue 10,
2015.
See:
Here,
[51]
Les comportements humains en situation de catastrophe : de l’observation
à la modélisation conceptuelle et mathématique.
(D.Provitolo et al)
Cybergeo : Revue européenne de géographie, article 735,
pp: 22 pages (septembre 2015),
see:
Here,
[50]
Bifurcation and Stability in a Delayed Predator–Prey
Model with Mixed Functional Responses,
(Yafia R., Aziz-Alaoui M. & al.),
International Journal of Bifurcations & Chaos,
Vol. 25(7), pp:1540014 (17 pages), 2015.
DOI: 10.1142/S0218127415400143
[49]
Diffusion Driven Instability and Hopf Bifurcation in Spatial Predator-Prey
Model on a Circular Domain,
(Abid, Yafia, A.A. et al), Applied Mathematics and Computation, Vol. 260, pp:292–313, 2015.
[48]
Bifurcation analysis and optimal harvesting of a delayed predator-prey model .
(P.T. Mouofo, R.D.Demasse, J.J. Tewa, A.A.),
International Journal of Bifurcation and Chaos,
Vol. 25(1), pp:1550012 (15 pages), 2015.
DOI: 10.1142/S0218127415500121.
[47]
Stability and Hopf Bifurcation in Predator-Prey Model with Modified
Leslie-Gower and Beddington-DeAngelis Functional Response
(Yafia R. & A.A.),
Biomath Communications 2(1), 2015.
See BioMath Com.
DOI: http://dx.doi.org/10.11145/370.
See:
https://biomath.math.bas.bg/biomath/index.php/conference/article/view/370/546
[46]
A new piecewise linear Chen system of fractional-order: Numerical
approximation of stable attractors,
(M.Danca, A.A. & M.Small), Chinese Physics B, Vol. 24(6), pp: 060507, 2015.
[45]
Instability and Pattern Formation in Three-Species Food chain Model
via Holling type II Functional Response on a Circular Domain,
(Abid, Yafia, A.A. et al),
International Journal of Bifurcation and Chaos,
Vol. 25(6), pp: 1550092 (25 pages), 2015.
-
[44]
Weakly coupled two slow- two fast systems, folded node and mixed mode oscillations,
(Krupa M., Ambrosio B. and A.A.), NONLINEARITY, Vol.27(7), 2014, pp:1555-1574.
doi:10.1088/0951-7715/27/7/1555.
See
and
see
http://arxiv.org/abs/1302.1800
[43]
Local Nash Equilibrium,
(Y. Zhang, A.A., C.B. & J.G. ), SCIENTIFIC REPORTS, Vol. 4, Article number: 6224, 2014.
Available online at (NATURE groupe)
http://www.nature.com/srep/2014/140829/srep06224/full/srep06224.html.
doi:10.1038/srep06224.
Paper award : Knowledge Diffusion in Complex Networks,
(Y. Zhang, A.A. , C.B., J.G & S.Z. ), IEEE Outstanding paper award, 2015,
See Here
[42]
Emergence of Cooperation in Non-scale-free Networks,
(Y. Zhang, A.A. , C.B., S. Zhou & W. Wang), Journal of Phy-A: MATHEMATICAL AND THEORETICAL,
Vol. 47(22), 2014, pp:1-10.
doi:10.1088/1751-8113/47/22/225003.
See
http://arxiv.org/pdf/1405.0761.pdf.
.
-
[41]
Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model with and without random signal,
CHAOS. An Interdisciplinary Journal of Nonlinear Science, Vol. 23, 2013, pp: 033125, (S.R. Dtchetgnia D., R. Yamapi, T.C. Kofane and M.A. Aziz-Alaoui).
DOI: 10.1063/1.4818545, See: http://dx.doi.org/10.1063/1.4818545.
[40]
Fence-sitters protect cooperation in complex networks,
(Y. Zhang, M.A. Aziz-Alaoui, C. Bertelle, et al.), Phy-Review-E, Vol. 88, pp: 032127, 2013.
[39]
Synchronization and control of a network of coupled Reaction-Diffusion systems of generalized FitzHugh-Nagumo type,
ESAIM: Proceedings and Surveys, Vol.39, 2013, pp:15-24, (Ambrosio B. and A.A.).
DOI: http://dx.doi.org/10.1051/proc/201339003,
[38]
Periodic Chemotherapy in Non-Specific Phase of Hematopoietic Stem Cells Model With One Delay, (Yafia R. and A.A.),
Advances in Dyn. Syst. Appl., Vol.8(1), 2013, pp: 137-148.
[37]
Qualitative properties in a more generalized delayed hematopoietic stem cells model,
ESAIM: Proceedings and Surveys, Vol. 39, 2013, pp: 66-77, (Yafia R. and A.A.).
DOI: http://dx.doi.org/10.1051/proc/201339009 ,
[36]
Existence of periodic travelling waves solutions in predator prey model with diffusion,
(Yafia R. and A.A.),
Applied Mathematical Modelling, Vol. 37(6), 2013,
pp: 3635–3644,
http://dx.doi.org/10.1016/j.apm.2012.08.003
[35]
Optimal intervention strategies for tuberculosis, (S.Bowong and A.A.),
Communications in Nonlinear Science and Numerical Simulation,
Volume 18(6), 2013, pp: 1441-1453
-
[34]
Cluster Synchronization Analysis of Complex Dynamical Networks by
Input-to-State Stability
(Zhao J, Aziz-Alaoui M.A. and C.Bertelle), Nonlinear Dynamics Vol.70, pp: 1107-1115, 2012.
DOI: 10.1007/s11071-012-0516-x,
see Here
[33]
Effective Fokker-Planck Equation for Birhythmic Modified van der Pol oscillator,
(R. Yamapi, G. Filatrella, M. A. Aziz-Alaoui, H. Cerdeira), CHAOS. An Interdisciplinary Journal of Nonlinear Science, Vol.22(4),
pp: 043114, (2012). DOI: http://dx.doi.org/10.1063/1.4766678,
see Here
and http://arxiv.org/abs/1212.0098
[32]
Synchronization and control of coupled Reaction-Diffusion
systems of FitzHugh-Nagumo type
(B. Ambrosio and Aziz-Alaoui M.A.),
Computers & Mathematics with Applications. An International Journal, Vol.64(5), pp: 934-943, (2012).
,
see Here
[31]
Modelling the Dynamics of Complex Interaction Systems: from Morphogenesis to Control,
(Corson N., Aziz-Alaoui M.A., Ghnemat R., Balev S. and Bertelle C.),
International Journal of Bifurcation and Chaos, Vol. 22(2), pp: 1250025 (20 pages)
(2012),
.
DOI No: 10.1142/S0218127412500253.
Available online march 2012,
see Here
[30]
Introduction to special issue, Complex Systems and Applications,
(Aziz-Alaoui M.A., Bertelle C. and Liu X.),
International Journal of Bifurcation and Chaos, Vol. 22(2), pp: 1202001 (4 pages),
(2012)
.
DOI No: 10.1142/S0218127412020014.
Available online march 2012,
see Here
[29]
Optimal Control of Chikungunya Disease, (D.Moulay, M.A. Aziz-Alaoui and H.D. Kwon)
Mathematical Biosciences and Engineering, Vol. 9(2), pp: 369-393,
(2012).
.
See Here
-
[28]
The chikungunya disease: Modeling, vector and transmission global dynamics,
(D. Moulay, M.A. Aziz-Alaoui, M. Cadivel),
Mathematical Biosciences, Vol. 229(1),
pp: 50-63, (2011),
.
-
[27]
Global stability analysis of birhythmicity in a self-sustained
oscillator,
(Yamapi R., Filattrella G. and Aziz-Alaoui M.A.),
CHAOS. An Interdisciplinary Journal of Nonlinear Science, Vol. 20(1), pp: 013114 (2010); doi:10.1063/1.3309014,
.
[26]
Synchronization of chaotic fractional-order systems via linear control,
(Odibat Z., Corson N., Aziz-Alaoui M.A., Bertelle C.),
International Journal of Bifurcation and Chaos, Vol. 20(1),
pp: 1-15 (2010),
.
[25]
A multi-step differential transform method and application to
non-chaotic or chaotic systems,
(Odibat Z., Bertelle C., Aziz-Alaoui M.A. and Duchamp G.),
Computers & Mathematics with Applications. An International Journal, Vol. 59(4),
pp: 1462-1472 (2010),
.
-
[24]
Asymptotic Dynamics for Slow-Fast Hindmarsh-Rose Neuronal System,
(Corson N. and Aziz-Alaoui M.A.),
Dynamics of Continuous, Discrete and Impulsive Systems, series B,
Vol. 16(4), pp: 535-549 (2009),
.
[23]
Turing and Hopf Patterns Formation in a Predator-Prey Model with
Leslie-Gower-Type Functional Response,
(Camara B.I. and Aziz-Alaoui M.A.),
Dynamics of Continuous, Discrete and Impulsive Systems, series B,
Vol. 16(4), pp: 479-488 (2009),
.
-
[22]
Stability of controlled synchronization manifold in a ring of
mutually coupled systems,
(Yamapi R. and Aziz-Alaoui M.A.),
International Journal of Bifurcation and Chaos, Vol. 18(12),
pp: 2397-2414, (2008),
.
[21]
Dynamics of a Predator-prey model with diffusion
(Camara B.I. and Aziz-Alaoui M.A.), Dynamics of Continuous
Discrete and Impulsive Systems, Series A : Mathematical Analysis,
Vol. 15, pp: 897-906 (2008),
.
[20]
Persistence and global stability in a delayed Leslie-Gower type three
species food chain
(Nindjin A.F. and Aziz-Alaoui M.A.),
Journal of Mathematical Analysis and Applications,
Vol. 340(1), pp: 340-357 (2008),
.
[19]
Generating multi-scroll chaotic attractors by thresholding
(J. Lü, K. Murali, S. Sinha, H. Leung, M.A. Aziz-Alaoui)
Physics Letters A,
Vol. 372(18), pp: 3234-3239 (2008)
[18]
Complexity in a prey predator model
(Camara B.I. and Aziz-Alaoui M.A.),
ARIMA (revue africaine de la recherche en informatique et mathématiques appliquées),
Vol. 9, pp: 109 à 122 (2008),
.
-
[17]
Vibrations Analysis and Bifurcations in the Self-Sustained
Electromechanical System with Multiple Functions
(Yamapi R., and Aziz-Alaoui M.A.),
Communications in Nonlinear Science and Numerical Simulations
Vol. 12(8), pp: 1534-1549 (2007),
.
[16]
Hopf Bifuraction Direction in a Delayed Hematopoietic
Stem Cells Models
(H. Talibi A., R. Yafia and Aziz-Alaoui M.A.),
AJMMS,
Arab Journal of Mathematics and Mathematical Sciences, Vol.1(1), pp: 35-49 (2007),
.
-
[15]
Analysis of a Predator-Prey Model with Modified
Leslie-Gower and Holling-Type II Schemes with
Time Delay
(Nindjin A.F. , Aziz-Alaoui M.A. and M. Cadivel),
NonLinear Analysis Real World Applications, 7(5), pp: 1104-1118,
(2006) :
[14]
Synchronization of chaos
see also
here
(Aziz-Alaoui M.A.),
(Invited paper for) Encyclopedia of Mathematical Physics,
Elsevier, Vol. 5, pp: 213-226, (2006),
-
[13]
Results on a modified Holling-Tanner predator-prey model.
(Nindjin A.F., Aziz-Alaoui M.A. and Cadivel M.),
Published as an added volume to the Journal DCDIS
series B: Applications and Algorithms, pp: 679-684, (2005).
Proceedings of the Fourth International DCDIS Conference,
Guelph-Ontario Canada
A Survey on Chaos Synchronization
(Aziz-Alaoui M.A.),
Proceedings of the 12th IEEE-ICECS international Conference,
pp: 523-527,
Tunisia, December 11-15, 2005,
Vibrations Analysis and Bifurcations in the Self-Sustained
Electromechanical System with Multiple Functions,
(Yamapi R., Moukoum Kakmeni F.M. and Aziz-Alaoui M.A.)
Prperint, IC/2005/039, The Abdus Salam International Centre
for Theoretical Physics.
-
[12]
Difference equations versus differential equations, a possible equivalence
for the Rössler system?
(Letellier C., Elaydi S., Aguiré L. and Aziz Alaoui M.A.),
Physica D, Vol. 195,
pp: 29-49, (2004),
-
[11]
On the dynamics of a predator-prey model
with the Holling-Tanner functional response,
(Daher Okiye M. and Aziz-Alaoui M.A.), book-chapter in
Mathematical Modelling and Computing in Biology
and Medecine, , pp: 270-278, Milan Res. Cent. Ind. Appl. Math. MIRIAM Proj.,
1, Esculapio, Bologna. 92D25 (34D23)(2003),